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Last time

• torque

• net torque

• static equilibrium



Overview

• another static equilibrium example

• Newton’s second law for rotation

• moment of inertia

• (parallel axis theorem)



Question

Quick Quiz 12.31 A meterstick of uniform density is hung from a
string tied at the 25-cm mark. A 0.50-kg object is hung from the
zero end of the meterstick, and the meterstick is balanced
horizontally. What is the mass of the meterstick?

(A) 0.25 kg

(B) 0.50 kg

(C) 1.0 kg

(D) 2.0 kg

1Serway & Jewett, page 366.
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Example - Slipping Ladder

A uniform ladder of length `, rests against a smooth, vertical wall.
The mass of the ladder is m, and the coefficient of static friction
between the ladder and the ground is µs = 0.40. Find the
minimum angle θmin at which the ladder does not slip.

370 Chapter 12 Static Equilibrium and Elasticity

Finalize  Notice that the angle depends only on the coefficient of friction, not on the mass or length of the ladder.

Example 12.3   The Leaning Ladder 

A uniform ladder of length , rests against a smooth, vertical wall (Fig. 
12.9a). The mass of the ladder is m, and the coefficient of static friction 
between the ladder and the ground is ms 5 0.40. Find the minimum 
angle umin at which the ladder does not slip.

Conceptualize  Think about any ladders you have climbed. Do you want 
a large friction force between the bottom of the ladder and the surface 
or a small one? If the friction force is zero, will the ladder stay up? Simu-
late a ladder with a ruler leaning against a vertical surface. Does the 
ruler slip at some angles and stay up at others?

Categorize  We do not wish the ladder to slip, so we model it as a rigid 
object in equilibrium.

Analyze  A diagram showing all the external forces acting on the ladder is illustrated in Figure 12.9b. The force exerted 
by the ground on the ladder is the vector sum of a normal force nS and the force of static friction f

S
s . The wall exerts a 

normal force P
S

 on the top of the ladder, but there is no friction force here because the wall is smooth. So the net force 
on the top of the ladder is perpendicular to the wall and of magnitude P.
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Figure 12.9  (Example 12.3) (a) A uniform 
ladder at rest, leaning against a smooth wall. The 
ground is rough. (b) The forces on the ladder.

Apply the first condition for equilibrium to the ladder in 
both the x and the y directions:

(1)   o  Fx 5 fs 2 P 5 0

(2)   o Fy 5 n 2 mg 5 0

Solve Equation (1) for P : (3)   P 5 fs

Solve Equation (2) for n: (4)   n 5 mg 

When the ladder is on the verge of slipping, the force 
of static friction must have its maximum value, which is 
given by fs,max 5 msn. Combine this equation with Equa-
tions (3) and (4):

(5)   Pmax 5 fs,max 5 msn 5 msmg

Apply the second condition for equilibrium to the lad-
der, evaluating torques about an axis perpendicular to 
the page through O :

a tO 5 P, sin u 2 mg 
,

2
 cos u 5 0

Solve for tan u: sin u
cos u

5 tan u 5
mg
2P

   S   u 5 tan21 amg
2P

b
Under the conditions that the ladder is just ready 
to slip, u becomes umin and Pmax is given by Equa-
tion (5). Substitute:

umin 5 tan21 a mg
2Pmax

b 5 tan21 a 1
2ms

b 5 tan21 c 1
2 10.40 2 d 5 518

 

Example 12.4   Negotiating a Curb 

(A)  Estimate the magnitude of the force F
S

 a person must apply to a wheelchair’s main wheel to roll up over a side-
walk curb (Fig. 12.10a). This main wheel that comes in contact with the curb has a radius r, and the height of the curb 
is h.

AM

umin 5 tan21a mg
2Pmax

b 5 tan21 a 1
2ms

b 5 tan21 c 1
2 10.40 2 d 5

[&&]

θmin = 51◦
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Rotational Version of Newton’s Second Law

Tangential components of forces give rise to torques.

They also cause tangential accelerations. Consider the tangential
component of the net force, Fnet,t :

Fnet,t = mat

from Newton’s second law.

τnet = r × Fnet = r Fnet,t n̂

Now let’s specifically consider the case of a single particle, mass m,
at a fixed radius r .



Rotational Version of Newton’s Second Law
A single particle, mass m, at a fixed radius r .

302 Chapter 10 Rotation of a Rigid Object About a Fixed Axis

▸ 10.3 c o n t i n u e d

Conceptualize  Imagine that the cylinder in Figure 10.9 is a shaft in a machine. The force T
S

1 could be applied by a 
drive belt wrapped around the drum. The force T

S
2 could be applied by a friction brake at the surface of the core.

Categorize  This example is a substitution problem in which we evaluate the net torque using Equation 10.14.
 The torque due to T

S
1 about the rotation axis is 2R1T1. (The sign is negative because the torque tends to produce 

clockwise rotation.) The torque due to T
S

2 is 1R2T2. (The sign is positive because the torque tends to produce counter-
clockwise rotation of the cylinder.)

S O L U T I O N

Evaluate the net torque about the rotation axis: o t 5 t1 1 t2 5  R2T2 2 R1T1

Substitute the given values: o t 5 (0.50 m)(15 N) 2 (1.0 m)(5.0 N) 5  2.5 N ? m

As a quick check, notice that if the two forces are of equal magnitude, the net torque is negative because R1 . R2. Start-
ing from rest with both forces of equal magnitude acting on it, the cylinder would rotate clockwise because T

S
1 would 

be more effective at turning it than would T
S

2.

(B)  Suppose T1 5 5.0 N, R1 5 1.0 m, T2 5 15 N, and R2 5 0.50 m. What is the net torque about the rotation axis, and 
which way does the cylinder rotate starting from rest?

S O L U T I O N

Because this net torque is positive, the cylinder begins to rotate in the counterclockwise direction.
 

10.5  Analysis Model: Rigid Object Under a Net Torque
In Chapter 5, we learned that a net force on an object causes an acceleration of the 
object and that the acceleration is proportional to the net force. These facts are the 
basis of the particle under a net force model whose mathematical representation 
is Newton’s second law. In this section, we show the rotational analog of Newton’s 
second law: the angular acceleration of a rigid object rotating about a fixed axis is 
proportional to the net torque acting about that axis. Before discussing the more 
complex case of rigid-object rotation, however, it is instructive first to discuss the 
case of a particle moving in a circular path about some fixed point under the influ-
ence of an external force.
 Consider a particle of mass m rotating in a circle of radius r under the influence 
of a tangential net force g  F

S
t  and a radial net force g  F

S
r  as shown in Figure 10.10. 

The radial net force causes the particle to move in the circular path with a centrip-
etal acceleration. The tangential force provides a tangential acceleration aSt , and

o Ft 5 mat

The magnitude of the net torque due to g  F
S

t  on the particle about an axis perpen-
dicular to the page through the center of the circle is

o t 5 o Ftr 5 (mat)r

Because the tangential acceleration is related to the angular acceleration through 
the relationship at 5 ra (Eq. 10.11), the net torque can be expressed as

 o t 5 (mra)r 5 (mr 2)a (10.15)

Let us denote the quantity mr 2 with the symbol I for now. We will say more about 
this quantity below. Using this notation, Equation 10.15 can be written as

  o t 5 Ia (10.16)

That is, the net torque acting on the particle is proportional to its angular accelera-
tion. Notice that o t 5 Ia has the same mathematical form as Newton’s second law 
of motion, o F 5 ma.

r

m

! Ft
S

! Fr
S

The tangential force on the 
particle results in a torque on the 
particle about an axis through 
the center of the circle.

Figure 10.10  A particle rotating  
in a circle under the influence of a  
tangential net force g  F

S
t . A radial 

net force g  F
S

r also must be present 
to maintain the circular motion.

For such a particle, Fnet,t = mat

τnet = rFnet,t n̂

= r m at n̂

= r m (αr)

= (mr2)α



Rotational Version of Newton’s Second Law

(mr2) is just some constant for this particle and this axis of
rotation.

Let this constant be (scalar) I = mr2.

I is called the rotational inertia or moment of inertia of this
system, for this particular axis of rotation.

Replacing the constant quantity in our expression for τnet:

τnet = Iα
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Rotational Version of Newton’s Second Law

(mr2) is just some constant for this particle and this axis of
rotation.

Let this constant be (scalar) I = mr2.

I is called the rotational inertia or moment of inertia of this
system, for this particular axis of rotation.
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Rotational Version of Newton’s Second Law

Compare!
τnet = Iα

Fnet = ma

Now the moment of inertia, I, stands in for the inertial mass, m.

The moment of inertia measures the rotational inertia of an object,
just as mass is a measure of inertia.



Rotational Version of Newton’s Second Law

Compare!
τnet = Iα

Fnet = ma

Now the moment of inertia, I, stands in for the inertial mass, m.

The moment of inertia measures the rotational inertia of an object,
just as mass is a measure of inertia.



Rotational Inertia, or, Moment of Inertia
We just found that for a single particle, mass m, radius r ,

I = mr2

However, this will not be the moment of inertia for an extended
object with mass distributed over varying distances from the
rotational axis.

For that case, the torque on each individual mass mi will be:

τi = mi r
2
i α

And we sum over these torques to get the net torque. So, for a
collection of particles, masses mi at radiuses ri :

I =
∑
i

mi r
2
i



Moment of Inertia

Important caveat: Moment of inertia depends on the object’s
mass, shape, and the axis of rotation.

A single object will have different moments of inertia for different
axes of rotation.

Also notice that this sum is similar to the expression for the
center-of-mass, but for I we have r2 dependance and we do not
divide by the total mass.

Units: kg m2
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Moment of Inertia

If the object’s mass is far from the point of rotation, more torque
is needed to rotate the object (with some angular acceleration).

The barbell on the right has a greater moment of inertia.

1Diagram from Dr. Hunter’s page at http://biomech.byu.edu (by Hewitt?)



Moments of Inertia
25510-7 CALCU LATI NG TH E ROTATIONAL I N E RTIA

PART 1

Table 10-2

Some Rotational Inertias

Axis 

Hoop about 
central axis 

Axis 

Annular cylinder 
(or ring) about  

central axis 
R 

I = MR 2  (b) (a) I =   M(R 1
2  +  R 2

2)  

R 2 

R 1 

Thin rod about 
axis through center  

perpendicular to 
length 

(e) I =    ML 2  

L 

Axis 

Axis Axis 

Hoop about any  
diameter 

Slab about  
perpendicular  
axis through 

center  
 

(i) (h) 
I =   MR 2  I =    M(a 2  + b 2)  

R 

b  
a  

Axis 

Solid cylinder 
(or disk) about 

central axis 

(c) 
I =   MR 2  

R 
L  

Axis 

Solid cylinder 
(or disk) about 

central diameter 

(d)  I =   MR 2  +    ML 2  

R 
L  

Axis 

Thin  
spherical shell 

about any  
diameter 

(g) I =   MR 2  

2R 

Solid sphere 
about any  
diameter 

(f) 
I =   MR 2  

2R 

Axis 

1 __
 2 1 __

 2 

2 __
 5 

1 __
 4 

2 __
 3 

1 __
 2 

1 __
 12 

1 __
 12 

1 __
 12 

perpendicular to the plane of the figure, and another axis through point P parallel
to the first axis. Let the x and y coordinates of P be a and b.

Let dm be a mass element with the general coordinates x and y. The rota-
tional inertia of the body about the axis through P is then, from Eq. 10-35,

which we can rearrange as

(10-37)

From the definition of the center of mass (Eq. 9-9), the middle two integrals of
Eq. 10-37 give the coordinates of the center of mass (multiplied by a constant)
and thus must each be zero. Because x2 ! y2 is equal to R2, where R is the dis-
tance from O to dm, the first integral is simply Icom, the rotational inertia of the
body about an axis through its center of mass. Inspection of Fig. 10-12 shows that
the last term in Eq. 10-37 is Mh2, where M is the body’s total mass. Thus,
Eq. 10-37 reduces to Eq. 10-36, which is the relation that we set out to prove.

I " ! (x2 ! y2) dm # 2a ! x dm # 2b ! y dm ! ! (a2 ! b2) dm.

I " ! r2 dm " ! [(x # a)2 ! ( y # b)2] dm,

Fig. 10-12 A rigid body in cross section,
with its center of mass at O.The parallel-axis
theorem (Eq. 10-36) relates the rotational in-
ertia of the body about an axis through O to
that about a parallel axis through a point
such as P, a distance h from the body’s center
of mass. Both axes are perpendicular to the
plane of the figure.

dm 

r 

P 

h 

a 
b 

x – a 

y – b 

com 
O 

Rotation axis 
through 

center of mass 

Rotation axis 
through P 

y 

x 

We need to relate the
rotational inertia around
the axis at P to that around
the axis at the com.

CHECKPOINT 5

The figure shows a book-like object (one side is
longer than the other) and four choices of rotation
axes, all perpendicular to the face of the
object. Rank the choices according to the rotational
inertia of the object about the axis, greatest first.

(1) (2) (3) (4)

halliday_c10_241-274hr2.qxd  29-09-2009  13:12  Page 255

1Figure from Halliday, Resnick, Walker, 9th ed, page 255.



Newton’s Second Law for Rotation - Example
A block of mass m is attached to a string wrapped around a pulley
wheel of radius R and mass M. The block is released from rest
and descends. The pulley wheel is a uniform disk, it’s axle is
frictionless, and the string does not slip.

26110-9 N EWTON’S S ECON D LAW FOR ROTATION
PART 1

Sample Problem

Newton’s 2nd law, rotation, torque, disk

Figure 10-18a shows a uniform disk, with mass M ! 2.5 kg
and radius R ! 20 cm, mounted on a fixed horizontal axle.
A block with mass m ! 1.2 kg hangs from a massless cord that
is wrapped around the rim of the disk. Find the acceleration of
the falling block, the angular acceleration of the disk, and the
tension in the cord.The cord does not slip, and there is no fric-
tion at the axle.

KEY I DEAS
m 

M 

M R 
O 

Fg 

(b) (a) 

(c) 

m 

T 

T 

The torque due to the 
cord's pull on the rim 
causes an angular 
acceleration of the disk.

These two forces 
determine the block's 
(linear) acceleration.

We need to relate 
those two
accelerations.

y

Fig. 10-18 (a) The falling block causes the disk to rotate. (b) A
free-body diagram for the block. (c) An incomplete free-body dia-
gram for the disk.

with this fact: Because the cord does not slip, the linear ac-
celeration a of the block and the (tangential) linear
acceleration at of the rim of the disk are equal. Then, by
Eq. 10-22 (at ! ar) we see that here a ! a /R. Substituting
this in Eq. 10-47 yields

(10-48)

Combining results: Combining Eqs. 10-46 and 10-48 leads
to

. (Answer)
We then use Eq. 10-48 to find T:

(Answer)
As we should expect, acceleration a of the falling block is less
than g, and tension T in the cord (! 6.0 N) is less than the
gravitational force on the hanging block (! mg ! 11.8 N).
We see also that a and T depend on the mass of the disk but
not on its radius. As a check, we note that the formulas de-
rived above predict a ! "g and T ! 0 for the case of a
massless disk (M ! 0). This is what we would expect; the
block simply falls as a free body. From Eq. 10-22, the angular
acceleration of the disk is

(Answer)# !
a
R

!
"4.8 m/s2

0.20 m
! "24 rad/s2.

 ! 6.0 N.

 T ! "1
2 Ma ! "1

2(2.5 kg)("4.8 m/s2)

! "4.8 m/s2

 a ! "g 
2m

M $ 2m
! "(9.8 m/s2) 

(2)(1.2 kg)
2.5 kg $ (2)(1.2 kg)

T ! "1
2 Ma.

(1) Taking the block as a system,we can relate its acceleration a
to the forces acting on it with Newton’s second law ( ).
(2) Taking the disk as a system, we can relate its angular accel-
eration a to the torque acting on it with Newton’s second
law for rotation (tnet ! Ia). (3) To combine the motions of
block and disk, we use the fact that the linear acceleration a
of the block and the (tangential) linear acceleration of the
disk rim are equal.

Forces on block: The forces are shown in the block’s free-
body diagram in Fig. 10-18b: The force from the cord is ,
and the gravitational force is , of magnitude mg. We can
now write Newton’s second law for components along a ver-
tical y axis (Fnet,y ! may) as

T " mg ! ma. (10-46)

However, we cannot solve this equation for a because it also
contains the unknown T.

Torque on disk: Previously, when we got stuck on the y
axis, we switched to the x axis. Here, we switch to the rota-
tion of the disk. To calculate the torques and the rotational
inertia I, we take the rotation axis to be perpendicular to the
disk and through its center, at point O in Fig. 10-18c.

The torques are then given by Eq. 10-40 (t ! rFt). The
gravitational force on the disk and the force on the disk
from the axle both act at the center of the disk and thus at
distance r ! 0, so their torques are zero. The force on the
disk due to the cord acts at distance r ! R and is tangent to
the rim of the disk. Therefore, its torque is "RT, negative
because the torque rotates the disk clockwise from rest.
From Table 10-2c, the rotational inertia I of the disk is .
Thus we can write tnet ! Ia as

(10-47)

This equation seems useless because it has two
unknowns, a and T, neither of which is the desired a.
However, mustering physics courage, we can make it useful

"RT ! 1
2 MR2#.

1
2MR2

T
:

F
:

g

T
:

at

F
:

net ! m:a

Additional examples, video, and practice available at WileyPLUS

halliday_c10_241-274hr.qxd  17-09-2009  12:50  Page 261

Find the acceleration of the block, a, the angular acceleration of
the pulley wheel, α, and the tension in the string, T .
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with this fact: Because the cord does not slip, the linear ac-
celeration a of the block and the (tangential) linear
acceleration at of the rim of the disk are equal. Then, by
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(1) Taking the block as a system,we can relate its acceleration a
to the forces acting on it with Newton’s second law ( ).
(2) Taking the disk as a system, we can relate its angular accel-
eration a to the torque acting on it with Newton’s second
law for rotation (tnet ! Ia). (3) To combine the motions of
block and disk, we use the fact that the linear acceleration a
of the block and the (tangential) linear acceleration of the
disk rim are equal.

Forces on block: The forces are shown in the block’s free-
body diagram in Fig. 10-18b: The force from the cord is ,
and the gravitational force is , of magnitude mg. We can
now write Newton’s second law for components along a ver-
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However, we cannot solve this equation for a because it also
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tion of the disk. To calculate the torques and the rotational
inertia I, we take the rotation axis to be perpendicular to the
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the rim of the disk. Therefore, its torque is "RT, negative
because the torque rotates the disk clockwise from rest.
From Table 10-2c, the rotational inertia I of the disk is .
Thus we can write tnet ! Ia as

(10-47)

This equation seems useless because it has two
unknowns, a and T, neither of which is the desired a.
However, mustering physics courage, we can make it useful

"RT ! 1
2 MR2#.

1
2MR2

T
:

F
:

g

T
:

at

F
:

net ! m:a

Additional examples, video, and practice available at WileyPLUS
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block:

Fnet,y = may

T −mg = −ma (1)

pulley:

τnet = Iα

RT =
1

2
MR2α

T =
1

2
MRα (2)

rotational and translational acceleration:

a = Rα (3)



Newton’s Second Law for Rotation - Example
(3) into (2):

T =
1

2
Ma

Putting that into (1) and rearranging:(
1

2
Ma

)
−mg = −ma

a =
2mg

M + 2m
downward

Eq for a into (2):

T =
Mmg

M + 2m

Eq for a into (3):

α =
2mg

R(M + 2m)
clockwise



Newton’s Second Law for Rotation - Example
(3) into (2):

T =
1

2
Ma

Putting that into (1) and rearranging:(
1

2
Ma

)
−mg = −ma

a =
2mg

M + 2m
downward

Eq for a into (2):

T =
Mmg

M + 2m

Eq for a into (3):

α =
2mg

R(M + 2m)
clockwise



Moment of Inertia - Parallel Axis Theorem
Suppose you need the moment of inertia about an axis not through
the center of mass, but all you know is ICM.

We can determine the moment of inertia about any parallel axis
with a simple calculation!

I‖ = ICM +M d2

where d is the distance from from the axis through the center of
mass to the new axis.



Moment of Inertia - Parallel Axis Theorem
Suppose you need the moment of inertia about an axis not through
the center of mass, but all you know is ICM.

We can determine the moment of inertia about any parallel axis
with a simple calculation!

I‖ = ICM +M d2

where d is the distance from from the axis through the center of
mass to the new axis.



Moment of Inertia - Parallel Axis Theorem

For an axis through the center of mass and any parallel axis
through some other point:

I‖ = ICM +M d2

Use: perhaps you know ICM, but need the moment of inertia about
a different point; or maybe you know the moment of inertia about
one axis, you can find ICM, then you can find I for any parallel
axis.
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For an axis through the center of mass and any parallel axis
through some other point:
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Use: perhaps you know ICM, but need the moment of inertia about
a different point; or maybe you know the moment of inertia about
one axis, you can find ICM, then you can find I for any parallel
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Example based on problem 41, pg 269

Two particles, each with mass m = 0.85 kg, are fastened to each
other, and to a rotation axis at O, by two thin rods, each with
length d = 5.6 cm and mass M = 1.2 kg. Measured about O,
what is the combination’s rotational inertia?

••41 In Fig. 10-34, two particles,
each with mass m 0.85 kg, are fas-
tened to each other, and to a rota-
tion axis at O, by two thin rods, each
with length d ! 5.6 cm and mass
M ! 1.2 kg. The combination ro-
tates around the rotation axis with
the angular speed v ! 0.30 rad/s.
Measured about O, what are the
combination’s (a) rotational inertia
and (b) kinetic energy? 

••42 The masses and coordinates of four particles are as follows:
50 g, x ! 2.0 cm, y ! 2.0 cm; 25 g, x ! 0, y ! 4.0 cm; 25 g, x ! "3.0
cm, y ! "3.0 cm; 30 g, x ! "2.0 cm, y ! 4.0 cm.What are the rota-
tional inertias of this collection about the (a) x, (b) y, and (c) z
axes? (d) Suppose the answers to (a)
and (b) are A and B, respectively.
Then what is the answer to (c) in
terms of A and B?

••43 The uniform solid
block in Fig. 10-35 has mass 0.172 kg
and edge lengths a ! 3.5 cm, b ! 8.4
cm, and c ! 1.4 cm. Calculate its ro-
tational inertia about an axis
through one corner and perpendicu-
lar to the large faces.

••44 Four identical particles of mass 0.50 kg each are placed at
the vertices of a 2.0 m # 2.0 m square and held there by four mass-
less rods, which form the sides of the square. What is the rotational
inertia of this rigid body about an axis that (a) passes through the
midpoints of opposite sides and lies in the plane of the square, (b)
passes through the midpoint of one of the sides and is perpendicu-
lar to the plane of the square, and (c) lies in the plane of the square
and passes through two diagonally opposite particles?
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269PROB LE M S
PART 1

•34 Figure 10-30 gives angular speed versus time for a thin rod
that rotates around one end. The scale on the v axis is set by

(a) What is the magnitude of the rod’s angular ac-
celeration? (b) At t 4.0 s, the rod has a rotational kinetic energy
of 1.60 J.What is its kinetic energy at t ! 0?

!
$s ! 6.0 rad/s.

around the rotation axis decrease when that removed particle is
(a) the innermost one and (b) the outermost one?

••39 Trucks can be run on energy stored in a rotating flywheel,
with an electric motor getting the flywheel up to its top speed of
200p rad/s. One such flywheel is a solid, uniform cylinder with a
mass of 500 kg and a radius of 1.0 m. (a) What is the kinetic energy
of the flywheel after charging? (b) If the truck uses an average
power of 8.0 kW, for how many minutes can it operate between
chargings?

••40 Figure 10-33 shows an arrangement of 15 identical disks that
have been glued together in a rod-like shape of length L ! 1.0000 m
and (total) mass M ! 100.0 mg. The disk arrangement can rotate
about a perpendicular axis through its central disk at point O. (a)
What is the rotational inertia of the arrangement about that axis?
(b) If we approximated the arrangement as being a uniform rod of
mass M and length L, what percentage error would we make in us-
ing the formula in Table 10-2e to calculate the rotational inertia?

0
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Fig. 10-30 Problem 34.
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Fig. 10-33 Problem 40.
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Fig. 10-34 Problem 41.

sec. 10-7 Calculating the Rotational Inertia
•35 Two uniform solid cylinders, each rotating about its cen-
tral (longitudinal) axis at 235 rad/s, have the same mass of 1.25 kg
but differ in radius. What is the rotational kinetic energy of (a) the
smaller cylinder, of radius 0.25 m, and (b) the larger cylinder, of 
radius 0.75 m?

•36 Figure 10-31a shows a disk that can rotate about an axis at a
radial distance h from the center of the disk. Figure 10-31b gives
the rotational inertia I of the disk about the axis as a function of
that distance h, from the center out to the edge of the disk. The
scale on the I axis is set by and 
What is the mass of the disk?

IB ! 0.150 kg %m2.IA ! 0.050 kg %m2

SSM

•37 Calculate the rotational inertia of a meter stick, with
mass 0.56 kg, about an axis perpendicular to the stick and located
at the 20 cm mark. (Treat the stick as a thin rod.)

•38 Figure 10-32 shows three 0.0100 kg particles that have been
glued to a rod of length L ! 6.00 cm and negligible mass. The as-
sembly can rotate around a perpendicular axis through point O at
the left end. If we remove one particle (that is, 33% of the mass),
by what percentage does the rotational inertia of the assembly

SSM

Fig. 10-32 Problems 38 and 62.

Axis

L

mO

d d d
m m

b

a

c

Rotation
axis

Fig. 10-35 Problem 43.
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Example based on problem 41, pg 269

m = 0.85 kg
d = 5.6 cm
M = 1.2 kg

••41 In Fig. 10-34, two particles,
each with mass m 0.85 kg, are fas-
tened to each other, and to a rota-
tion axis at O, by two thin rods, each
with length d ! 5.6 cm and mass
M ! 1.2 kg. The combination ro-
tates around the rotation axis with
the angular speed v ! 0.30 rad/s.
Measured about O, what are the
combination’s (a) rotational inertia
and (b) kinetic energy? 

••42 The masses and coordinates of four particles are as follows:
50 g, x ! 2.0 cm, y ! 2.0 cm; 25 g, x ! 0, y ! 4.0 cm; 25 g, x ! "3.0
cm, y ! "3.0 cm; 30 g, x ! "2.0 cm, y ! 4.0 cm.What are the rota-
tional inertias of this collection about the (a) x, (b) y, and (c) z
axes? (d) Suppose the answers to (a)
and (b) are A and B, respectively.
Then what is the answer to (c) in
terms of A and B?

••43 The uniform solid
block in Fig. 10-35 has mass 0.172 kg
and edge lengths a ! 3.5 cm, b ! 8.4
cm, and c ! 1.4 cm. Calculate its ro-
tational inertia about an axis
through one corner and perpendicu-
lar to the large faces.

••44 Four identical particles of mass 0.50 kg each are placed at
the vertices of a 2.0 m # 2.0 m square and held there by four mass-
less rods, which form the sides of the square. What is the rotational
inertia of this rigid body about an axis that (a) passes through the
midpoints of opposite sides and lies in the plane of the square, (b)
passes through the midpoint of one of the sides and is perpendicu-
lar to the plane of the square, and (c) lies in the plane of the square
and passes through two diagonally opposite particles?

WWWSSM

!

269PROB LE M S
PART 1

•34 Figure 10-30 gives angular speed versus time for a thin rod
that rotates around one end. The scale on the v axis is set by

(a) What is the magnitude of the rod’s angular ac-
celeration? (b) At t 4.0 s, the rod has a rotational kinetic energy
of 1.60 J.What is its kinetic energy at t ! 0?

!
$s ! 6.0 rad/s.

around the rotation axis decrease when that removed particle is
(a) the innermost one and (b) the outermost one?

••39 Trucks can be run on energy stored in a rotating flywheel,
with an electric motor getting the flywheel up to its top speed of
200p rad/s. One such flywheel is a solid, uniform cylinder with a
mass of 500 kg and a radius of 1.0 m. (a) What is the kinetic energy
of the flywheel after charging? (b) If the truck uses an average
power of 8.0 kW, for how many minutes can it operate between
chargings?

••40 Figure 10-33 shows an arrangement of 15 identical disks that
have been glued together in a rod-like shape of length L ! 1.0000 m
and (total) mass M ! 100.0 mg. The disk arrangement can rotate
about a perpendicular axis through its central disk at point O. (a)
What is the rotational inertia of the arrangement about that axis?
(b) If we approximated the arrangement as being a uniform rod of
mass M and length L, what percentage error would we make in us-
ing the formula in Table 10-2e to calculate the rotational inertia?
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sec. 10-7 Calculating the Rotational Inertia
•35 Two uniform solid cylinders, each rotating about its cen-
tral (longitudinal) axis at 235 rad/s, have the same mass of 1.25 kg
but differ in radius. What is the rotational kinetic energy of (a) the
smaller cylinder, of radius 0.25 m, and (b) the larger cylinder, of 
radius 0.75 m?

•36 Figure 10-31a shows a disk that can rotate about an axis at a
radial distance h from the center of the disk. Figure 10-31b gives
the rotational inertia I of the disk about the axis as a function of
that distance h, from the center out to the edge of the disk. The
scale on the I axis is set by and 
What is the mass of the disk?

IB ! 0.150 kg %m2.IA ! 0.050 kg %m2

SSM

•37 Calculate the rotational inertia of a meter stick, with
mass 0.56 kg, about an axis perpendicular to the stick and located
at the 20 cm mark. (Treat the stick as a thin rod.)

•38 Figure 10-32 shows three 0.0100 kg particles that have been
glued to a rod of length L ! 6.00 cm and negligible mass. The as-
sembly can rotate around a perpendicular axis through point O at
the left end. If we remove one particle (that is, 33% of the mass),
by what percentage does the rotational inertia of the assembly

SSM

Fig. 10-32 Problems 38 and 62.
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For the two particles I = mr2, so in total:

Iparticles = md2 +m(2d)2

For the rods, treat them as one, ICM = 1
12MtotL

2, if L = 2d is the
rod length and Mtot = 2M.

Using the parallel axis theorem, we can find the rotational inertia
through its end point, a distance d away:

Irod =
1

12
(2M)(2d)2 + (2M)d2



Example based on problem 41, pg 269

m = 0.85 kg
d = 5.6 cm
M = 1.2 kg

••41 In Fig. 10-34, two particles,
each with mass m 0.85 kg, are fas-
tened to each other, and to a rota-
tion axis at O, by two thin rods, each
with length d ! 5.6 cm and mass
M ! 1.2 kg. The combination ro-
tates around the rotation axis with
the angular speed v ! 0.30 rad/s.
Measured about O, what are the
combination’s (a) rotational inertia
and (b) kinetic energy? 

••42 The masses and coordinates of four particles are as follows:
50 g, x ! 2.0 cm, y ! 2.0 cm; 25 g, x ! 0, y ! 4.0 cm; 25 g, x ! "3.0
cm, y ! "3.0 cm; 30 g, x ! "2.0 cm, y ! 4.0 cm.What are the rota-
tional inertias of this collection about the (a) x, (b) y, and (c) z
axes? (d) Suppose the answers to (a)
and (b) are A and B, respectively.
Then what is the answer to (c) in
terms of A and B?

••43 The uniform solid
block in Fig. 10-35 has mass 0.172 kg
and edge lengths a ! 3.5 cm, b ! 8.4
cm, and c ! 1.4 cm. Calculate its ro-
tational inertia about an axis
through one corner and perpendicu-
lar to the large faces.

••44 Four identical particles of mass 0.50 kg each are placed at
the vertices of a 2.0 m # 2.0 m square and held there by four mass-
less rods, which form the sides of the square. What is the rotational
inertia of this rigid body about an axis that (a) passes through the
midpoints of opposite sides and lies in the plane of the square, (b)
passes through the midpoint of one of the sides and is perpendicu-
lar to the plane of the square, and (c) lies in the plane of the square
and passes through two diagonally opposite particles?
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•34 Figure 10-30 gives angular speed versus time for a thin rod
that rotates around one end. The scale on the v axis is set by

(a) What is the magnitude of the rod’s angular ac-
celeration? (b) At t 4.0 s, the rod has a rotational kinetic energy
of 1.60 J.What is its kinetic energy at t ! 0?

!
$s ! 6.0 rad/s.

around the rotation axis decrease when that removed particle is
(a) the innermost one and (b) the outermost one?

••39 Trucks can be run on energy stored in a rotating flywheel,
with an electric motor getting the flywheel up to its top speed of
200p rad/s. One such flywheel is a solid, uniform cylinder with a
mass of 500 kg and a radius of 1.0 m. (a) What is the kinetic energy
of the flywheel after charging? (b) If the truck uses an average
power of 8.0 kW, for how many minutes can it operate between
chargings?

••40 Figure 10-33 shows an arrangement of 15 identical disks that
have been glued together in a rod-like shape of length L ! 1.0000 m
and (total) mass M ! 100.0 mg. The disk arrangement can rotate
about a perpendicular axis through its central disk at point O. (a)
What is the rotational inertia of the arrangement about that axis?
(b) If we approximated the arrangement as being a uniform rod of
mass M and length L, what percentage error would we make in us-
ing the formula in Table 10-2e to calculate the rotational inertia?
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sec. 10-7 Calculating the Rotational Inertia
•35 Two uniform solid cylinders, each rotating about its cen-
tral (longitudinal) axis at 235 rad/s, have the same mass of 1.25 kg
but differ in radius. What is the rotational kinetic energy of (a) the
smaller cylinder, of radius 0.25 m, and (b) the larger cylinder, of 
radius 0.75 m?

•36 Figure 10-31a shows a disk that can rotate about an axis at a
radial distance h from the center of the disk. Figure 10-31b gives
the rotational inertia I of the disk about the axis as a function of
that distance h, from the center out to the edge of the disk. The
scale on the I axis is set by and 
What is the mass of the disk?

IB ! 0.150 kg %m2.IA ! 0.050 kg %m2

SSM

•37 Calculate the rotational inertia of a meter stick, with
mass 0.56 kg, about an axis perpendicular to the stick and located
at the 20 cm mark. (Treat the stick as a thin rod.)

•38 Figure 10-32 shows three 0.0100 kg particles that have been
glued to a rod of length L ! 6.00 cm and negligible mass. The as-
sembly can rotate around a perpendicular axis through point O at
the left end. If we remove one particle (that is, 33% of the mass),
by what percentage does the rotational inertia of the assembly
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For the two particles I = mr2, so in total:

Iparticles = md2 +m(2d)2

For the rods, treat them as one, ICM = 1
12MtotL

2, if L = 2d is the
rod length and Mtot = 2M.

Using the parallel axis theorem, we can find the rotational inertia
through its end point, a distance d away:

Irod =
1

12
(2M)(2d)2 + (2M)d2
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m = 0.85 kg
d = 5.6 cm
M = 1.2 kg

••41 In Fig. 10-34, two particles,
each with mass m 0.85 kg, are fas-
tened to each other, and to a rota-
tion axis at O, by two thin rods, each
with length d ! 5.6 cm and mass
M ! 1.2 kg. The combination ro-
tates around the rotation axis with
the angular speed v ! 0.30 rad/s.
Measured about O, what are the
combination’s (a) rotational inertia
and (b) kinetic energy? 

••42 The masses and coordinates of four particles are as follows:
50 g, x ! 2.0 cm, y ! 2.0 cm; 25 g, x ! 0, y ! 4.0 cm; 25 g, x ! "3.0
cm, y ! "3.0 cm; 30 g, x ! "2.0 cm, y ! 4.0 cm.What are the rota-
tional inertias of this collection about the (a) x, (b) y, and (c) z
axes? (d) Suppose the answers to (a)
and (b) are A and B, respectively.
Then what is the answer to (c) in
terms of A and B?

••43 The uniform solid
block in Fig. 10-35 has mass 0.172 kg
and edge lengths a ! 3.5 cm, b ! 8.4
cm, and c ! 1.4 cm. Calculate its ro-
tational inertia about an axis
through one corner and perpendicu-
lar to the large faces.

••44 Four identical particles of mass 0.50 kg each are placed at
the vertices of a 2.0 m # 2.0 m square and held there by four mass-
less rods, which form the sides of the square. What is the rotational
inertia of this rigid body about an axis that (a) passes through the
midpoints of opposite sides and lies in the plane of the square, (b)
passes through the midpoint of one of the sides and is perpendicu-
lar to the plane of the square, and (c) lies in the plane of the square
and passes through two diagonally opposite particles?
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•34 Figure 10-30 gives angular speed versus time for a thin rod
that rotates around one end. The scale on the v axis is set by

(a) What is the magnitude of the rod’s angular ac-
celeration? (b) At t 4.0 s, the rod has a rotational kinetic energy
of 1.60 J.What is its kinetic energy at t ! 0?

!
$s ! 6.0 rad/s.

around the rotation axis decrease when that removed particle is
(a) the innermost one and (b) the outermost one?

••39 Trucks can be run on energy stored in a rotating flywheel,
with an electric motor getting the flywheel up to its top speed of
200p rad/s. One such flywheel is a solid, uniform cylinder with a
mass of 500 kg and a radius of 1.0 m. (a) What is the kinetic energy
of the flywheel after charging? (b) If the truck uses an average
power of 8.0 kW, for how many minutes can it operate between
chargings?

••40 Figure 10-33 shows an arrangement of 15 identical disks that
have been glued together in a rod-like shape of length L ! 1.0000 m
and (total) mass M ! 100.0 mg. The disk arrangement can rotate
about a perpendicular axis through its central disk at point O. (a)
What is the rotational inertia of the arrangement about that axis?
(b) If we approximated the arrangement as being a uniform rod of
mass M and length L, what percentage error would we make in us-
ing the formula in Table 10-2e to calculate the rotational inertia?
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sec. 10-7 Calculating the Rotational Inertia
•35 Two uniform solid cylinders, each rotating about its cen-
tral (longitudinal) axis at 235 rad/s, have the same mass of 1.25 kg
but differ in radius. What is the rotational kinetic energy of (a) the
smaller cylinder, of radius 0.25 m, and (b) the larger cylinder, of 
radius 0.75 m?

•36 Figure 10-31a shows a disk that can rotate about an axis at a
radial distance h from the center of the disk. Figure 10-31b gives
the rotational inertia I of the disk about the axis as a function of
that distance h, from the center out to the edge of the disk. The
scale on the I axis is set by and 
What is the mass of the disk?

IB ! 0.150 kg %m2.IA ! 0.050 kg %m2

SSM

•37 Calculate the rotational inertia of a meter stick, with
mass 0.56 kg, about an axis perpendicular to the stick and located
at the 20 cm mark. (Treat the stick as a thin rod.)

•38 Figure 10-32 shows three 0.0100 kg particles that have been
glued to a rod of length L ! 6.00 cm and negligible mass. The as-
sembly can rotate around a perpendicular axis through point O at
the left end. If we remove one particle (that is, 33% of the mass),
by what percentage does the rotational inertia of the assembly
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In total:

IO = md2 +m(2d)2 +
1

12
(2M)(2d)2 + (2M)d2

= 5md2 +
8

3
Md2

= 2.3× 10−2 kg m2



Summary

• static equilibrium example

• Newton’sk second law for rotation

• moment of inertia

• (parallel axis theorem)

Homework
• Ch 10 Probs: 49, 53 - Newton’s 2nd law for rotation

• Ch 10 Probs: 37, 43, 104(a) only [not (b)] (can wait to do)


