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Last time

• parallel axis theorem for rotational inertia

• rotational kinetic energy

• angular momentum



Overview

• angular momentum of rigid objects

• angular momentum conservation



Angular Momentum
For a particle:

L = r × p
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tional motion that pS plays in translational motion. We call this combination the 
angular momentum of the particle:

The instantaneous angular momentum L
S

 of a particle relative to an axis 
through the origin O is defined by the cross product of the particle’s instanta-
neous position vector rS and its instantaneous linear momentum pS:

 L
S

; rS 3 pS  (11.10)

We can now write Equation 11.9 as

 a tS 5
d L

S

dt
 (11.11)

which is the rotational analog of Newton’s second law, g  F
S

5 d pS/dt. Torque 
causes the angular momentum L

S
 to change just as force causes linear momentum 

pS to change.
 Notice that Equation 11.11 is valid only if g  tS and L

S
 are measured about the 

same axis. Furthermore, the expression is valid for any axis fixed in an inertial frame.
 The SI unit of angular momentum is kg ? m2/s. Notice also that both the mag-
nitude and the direction of L

S
 depend on the choice of axis. Following the right-

hand rule, we see that the direction of L
S

 is perpendicular to the plane formed by 
rS and pS. In Figure 11.4, rS and pS are in the xy plane, so L

S
 points in the z direction. 

Because pS 5 m vS, the magnitude of L
S

 is

 L 5 mvr sin f (11.12)

where f is the angle between rS and pS. It follows that L is zero when rS is parallel to 
pS (f 5 0 or 1808). In other words, when the translational velocity of the particle is 
along a line that passes through the axis, the particle has zero angular momentum 
with respect to the axis. On the other hand, if rS is perpendicular to pS (f 5 908), 
then L 5 mvr. At that instant, the particle moves exactly as if it were on the rim of a 
wheel rotating about the axis in a plane defined by rS and pS.

Q uick Quiz 11.2  Recall the skater described at the beginning of this section.  
Let her mass be m. (i) What would be her angular momentum relative to the 
pole at the instant she is a distance d from the pole if she were skating directly 
toward it at speed v? (a) zero (b) mvd (c) impossible to determine (ii) What 
would be her angular momentum relative to the pole at the instant she is a dis-
tance d from the pole if she were skating at speed v along a straight path that is 
a perpendicular distance a from the pole? (a) zero (b) mvd (c) mva (d) impos-
sible to determine
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particle about an axis is a vector 
perpendicular to both the 
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Pitfall Prevention 11.2
Is Rotation Necessary for Angular 
Momentum? We can define angu-
lar momentum even if the particle 
is not moving in a circular path.  
A particle moving in a straight 
line has angular momentum 
about any axis displaced from  
the path of the particle.

Example 11.3   Angular Momentum of a Particle in Circular Motion

A particle moves in the xy plane in a circular path of radius r as shown in Figure 
11.5. Find the magnitude and direction of its angular momentum relative to an axis 
through O when its velocity is vS.

Conceptualize  The linear momentum of the 
particle is always changing in direction (but not 
in magnitude). You might therefore be tempted 
to conclude that the angular momentum of the 
particle is always changing. In this situation, 
however, that is not the case. Let’s see why.

S O L U T I O N
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Figure 11.5  (Example 11.3) A 
particle moving in a circle of radius r 
has an angular momentum about an 
axis through O that has magnitude 
mvr. The vector L

S
5 rS 3 pS points 

out of the page.

continued



Angular Momentum of a Particle in Circular Motion

For a particle moving in a circle:
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Angular Momentum of Rigid Object

342 Chapter 11 Angular Momentum

Finalize  When we evaluated the net torque about the axle, we did not include the forces that the cord exerts on the 
objects because these forces are internal to the system under consideration. Instead, we analyzed the system as a 
whole. Only external torques contribute to the change in the system’s angular momentum. Let M S 0 in Equation (3) 
and call the result Equation A. Now go back to Equation (5) in Example 5.10, let u S 0, and call the result Equation B.  
Do Equations A and B match? Looking at Figures 5.15 and 11.6 in these limits, should the two equations match?

Substitute this expression and the total external torque 
into Equation 11.13, the mathematical representation of 
the nonisolated system model for angular momentum:

a text 5
dL
dt

m1gR 5
d
dt

 3 1m1 1 m2 1 M 2vR 4
(2)   m1gR 5 1m1 1 m2 1 M 2R 

dv
dt

Recognizing that dv/dt 5 a, solve Equation (2) for a : (3)   a 5 
m1g

m1 1 m2 1 M

11.3 Angular Momentum of a Rotating Rigid Object
In Example 11.4, we considered the angular momentum of a deformable system of 
particles. Let us now restrict our attention to a nondeformable system, a rigid object. 
Consider a rigid object rotating about a fixed axis that coincides with the z axis of a 
coordinate system as shown in Figure 11.7. Let’s determine the angular momentum 
of this object. Each particle of the object rotates in the xy plane about the z axis with 
an angular speed v. The magnitude of the angular momentum of a particle of mass 
mi about the z axis is miviri . Because vi 5 ri v (Eq. 10.10), we can express the magni-
tude of the angular momentum of this particle as

Li 5 miri
2v

The vector L
S

i for this particle is directed along the z axis, as is the vector vS.
 We can now find the angular momentum (which in this situation has only a z 
component) of the whole object by taking the sum of Li over all particles:

Lz 5 a
i

Li 5 a
i

m iri
 2v 5 aa

i
m iri 2bv

 Lz 5 Iv (11.14)

where we have recognized oi miri
2 as the moment of inertia I of the object about the 

z axis (Eq. 10.19). Notice that Equation 11.14 is mathematically similar in form to 
Equation 9.2 for linear momentum: pS 5 mvS.
 Now let’s differentiate Equation 11.14 with respect to time, noting that I is con-
stant for a rigid object:

 
dLz

dt
5 I 

dv

dt
5 Ia (11.15)
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Figure 11.7  When a rigid object 
rotates about an axis, the angu-
lar momentum L

S
 is in the same 

direction as the angular velocity 
v
S according to the expression 
L
S

5 I v
S .

Write an expression for the total angular momentum of 
the system:

(1)   L 5 m1vR 1 m2vR 1 MvR 5 (m1 1 m2 1 M)vR

acting on the block is balanced by the gravitational force m2gS, so these forces do not contribute to the torque. The 
gravitational force m1gS acting on the sphere produces a torque about the axle equal in magnitude to m1gR, where R 
is the moment arm of the force about the axle. This result is the total external torque about the pulley axle; that is, g  text 5 m1gR.

 

▸ 11.4 c o n t i n u e d

All parts of the object have the same angular velocity ω.



Angular Momentum of Rigid Object

(Let n̂ be a unit vector in the direction of ωωω.)

For a rigid object made of many particles:

Ltot =
∑
i

Li

=
∑
i

mi rivi n̂

Notice that for each particle vi = ωri

=

(∑
i

mi r
2
i

)
ω n̂

= Iωωω



Angular Momentum of Rigid Object

For a rigid object:

Ltot = Iωωω

where I is the moment of inertia and ωωω is the angular velocity.



Question

Quick Quiz 11.31 A solid sphere and a hollow sphere have the
same mass and radius. They are rotating with the same angular
speed. Which one has the higher angular momentum?

(A) the solid sphere

(B) the hollow sphere

(C) both have the same angular momentum

(D) impossible to determine

1Serway & Jewett, page 343.
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Quick Quiz 11.31 A solid sphere and a hollow sphere have the
same mass and radius. They are rotating with the same angular
speed. Which one has the higher angular momentum?

(A) the solid sphere

(B) the hollow sphere ←
(C) both have the same angular momentum

(D) impossible to determine
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Conservation of Angular Momentum

For an isolated system, ie. a system with no external torques, total
angular momentum is conserved.

 11.4 Analysis Model: Isolated System (Angular Momentum) 347

Example 11.7   Formation of a Neutron Star 

A star rotates with a period of 30 days about an axis through its center. The period is the time interval required for a 
point on the star’s equator to make one complete revolution around the axis of rotation. After the star undergoes a 
supernova explosion, the stellar core, which had a radius of 1.0 3 104 km, collapses into a neutron star of radius 3.0 km. 
Determine the period of rotation of the neutron star.

Conceptualize  The change in the neutron star’s motion is similar to that of the skater described earlier, but in the 
reverse direction. As the mass of the star moves closer to the rotation axis, we expect the star to spin faster.

Categorize  Let us assume that during the collapse of the stellar core, (1) no external torque acts on it, (2) it remains 
spherical with the same relative mass distribution, and (3) its mass remains constant. We categorize the star as an iso-
lated system in terms of angular momentum. We do not know the mass distribution of the star, but we have assumed the 
distribution is symmetric, so the moment of inertia can be expressed as kMR2, where k is some numerical constant. 
(From Table 10.2, for example, we see that k 5 25 for a solid sphere and k 5 23 for a spherical shell.)

Analyze  Let’s use the symbol T for the period, with Ti being the initial period of the star and Tf being the period of the 
neutron star. The star’s angular speed is given by v 5 2p/T.

AM

S O L U T I O N

From the isolated system model for angular 
momentum, write Equation 11.19 for the star:

Iivi 5 If vf

Use v 5 2p/T to rewrite this equation in terms of 
the initial and final periods:

Ii a2p

Ti
b 5 If a2p

Tf
b

Substitute the moments of inertia in the preceding 
equation:

kMRi 2a2p

Ti
b 5 kMRf 2a2p

Tf
b

Solve for the final period of the star: Tf 5 aRf

Ri
b2

Ti

Analysis Model   Isolated System (Angular Momentum)

Imagine a system rotates about 
an axis. If there is no net external 
torque on the system, there is no 
change in the angular momen-
tum of the system:

 DL
S

tot 5 0 (11.18)

Applying this law of conserva-
tion of angular momentum to a 
system whose moment of inertia 
changes gives

 Iivi 5 If vf 5 constant (11.19)

The angular momentum of the 
isolated system is constant.

Angular momentum

System
boundary

Examples: 

star collapses to a small radius and spins at a 
much higher rate

proportional to the cube of its semimajor axis; 
Kepler’s third law  (Chapter 13)

quantum numbers must be obeyed in order to 
conserve angular momentum (Chapter 42)

-
trino must be emitted in order to conserve 
angular momentum (Chapter 44)

Substitute numerical values: Tf 5 a 3.0 km
1.0 3 104 km

b2 130 days 2 5 2.7 3 1026 days 5  0.23 s

Finalize  The neutron star does indeed rotate faster after it collapses, as predicted. It moves very fast, in fact, rotating 
about four times each second!

∆Ltotal = 0

1Figure from Serway & Jewett.



Angular Momentum is Conserved
The angular momentum of a system does not change unless
it acted upon by an external torque. Li = Lf .

Suppose an object is changing shape, so that its moment of inertia
gets smaller: If < Ii . 29111-11 CON S E RVATION OF ANG U LAR MOM E NTU M

PART 1

cles whose speeds approach that of light (where the theory of special relativity
reigns), and they remain true in the world of subatomic particles (where quantum
physics reigns). No exceptions to the law of conservation of angular momentum
have ever been found.

We now discuss four examples involving this law.

1. The spinning volunteer Figure 11-16 shows a student seated on a stool that
can rotate freely about a vertical axis. The student, who has been set into
rotation at a modest initial angular speed vi, holds two dumbbells in his
outstretched hands. His angular momentum vector lies along the vertical ro-
tation axis, pointing upward.

The instructor now asks the student to pull in his arms; this action reduces
his rotational inertia from its initial value Ii to a smaller value If because he
moves mass closer to the rotation axis. His rate of rotation increases markedly,
from vi to vf.The student can then slow down by extending his arms once more,
moving the dumbbells outward.

No net external torque acts on the system consisting of the student, stool,
and dumbbells.Thus, the angular momentum of that system about the rotation
axis must remain constant, no matter how the student maneuvers the dumb-
bells. In Fig. 11-16a, the student’s angular speed vi is relatively low and his ro-
tational inertia Ii is relatively high. According to Eq. 11-34, his angular speed
in Fig. 11-16b must be greater to compensate for the decreased If.

2. The springboard diver Figure 11-17 shows a diver doing a forward one-and-
a-half-somersault dive.As you should expect, her center of mass follows a par-
abolic path. She leaves the springboard with a definite angular momentum 
about an axis through her center of mass, represented by a vector pointing
into the plane of Fig. 11-17, perpendicular to the page. When she is in the air,
no net external torque acts on her about her center of mass, so her angular
momentum about her center of mass cannot change. By pulling her arms and
legs into the closed tuck position, she can considerably reduce her rotational
inertia about the same axis and thus, according to Eq. 11-34, considerably
increase her angular speed. Pulling out of the tuck position (into the open lay-
out position) at the end of the dive increases her rotational inertia and thus
slows her rotation rate so she can enter the water with little splash. Even in a
more complicated dive involving both twisting and somersaulting, the angular
momentum of the diver must be conserved, in both magnitude and direction,
throughout the dive.

3. Long jump When an athlete takes off from the ground in a running long
jump, the forces on the launching foot give the athlete an angular momentum
with a forward rotation around a horizontal axis. Such rotation would not allow

L
:

L
:

Fig. 11-16 (a) The student has a rela-
tively large rotational inertia about the ro-
tation axis and a relatively small angular
speed. (b) By decreasing his rotational in-
ertia, the student automatically increases
his angular speed.The angular momentum

of the rotating system remains un-
changed.
L
:

L

Ii 

If

Rotation axis 
(a) 

(b)

i ω 

fω

L 

Fig. 11-17 The diver’s angular 
momentum is constant throughout the dive,
being represented by the tail ! of an arrow that
is perpendicular to the plane of the figure. Note
also that her center of mass (see the dots) fol-
lows a parabolic path.

L
:

L 

L 

Her angular momentum
is fixed but she can still
control her spin rate.

halliday_c11_275-304hr2.qxd  29-09-2009  13:17  Page 291
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Li = Lf → Iiωi = Ifωf

That means the angular speed increases! ωf > ωi



Angular Momentum is Conserved
The angular momentum of a system does not change unless
it acted upon by an external torque. Li = Lf .

Suppose an object is changing shape, so that its moment of inertia
gets smaller: If < Ii . 29111-11 CON S E RVATION OF ANG U LAR MOM E NTU M

PART 1

cles whose speeds approach that of light (where the theory of special relativity
reigns), and they remain true in the world of subatomic particles (where quantum
physics reigns). No exceptions to the law of conservation of angular momentum
have ever been found.

We now discuss four examples involving this law.

1. The spinning volunteer Figure 11-16 shows a student seated on a stool that
can rotate freely about a vertical axis. The student, who has been set into
rotation at a modest initial angular speed vi, holds two dumbbells in his
outstretched hands. His angular momentum vector lies along the vertical ro-
tation axis, pointing upward.

The instructor now asks the student to pull in his arms; this action reduces
his rotational inertia from its initial value Ii to a smaller value If because he
moves mass closer to the rotation axis. His rate of rotation increases markedly,
from vi to vf.The student can then slow down by extending his arms once more,
moving the dumbbells outward.

No net external torque acts on the system consisting of the student, stool,
and dumbbells.Thus, the angular momentum of that system about the rotation
axis must remain constant, no matter how the student maneuvers the dumb-
bells. In Fig. 11-16a, the student’s angular speed vi is relatively low and his ro-
tational inertia Ii is relatively high. According to Eq. 11-34, his angular speed
in Fig. 11-16b must be greater to compensate for the decreased If.

2. The springboard diver Figure 11-17 shows a diver doing a forward one-and-
a-half-somersault dive.As you should expect, her center of mass follows a par-
abolic path. She leaves the springboard with a definite angular momentum 
about an axis through her center of mass, represented by a vector pointing
into the plane of Fig. 11-17, perpendicular to the page. When she is in the air,
no net external torque acts on her about her center of mass, so her angular
momentum about her center of mass cannot change. By pulling her arms and
legs into the closed tuck position, she can considerably reduce her rotational
inertia about the same axis and thus, according to Eq. 11-34, considerably
increase her angular speed. Pulling out of the tuck position (into the open lay-
out position) at the end of the dive increases her rotational inertia and thus
slows her rotation rate so she can enter the water with little splash. Even in a
more complicated dive involving both twisting and somersaulting, the angular
momentum of the diver must be conserved, in both magnitude and direction,
throughout the dive.

3. Long jump When an athlete takes off from the ground in a running long
jump, the forces on the launching foot give the athlete an angular momentum
with a forward rotation around a horizontal axis. Such rotation would not allow

L
:

L
:

Fig. 11-16 (a) The student has a rela-
tively large rotational inertia about the ro-
tation axis and a relatively small angular
speed. (b) By decreasing his rotational in-
ertia, the student automatically increases
his angular speed.The angular momentum

of the rotating system remains un-
changed.
L
:

L

Ii 

If

Rotation axis 
(a) 

(b)

i ω 

fω

L 

Fig. 11-17 The diver’s angular 
momentum is constant throughout the dive,
being represented by the tail ! of an arrow that
is perpendicular to the plane of the figure. Note
also that her center of mass (see the dots) fol-
lows a parabolic path.

L
:

L 

L 

Her angular momentum
is fixed but she can still
control her spin rate.

halliday_c11_275-304hr2.qxd  29-09-2009  13:17  Page 291

29111-11 CON S E RVATION OF ANG U LAR MOM E NTU M
PART 1

cles whose speeds approach that of light (where the theory of special relativity
reigns), and they remain true in the world of subatomic particles (where quantum
physics reigns). No exceptions to the law of conservation of angular momentum
have ever been found.

We now discuss four examples involving this law.

1. The spinning volunteer Figure 11-16 shows a student seated on a stool that
can rotate freely about a vertical axis. The student, who has been set into
rotation at a modest initial angular speed vi, holds two dumbbells in his
outstretched hands. His angular momentum vector lies along the vertical ro-
tation axis, pointing upward.

The instructor now asks the student to pull in his arms; this action reduces
his rotational inertia from its initial value Ii to a smaller value If because he
moves mass closer to the rotation axis. His rate of rotation increases markedly,
from vi to vf.The student can then slow down by extending his arms once more,
moving the dumbbells outward.

No net external torque acts on the system consisting of the student, stool,
and dumbbells.Thus, the angular momentum of that system about the rotation
axis must remain constant, no matter how the student maneuvers the dumb-
bells. In Fig. 11-16a, the student’s angular speed vi is relatively low and his ro-
tational inertia Ii is relatively high. According to Eq. 11-34, his angular speed
in Fig. 11-16b must be greater to compensate for the decreased If.

2. The springboard diver Figure 11-17 shows a diver doing a forward one-and-
a-half-somersault dive.As you should expect, her center of mass follows a par-
abolic path. She leaves the springboard with a definite angular momentum 
about an axis through her center of mass, represented by a vector pointing
into the plane of Fig. 11-17, perpendicular to the page. When she is in the air,
no net external torque acts on her about her center of mass, so her angular
momentum about her center of mass cannot change. By pulling her arms and
legs into the closed tuck position, she can considerably reduce her rotational
inertia about the same axis and thus, according to Eq. 11-34, considerably
increase her angular speed. Pulling out of the tuck position (into the open lay-
out position) at the end of the dive increases her rotational inertia and thus
slows her rotation rate so she can enter the water with little splash. Even in a
more complicated dive involving both twisting and somersaulting, the angular
momentum of the diver must be conserved, in both magnitude and direction,
throughout the dive.
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Angular Momentum is Conserved
The angular momentum of a system does not change unless
it acted upon by an external torque. Li = Lf .

Suppose an object is changing shape, so that its moment of inertia
gets smaller: If < Ii . 29111-11 CON S E RVATION OF ANG U LAR MOM E NTU M
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axis must remain constant, no matter how the student maneuvers the dumb-
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in Fig. 11-16b must be greater to compensate for the decreased If.
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Conservation of Angular Mtm: Collision Example

A flywheel rotates without friction at an angular velocity
ω0 = 600 revs/min on a frictionless, vertical shaft of negligible
rotational inertia. A second flywheel, which is at rest and has a
moment of inertia three times that of the rotating flywheel, is
dropped onto it.

11.4

Figure 11.16 Two flywheels are coupled and rotate together.

Strategy

Part (a) is straightforward to solve for the angular velocity of the coupled system. We use the result of (a) to
compare the initial and final kinetic energies of the system in part (b).

Solution

a. No external torques act on the system. The force due to friction produces an internal torque, which does not
affect the angular momentum of the system. Therefore conservation of angular momentum gives

b. Before contact, only one flywheel is rotating. The rotational kinetic energy of this flywheel is the initial

rotational kinetic energy of the system, . The final kinetic energy is

Therefore, the ratio of the final kinetic energy to the initial kinetic energy is

Thus, 3/4 of the initial kinetic energy is lost to the coupling of the two flywheels.

Significance

Since the rotational inertia of the system increased, the angular velocity decreased, as expected from the law
of conservation of angular momentum. In this example, we see that the final kinetic energy of the system has
decreased, as energy is lost to the coupling of the flywheels. Compare this to the example of the skater in Figure
11.14 doing work to bring her arms inward and adding rotational kinetic energy.

Check Your Understanding A merry-go-round at a playground is rotating at 4.0 rev/min. Three
children jump on and increase the moment of inertia of the merry-go-round/children rotating system by .
What is the new rotation rate?

Example 11.8

Dismount from a High Bar

An 80.0-kg gymnast dismounts from a high bar. He starts the dismount at full extension, then tucks to complete a
number of revolutions before landing. His moment of inertia when fully extended can be approximated as a rod of
length 1.8 m and when in the tuck a rod of half that length. If his rotation rate at full extension is 1.0 rev/s and he
enters the tuck when his center of mass is at 3.0 m height moving horizontally to the floor, how many revolutions

562 Chapter 11 | Angular Momentum

This OpenStax book is available for free at http://cnx.org/content/col12031/1.10

Friction acts between the surfaces, and the flywheels end up
spinning together with the same rotational velocity. (a) What is
the angular velocity ω of the combination. (b) What fraction of
the initial kinetic energy is lost in the coupling of the flywheels?

1Openstax “University Physics”, page 562 ch11



Conservation of Angular Mtm: Collision Example
(a) System of 2 flywheels (disks) is isolated ⇒ angular momentum
is conserved.

Li = Lf

I0ωωω0 + 0 = (I0 + 3I0)ωωωf

ωωωf =
1

4
ωωω0

ωωωf = 150 rev/min counterclockwise (as shown in diag.)

ωωωf = 15.7 rad/s counterclockwise

(b) Collision is perfectly inelastic! Kinetic energy is not conserved.

Fraction KE lost =
|∆K |
Ki

= 1 − Kf
Ki

1 −
Kf

Ki
= 1 −

1
2(4I0)ω

2
f

1
2I0ω

2
0

= 1 −
4(ω0/4)2

ω2
0

= 1 −
1

4

=
3

4
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Application of Angular Momentum Conservation
352 Chapter 11 Angular Momentum

The angular speed vp is called the precessional frequency. This result is valid 
only when vp ,, v. Otherwise, a much more complicated motion is involved. As 
you can see from Equation 11.20, the condition vp ,, v is met when v is large, 
that is, when the wheel spins rapidly. Furthermore, notice that the precessional 
frequency decreases as v increases, that is, as the wheel spins faster about its axis 
of symmetry.
 As an example of the usefulness of gyroscopes, suppose you are in a spacecraft in 
deep space and you need to alter your trajectory. To fire the engines in the correct 
direction, you need to turn the spacecraft. How, though, do you turn a spacecraft 
in empty space? One way is to have small rocket engines that fire perpendicularly 
out the side of the spacecraft, providing a torque around its center of mass. Such a 
setup is desirable, and many spacecraft have such rockets.
 Let us consider another method, however, that does not require the consump-
tion of rocket fuel. Suppose the spacecraft carries a gyroscope that is not rotating 
as in Figure 11.15a. In this case, the angular momentum of the spacecraft about its 
center of mass is zero. Suppose the gyroscope is set into rotation, giving the gyro-
scope a nonzero angular momentum. There is no external torque on the isolated 
system (spacecraft and gyroscope), so the angular momentum of this system must 
remain zero according to the isolated system (angular momentum) model. The 
zero value can be satisfied if the spacecraft rotates in the direction opposite that 
of the gyroscope so that the angular momentum vectors of the gyroscope and the 
spacecraft cancel, resulting in no angular momentum of the system. The result of 
rotating the gyroscope, as in Figure 11.15b, is that the spacecraft turns around! By 
including three gyroscopes with mutually perpendicular axles, any desired rota-
tion in space can be achieved.
 This effect created an undesirable situation with the Voyager 2 spacecraft during 
its flight. The spacecraft carried a tape recorder whose reels rotated at high speeds. 
Each time the tape recorder was turned on, the reels acted as gyroscopes and the 
spacecraft started an undesirable rotation in the opposite direction. This rotation 
had to be counteracted by Mission Control by using the sideward-firing jets to stop 
the rotation!Figure 11.15  (a) A spacecraft 

carries a gyroscope that is not 
spinning. (b) The gyroscope is set 
into rotation.

a

When the gyroscope
turns counterclockwise,
the spacecraft turns 
clockwise.

b

Summary

Definitions

 Given two vectors A
S

 and B
S

, the vec-
tor product A

S
3 B

S
 is a vector C

S
 having a 

magnitude

 C 5 AB sin u (11.3)

where u is the angle between A
S
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S

. The 
direction of the vector C

S
5 A

S
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S
 is per-

pendicular to the plane formed by A
S

 and B
S

, 
and this direction is determined by the right-
hand rule.

 The torque tS on a particle due to a force F
S

 about an axis 
through the origin in an inertial frame is defined to be

 tS ; rS 3 F
S

 (11.1)

 The angular momentum L
S

 about an axis through the origin 
of a particle having linear momentum pS 5 mvS is

 L
S

; rS 3 pS (11.10)

where rS is the vector position of the particle relative to the origin.
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A massive flywheel is driven to cause rotations in the entire rocket.
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 Problems 359

of the spacecraft around the same axis is Is 5 5.00 3   
105 kg ? m2. Neither the spacecraft nor the gyroscope 
is originally rotating. The gyroscope can be powered 
up in a negligible period of time to an angular speed 
of 100 rad/s. If the orientation of the spacecraft is to 
be changed by 30.08, for what time interval should the 
gyroscope be operated?

 43. The angular momentum vector of a precessing gyro-
scope sweeps out a cone as shown in Figure P11.43. The 
angular speed of the tip of the angular momentum vec-
tor, called its precessional frequency, is given by vp 5 
t/L, where t is the magnitude of the torque on the gyro-
scope and L is the magnitude of its angular momen-
tum. In the motion called precession of the equinoxes, the 
Earth’s axis of rotation precesses about the perpendicu-
lar to its orbital plane with a period of 2.58 3 104 yr. 
Model the Earth as a uniform sphere and calculate the 
torque on the Earth that is causing this precession.

 

L
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S

vp ! 

Figure P11.43 A precessing 
angular momentum vector 
sweeps out a cone in space.

Additional Problems
 44. A light rope passes over a light, 

frictionless pulley. One end is fas-
tened to a bunch of bananas of 
mass M, and a monkey of mass M 
clings to the other end (Fig. P11.44). 
The monkey climbs the rope in 
an attempt to reach the bananas.  
(a) Treating the system as consist-
ing of the monkey, bananas, rope, 
and pulley, find the net torque on 
the system about the pulley axis.  
(b) Using the result of part (a), 
determine the total angular momen-
tum about the pulley axis and describe the motion of 
the system. (c) Will the monkey reach the bananas?

 45. Comet Halley moves about the Sun in an elliptical 
orbit, with its closest approach to the Sun being about 
0.590 AU and its greatest distance 35.0 AU (1 AU 5 the 
Earth–Sun distance). The angular momentum of the 
comet about the Sun is constant, and the gravitational 
force exerted by the Sun has zero moment arm. The 
comet’s speed at closest approach is 54.0 km/s. What is 
its speed when it is farthest from the Sun?

 46. Review. Two boys are sliding toward each other on a 
frictionless, ice-covered parking lot. Jacob, mass 45.0 kg,  
is gliding to the right at 8.00 m/s, and Ethan, mass 
31.0 kg, is gliding to the left at 11.0 m/s along the same 

M

M

Figure P11.44

Q/C
S

Q/C

der. (b) Is the mechanical energy of the clay–cylinder 
system constant in this process? Explain your answer.  
(c) Is the momentum of the clay–cylinder system con-
stant in this process? Explain your answer.

M
R

m

d

vi
S

Figure P11.39

 40. Why is the following situation impossible? A space station 
shaped like a giant wheel has a radius of r 5 100 m and 
a moment of inertia of 5.00 3 108 kg ? m2. A crew of 
150 people of average mass 65.0 kg is living on the rim, 
and the station’s rotation causes the crew to experience 
an apparent free-fall acceleration of g (Fig. P11.29).  
A research technician is assigned to perform an experi-
ment in which a ball is dropped at the rim of the station 
every 15 minutes and the time interval for the ball to 
drop a given distance is measured as a test to make sure 
the apparent value of g is correctly maintained. One 
evening, 100 average people move to the center of the 
station for a union meeting. The research technician, 
who has already been performing his experiment for an 
hour before the meeting, is disappointed that he cannot 
attend the meeting, and his mood sours even further by 
his boring experiment in which every time interval for 
the dropped ball is identical for the entire evening.

 41. A 0.005 00-kg bullet traveling horizontally with speed  
1.00 3 103 m/s strikes an 18.0-kg door, embedding itself 
10.0 cm from the side opposite the hinges as shown in 
Figure P11.41. The 1.00-m wide door is free to swing 
on its frictionless hinges. (a) Before it hits the door, 
does the bullet have angular momentum relative to the 
door’s axis of rotation? (b) If so, evaluate this angu-
lar momentum. If not, explain why there is no angular 
momentum. (c) Is the mechanical energy of the bullet– 
door system constant during this collision? Answer 
without doing a calculation. (d) At what angular speed 
does the door swing open immediately after the colli-
sion? (e) Calculate the total energy of the bullet–door 
system and determine whether it is less than or equal 
to the kinetic energy of the bullet before the collision.

0.005 00 kg

18.0 kg

Hinge

Figure P11.41 An overhead view of a bullet striking a door.

Section 11.5  The Motion of Gyroscopes and Tops
 42. A spacecraft is in empty space. It carries on board a 

gyroscope with a moment of inertia of Ig 5 20.0 kg ? m2  
about the axis of the gyroscope. The moment of inertia 

Q/C
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0.005 00 kg

18.0 kg

Hinge

Figure P11.41 An overhead view of a bullet striking a door.

Section 11.5  The Motion of Gyroscopes and Tops
 42. A spacecraft is in empty space. It carries on board a 

gyroscope with a moment of inertia of Ig 5 20.0 kg ? m2  
about the axis of the gyroscope. The moment of inertia 

Q/C



Gyroscope Application Example

Time of gyroscope operation to achieve 30.0◦ rotation of craft?

Conservation of angular momentum:

0 = Igωg + Isωs

ωs = 0.004 rad s−1

θ = π
6

t =
θ

ωs

t = 131 s
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Another Example

#60, page 302

A 1.0 g bullet is fired into a 0.50 kg block
attached to the end of a 0.60 m nonuniform
rod of mass 0.50 kg. The block-rod-bullet
system then rotates in the plane of the figure,
about a fixed axis at A. The rotational inertia
of the rod alone about that axis at A is
0.060 kg m2. Treat the block as a particle.

(a) What then is the rotational inertia of the
block-rod-bullet system about point A?

(b) If the angular speed of the system about A
just after impact is 4.5 rad/s, what is the
bullet’s speed just before impact?

mass m ! M/4.00 on its outer edge, at radius R2. By how much does
the cat increase the kinetic energy of the cat–ring system if the cat
crawls to the inner edge, at radius R1?   

••55 A horizontal vinyl record of mass 0.10 kg and radius 0.10 m
rotates freely about a vertical axis through its center with an angu-
lar speed of 4.7 rad/s. The rotational inertia of the record about its
axis of rotation is 5.0 " 10#4 kg $ m2. A wad of wet putty of mass
0.020 kg drops vertically onto the record from above and sticks to
the edge of the record. What is the angular speed of the record im-
mediately after the putty sticks to it?

••56 In a long jump, an athlete leaves the ground with an
initial angular momentum that tends to rotate her body forward,
threatening to ruin her landing. To counter this tendency, she ro-
tates her outstretched arms to “take up” the angular momentum
(Fig. 11-18). In 0.700 s, one arm sweeps through 0.500 rev and the
other arm sweeps through 1.000 rev.Treat each arm as a thin rod of
mass 4.0 kg and length 0.60 m, rotating around one end. In the ath-
lete’s reference frame, what is the magnitude of the total angular
momentum of the arms around the common rotation axis through
the shoulders?

••57 A uniform disk of mass 10m and radius 3.0r can rotate freely
about its fixed center like a merry-go-round. A smaller uniform
disk of mass m and radius r lies on top of the larger disk, concentric
with it. Initially the two disks rotate together with an angular ve-
locity of 20 rad/s. Then a slight disturbance causes the smaller disk
to slide outward across the larger disk, until the outer edge of the
smaller disk catches on the outer edge of the larger disk.Afterward,
the two disks again rotate together (without further sliding). (a) What
then is their angular velocity about the center of the larger disk? (b)
What is the ratio K /K0 of the new kinetic energy of the two-disk sys-
tem to the system’s initial kinetic energy?

••58 A horizontal platform in the shape of a circular disk rotates
on a frictionless bearing about a vertical axle through the center of
the disk.The platform has a mass of 150 kg, a radius of 2.0 m, and a
rotational inertia of 300 kg $ m2 about the axis of rotation. A 60 kg
student walks slowly from the rim of the platform toward the cen-
ter. If the angular speed of the system is 1.5 rad/s when the student
starts at the rim, what is the angular speed when she is 0.50 m from
the center?

••59 Figure 11-52 is an overhead
view of a thin uniform rod of length
0.800 m and mass M rotating horizon-
tally at angular speed 20.0 rad/s about
an axis through its center. A particle
of mass M/3.00 initially attached to
one end is ejected from the rod and travels along a path that is per-
pendicular to the rod at the instant of ejection. If the particle’s speed
vp is 6.00 m/s greater than the speed of
the rod end just after ejection, what is
the value of vp?

••60 In Fig. 11-53, a 1.0 g bullet is
fired into a 0.50 kg block attached to
the end of a 0.60 m nonuniform rod of
mass 0.50 kg. The block–rod–bullet
system then rotates in the plane of the
figure, about a fixed axis at A. The ro-
tational inertia of the rod alone about
that axis at A is 0.060 kg $ m2. Treat the
block as a particle. (a) What then is

the rotational inertia of the block–rod–bullet system about point
A? (b) If the angular speed of the system about A just after impact
is 4.5 rad/s, what is the bullet’s speed just before impact?

••61 The uniform rod (length 0.60
m, mass 1.0 kg) in Fig. 11-54 rotates
in the plane of the figure about an
axis through one end, with a rota-
tional inertia of 0.12 kg $m2. As the
rod swings through its lowest posi-
tion, it collides with a 0.20 kg putty
wad that sticks to the end of the rod.
If the rod’s angular speed just before
collision is 2.4 rad/s, what is the angu-
lar speed of the rod–putty system
immediately after collision?

•••62 During a jump to his
partner, an aerialist is to make a quadruple somersault lasting a
time t ! 1.87 s. For the first and last quarter-revolution, he is in the
extended orientation shown in Fig. 11-55, with rotational inertia 
I1 ! 19.9 kg $m2 around his center of mass (the dot). During the
rest of the flight he is in a tight tuck, with rotational inertia I2 !
3.93 kg $m2. What must be his angular speed v 2 around his center
of mass during the tuck?
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Fig. 11-55 Problem 62.

•••63 In Fig. 11-56, a 30 kg
child stands on the edge of a sta-
tionary merry-go-round of radius
2.0 m. The rotational inertia of the
merry-go-round about its rotation
axis is 150 kg $ m2. The child catches
a ball of mass 1.0 kg thrown by a
friend. Just before the ball is caught,
it has a horizontal velocity of mag-
nitude 12 m/s, at angle f ! 37° with
a line tangent to the outer edge of
the merry-go-round, as shown. What is the angular speed of the
merry-go-round just after the ball is caught?

•••64 A ballerina begins a tour jeté (Fig. 11-19a) with an-
gular speed and a rotational inertia consisting of two parts:

for her leg extended outward at angle 
to her body and for the rest of her body (pri-Itrunk ! 0.660 kg $m2

% ! 90.0&Ileg ! 1.44 kg $m2
'i

v:

Fig. 11-56 Problem 63.

φ

Child

Ball

v
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1Halliday, Resnick, Walker, 9th ed, page 302.



Another Example
Let r = 0.6 m be the length of the rod.

(a) rotational inertia about A with bullet embedded?

IA = Ibullet + Iblock + Irod

= mbulletr
2 +mblocksr

2 + Irod

= (0.001kg)(0.6 m)2 + (0.50kg)(0.6 m)2 + 0.060 kg m2

= 0.240 kg m2

(b) bullet’s initial speed, vi?

isolated system ⇒ conserve angular momentum in collision

Li = Lf

Lbullet,A,i + Lblock+rod,A,i = IA,fωf

mbulletvi r + 0 = IA,fωf

vi =
IA,fωf

mbulletr
= 1.80× 103 m/s
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Summary

• angular momentum of rigid objects

• angular momentum conservation

Homework
• HW problem on the next slide/page

• Ch 11 Probs: 37, 45, 49, 51, 55, 61



HW Problem

A cylinder with rotational inertia I1 = 2.0 kg m2 rotates clockwise
about a vertical axis through its center with angular speed
ω1 = 5.0 rad/s. A second cylinder with rotational inertia
I2 = 1.0 kg m2 rotates counterclockwise about the same axis with
angular speed ω2 = 8.0 rad/s. If the cylinders couple so they have
the same rotational axis (a) what is the angular speed of the
combination? (b) What percentage of the original kinetic energy is
lost to friction?

1Openstax “University Physics”, ch 11, #54.


