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Last time

• gravity

• Newton’s universal law of gravitation

• gravitational field

• gravitational potential energy



Overview

• oscillations

• simple harmonic motion (SHM)

• springs and SHM

• energy in SHM

• pendula and SHM



Oscillations and Periodic Motion

Many physical systems exhibit cycles of repetitive behavior.

After some time, they return to their initial configuration.

Examples:

• clocks

• rolling wheels

• a pendulum

• bobs on springs



Oscillations

oscillation

motion that repeats over a period of time

amplitude

the magnitude of the vibration; how far does the object move from
its average (equilibrium) position.

period

the time for one complete oscillation.

After 1 period, the motion repeats itself.



Oscillations

frequency

The number of complete oscillations in some amount of time.
Usually, oscillations per second.

f =
1

T

Units of frequency: Hertz. 1 Hz = 1 s−1

If one oscillation takes a quarter of a second (0.25 s), then there
are 4 oscillations per second. The frequency is 4 s−1 = 4 Hz.



Simple Harmonic Motion

The oscillations of bobs on springs and pendula are very regular
and simple to describe.

It is called simple harmonic motion.

simple harmonic motion (SHM)

any motion in which the acceleration is proportional to the
displacement from equilibrium, but opposite in direction

The force causing the acceleration is called the “restoring force”.



SHM and Springs

If a mass is attached to a spring, the force on the mass depends on
its displacement from the spring’s natural length.

Hooke’s Law:
F = −kx

where k is the spring constant and x is the displacement (position)
of the mass.

Hooke’s law gives the force on the bob ⇒ SHM.

The spring force is the restoring force.



SHM and Springs
How can we find an equation of motion for the block?

Newton’s second law:

Fnet = ma

Considering the x direction

Fs = max

−kx = max

using the definition of acceleration, ax = d2x
dt2

,

d2x

dt2
= −

k

m
x
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SHM and Springs

d2x

dt2
= −

k

m
x

Define

ω =

√
k

m

and we can write this equation as:

d2x

dt2
= −ω2x

This is the equation of motion for the block. The block is in SHM
because a ∝ −x .



SHM and Springs
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SHM and Springs

This is a second order linear differential equation.

d2x

dt2
= −ω2x

A solution x(t) to this equation has the property that if we take its
derivative twice, we get the same form of the function back again,
but with an additional factor of −ω2.

Candidate: x(t) = A cos(ωt), where A is a constant.

Check by taking the derivative twice.

d2x

dt2
= −ω2

(
A cos(ωt)

)
= −ω2x X
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SHM and Springs

x = A cos(ωt + φ)

where ω =
√

k
m and A is the amplitude.

(In the textbook this is written as x = xm cos(ωt + φ), with xm
the amplitude.)

This equation tells us what is the position of the block, x , at any
point in time, t.



Waveform

x = A cos(ωt + φ)
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either the positive or negative x direction. The constant v is called the angular fre-
quency, and it has units1 of radians per second. It is a measure of how rapidly the 
oscillations are occurring; the more oscillations per unit time, the higher the value 
of v. From Equation 15.4, the angular frequency is

 v 5 Å k
m  (15.9)

 The constant angle f is called the phase constant (or initial phase angle) and, 
along with the amplitude A, is determined uniquely by the position and velocity of 
the particle at t 5 0. If the particle is at its maximum position x 5 A at t 5 0, the 
phase constant is f 5 0 and the graphical representation of the motion is as shown 
in Figure 15.2b. The quantity (vt 1 f) is called the phase of the motion. Notice 
that the function x(t) is periodic and its value is the same each time vt increases by 
2p radians.
 Equations 15.1, 15.5, and 15.6 form the basis of the mathematical representation 
of the particle in simple harmonic motion model. If you are analyzing a situation 
and find that the force on an object modeled as a particle is of the mathematical 
form of Equation 15.1, you know the motion is that of a simple harmonic oscillator 
and the position of the particle is described by Equation 15.6. If you analyze a sys-
tem and find that it is described by a differential equation of the form of Equation 
15.5, the motion is that of a simple harmonic oscillator. If you analyze a situation 
and find that the position of a particle is described by Equation 15.6, you know the 
particle undergoes simple harmonic motion.

Q uick Quiz 15.2  Consider a graphical representation (Fig. 15.3) of simple har-
monic motion as described mathematically in Equation 15.6. When the particle 
is at point ! on the graph, what can you say about its position and velocity?  
(a) The position and velocity are both positive. (b) The position and velocity 
are both negative. (c) The position is positive, and the velocity is zero. (d) The 
position is negative, and the velocity is zero. (e) The position is positive, and the 
velocity is negative. (f) The position is negative, and the velocity is positive.

Q uick Quiz 15.3  Figure 15.4 shows two curves representing particles under-
going simple harmonic motion. The correct description of these two motions 
is that the simple harmonic motion of particle B is (a) of larger angular  
frequency and larger amplitude than that of particle A, (b) of larger angular  
frequency and smaller amplitude than that of particle A, (c) of smaller angu-
lar frequency and larger amplitude than that of particle A, or (d) of smaller 
angular frequency and smaller amplitude than that of particle A.

1We have seen many examples in earlier chapters in which we evaluate a trigonometric function of an angle. The 
argument of a trigonometric function, such as sine or cosine, must be a pure number. The radian is a pure number 
because it is a ratio of lengths. Angles in degrees are pure numbers because the degree is an artificial “unit”; it is not 
related to measurements of lengths. The argument of the trigonometric function in Equation 15.6 must be a pure 
number. Therefore, v must be expressed in radians per second (and not, for example, in revolutions per second) if t 
is expressed in seconds. Furthermore, other types of functions such as logarithms and exponential functions require 
arguments that are pure numbers.

Figure 15.2 (a) An x–t graph 
for a particle undergoing simple 
harmonic motion. The amplitude 
of the motion is A, and the period 
(defined in Eq. 15.10) is T. (b) The 
x–t graph for the special case in 
which x 5 A at t 5 0 and hence  
f 5 0.
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Figure 15.3  (Quick Quiz 15.2) 
An x–t graph for a particle under-
going simple harmonic motion. 
At a particular time, the particle’s 
position is indicated by ! in the 
graph.
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Particle A

Particle B

Figure 15.4  (Quick Quiz 15.3) 
Two x–t graphs for particles under-
going simple harmonic motion. 
The amplitudes and frequencies 
are different for the two particles.

 Let us investigate further the mathematical description of simple harmonic 
motion. The period T of the motion is the time interval required for the particle 
to go through one full cycle of its motion (Fig. 15.2a). That is, the values of x and v 
for the particle at time t equal the values of x and v at time t 1 T. Because the phase 
increases by 2p radians in a time interval of T,

 [v(t 1 T) 1 f] 2 (vt 1 f) 5 2p 

!

f =
1

T

1Figure from Serway & Jewett, 9th ed, pg 453.



Oscillations

angular frequency

angular displacement per unit time in rotation, or the rate of
change of the phase of a sinusoidal waveform

ω =
2π

T
= 2πf



SHM and Springs

x = A cos(ωt + φ)

ω is the angular frequency of the oscillation.

When t = 2π
ω the block has returned to the position it had at

t = 0. That is one complete cycle.

Recalling that ω =
√

k/m:

Period,T = 2π

√
m

k

Only depends on the mass of the bob and the spring constant.



SHM and Springs

x = A cos(ωt + φ)

ω is the angular frequency of the oscillation.

When t = 2π
ω the block has returned to the position it had at

t = 0. That is one complete cycle.

Recalling that ω =
√
k/m:

Period,T = 2π

√
m

k

Only depends on the mass of the bob and the spring constant.



SHM and Springs Question

A mass-spring system has a period, T . If the amplitude of the
motion is quadrupled (and everything else is unchanged), what
happens to the period of the motion?

(A) halves, T/2

(B) remains unchanged, T

(C) doubles, 2T

(D) quadruples, 4T



SHM and Springs Question

A mass-spring system has a period, T . If the amplitude of the
motion is quadrupled (and everything else is unchanged), what
happens to the period of the motion?

(A) halves, T/2

(B) remains unchanged, T ←
(C) doubles, 2T

(D) quadruples, 4T

T does not depend on the amplitude.



SHM and Springs
The position of the bob at a given time is given by:

x = A cos(ωt + φ)

A is the amplitude of the oscillation. We could also write xmax = A.
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Q uick Quiz 15.4  An object of mass m is hung from a spring and set into oscilla-
tion. The period of the oscillation is measured and recorded as T. The object 
of mass m is removed and replaced with an object of mass 2m. When this object 
is set into oscillation, what is the period of the motion? (a) 2T   (b) !2 T    (c) T   
(d) T/!2   (e) T/2

 Equation 15.6 describes simple harmonic motion of a particle in general. Let’s 
now see how to evaluate the constants of the motion. The angular frequency v is 
evaluated using Equation 15.9. The constants A and f are evaluated from the ini-
tial conditions, that is, the state of the oscillator at t 5 0.
 Suppose a block is set into motion by pulling it from equilibrium by a distance A 
and releasing it from rest at t 5 0 as in Figure 15.6. We must then require our solu-
tions for x(t) and v(t) (Eqs. 15.6 and 15.15) to obey the initial conditions that x(0) 5 
A and v(0) 5 0:

x(0) 5 A cos f 5 A

 v(0) 5 2vA sin f 5 0 

These conditions are met if f 5 0, giving x 5 A cos vt as our solution. To check this 
solution, notice that it satisfies the condition that x(0) 5 A because cos 0 5 1.
 The position, velocity, and acceleration of the block versus time are plotted in 
Figure 15.7a for this special case. The acceleration reaches extreme values of 7v2A 
when the position has extreme values of 6A. Furthermore, the velocity has extreme 
values of 6vA, which both occur at x 5 0. Hence, the quantitative solution agrees 
with our qualitative description of this system.
 Let’s consider another possibility. Suppose the system is oscillating and we define 
t 5 0 as the instant the block passes through the unstretched position of the spring 
while moving to the right (Fig. 15.8). In this case, our solutions for x(t) and v(t) 
must obey the initial conditions that x(0) 5 0 and v(0) 5 vi:

 x(0) 5 A cos f 5 0 

 v(0) 5 2vA sin f 5 vi 

 The first of these conditions tells us that f 5 6p/2. With these choices for f, the 
second condition tells us that A 5 7vi/v. Because the initial velocity is positive and 
the amplitude must be positive, we must have f 5 2p/2. Hence, the solution is

 x 5
vi

v
 cos avt 2

p

2
b  

The graphs of position, velocity, and acceleration versus time for this choice of t 5 0 
are shown in Figure 15.7b. Notice that these curves are the same as those in Figure 
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Figure 15.5  Graphical repre-
sentation of simple harmonic 
motion. (a) Position versus time. 
(b) Velocity versus time. (c) Accel-
eration versus time. Notice that at 
any specified time the velocity is 
908 out of phase with the position 
and the acceleration is 1808 out of 
phase with the position.
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Figure 15.7  (a) Position, velocity, and acceleration versus time for the block in Figure 15.6 under 
the initial conditions that at t 5 0, x(0) 5 A, and v(0) 5 0. (b) Position, velocity, and acceleration ver-
sus time for the block in Figure 15.8 under the initial conditions that at t 5 0, x(0) 5 0, and v(0) 5 vi.

Figure 15.6 A block–spring 
system that begins its motion from 
rest with the block at x 5 A at t 5 0.

A

m

x ! 0

t ! 0
xi ! A
vi ! 0

Figure 15.8 The block–spring 
system is undergoing oscillation, 
and t 5 0 is defined at an instant 
when the block passes through the 
equilibrium position x 5 0 and is 
moving to the right with speed vi.

m

x ! 0
t ! 0

xi ! 0
v ! vi

vi
S

The speed of the particle at any point in time is:

v =
dx

dt
= −Aω sin(ωt + φ)



Energy in SHM
460 Chapter 15 Oscillatory Motion

position, the potential energy curve for this function approximates a parabola, 
which represents the potential energy function for a simple harmonic oscillator. 
Therefore, we can model the complex atomic binding forces as being due to tiny 
springs as depicted in Figure 15.11b.
 The ideas presented in this chapter apply not only to block–spring systems and 
atoms, but also to a wide range of situations that include bungee jumping, playing 
a musical instrument, and viewing the light emitted by a laser. You will see more 
examples of simple harmonic oscillators as you work through this book.

r

U

a b

Figure 15.11  (a) If the atoms in a molecule 
do not move too far from their equilibrium 
positions, a graph of potential energy versus 
separation distance between atoms is similar 
to the graph of potential energy versus posi-
tion for a simple harmonic oscillator (dashed 
black curve). (b) The forces between atoms 
in a solid can be modeled by imagining 
springs between neighboring atoms.
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Figure 15.10 (a) through (e) Several instants in the simple harmonic motion for a block–spring system. Energy bar graphs show the distri-
bution of the energy of the system at each instant. The parameters in the table at the right refer to the block–spring system, assuming at t 5 0, 
x 5 A; hence, x 5 A cos vt. For these five special instants, one of the types of energy is zero. (f) An arbitrary point in the motion of the oscilla-
tor. The system possesses both kinetic energy and potential energy at this instant as shown in the bar graph.

Example 15.3   Oscillations on a Horizontal Surface 

A 0.500-kg cart connected to a light spring for which the force constant is 20.0 N/m oscillates on a frictionless, hori-
zontal air track.

(A)  Calculate the maximum speed of the cart if the amplitude of the motion is 3.00 cm.

Conceptualize  The system oscillates in exactly the same way as the block in Figure 15.10, so use that figure in your 
mental image of the motion.

AM

S O L U T I O N



Energy in SHM

Potential Energy:

U =
1

2
kx2 =

1

2
kA2 cos2(ωt + φ)

Kinetic Energy:

K =
1

2
mv2 =

1

2
mA2ω2 sin2(ωt + φ)

Using ω2 = k/m

K + U =
1

2
kA2

(
sin2(ωt + φ) + cos2(ωt + φ)

)
=

1

2
kA2

This does not depend on time!
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Energy in SHM 15.3 Energy of the Simple Harmonic Oscillator 459

We see that K and U are always positive quantities or zero. Because v2 5 k/m, we can 
express the total mechanical energy of the simple harmonic oscillator as

E 5 K 1 U 5 1
2kA2 3sin2 1vt 1 f 2 1 cos2 1vt 1 f 2 4

From the identity sin2 u 1 cos2 u 5 1, we see that the quantity in square brackets is 
unity. Therefore, this equation reduces to

 E 5 1
2kA2 (15.21)

That is, the total mechanical energy of a simple harmonic oscillator is a constant of 
the motion and is proportional to the square of the amplitude. The total mechani-
cal energy is equal to the maximum potential energy stored in the spring when x 5 
6A because v 5 0 at these points and there is no kinetic energy. At the equilibrium 
position, where U 5 0 because x 5 0, the total energy, all in the form of kinetic 
energy, is again 12kA2.
 Plots of the kinetic and potential energies versus time appear in Figure 15.9a, 
where we have taken f 5 0. At all times, the sum of the kinetic and potential ener-
gies is a constant equal to 12kA2, the total energy of the system.
 The variations of K and U with the position x of the block are plotted in Figure 
15.9b. Energy is continuously being transformed between potential energy stored 
in the spring and kinetic energy of the block.
 Figure 15.10 on page 460 illustrates the position, velocity, acceleration, kinetic 
energy, and potential energy of the block–spring system for one full period of the 
motion. Most of the ideas discussed so far are incorporated in this important fig-
ure. Study it carefully.
 Finally, we can obtain the velocity of the block at an arbitrary position by express-
ing the total energy of the system at some arbitrary position x as

 E 5 K 1 U 5 1
2mv 2 1 1

2kx 2 5 1
2kA2 

 v 5 6Å k
m

1A2 2 x2 2 5 6v"A2 2 x2 (15.22)

When you check Equation 15.22 to see whether it agrees with known cases, you 
find that it verifies that the speed is a maximum at x 5 0 and is zero at the turning 
points x 5 6A.
 You may wonder why we are spending so much time studying simple harmonic 
oscillators. We do so because they are good models of a wide variety of physical 
phenomena. For example, recall the Lennard–Jones potential discussed in Exam-
ple 7.9. This complicated function describes the forces holding atoms together. 
 Figure 15.11a on page 460 shows that for small displacements from the equilibrium  

�W  Total energy of a simple  
harmonic oscillator

�W  Velocity as a function  
of position for a simple har-
monic oscillator
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In either plot, notice that 
K " U ! constant.

Figure 15.9 (a) Kinetic energy 
and potential energy versus time 
for a simple harmonic oscillator 
with f 5 0. (b) Kinetic energy and 
potential energy versus position 
for a simple harmonic oscillator.

K + U =
1

2
kA2

1Figure from Serway & Jewett, 9th ed.



Pendula and SHM

pendulum

a massive bob attached to the end rod or string that will oscillate
along a circular arc under the influence of gravity

A pendulum bob that is displaced to one side by a small amount
and released follows SHM to a good approximation.

Gravity and the tension in the string provide the restoring force.



Pendula and SHM



Pendula and SHM

Pendula also obey simple harmonic motion to a very good
approximation, as long as the amplitude of the swing is small.

θ = A cos(ωt + φ)

Period of a pendulum:

Period,T = 2π

√
L

g

where L is the length of the pendulum and g is the acceleration
due to gravity.



Problem

An astronaut on the Moon attaches a small brass ball to a 1.00 m
length of string and makes a simple pendulum. She times 15
complete swings in a time of 75 seconds. From this measurement
she calculates the acceleration due to gravity on the Moon. What
is her result?1

1.58 m/s2

1Hewitt, “Conceptual Physics”, problem 8, page 350.
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Summary

• SHM

• springs and pendula

• energy in SHM

Final Exam Tuesday Dec 11, 9:15-11:15am, S16.

Homework
• Ch 15 Ques: 2; Probs: 1, 5, 13, 17, 29, 33


