

Waves Kinds of Waves Wave Properties

Lana Sheridan

De Anza College

Dec 4, 2018

Last time

- oscillations
- simple harmonic motion
- springs and SHM
- energy and SHM

Overview

- pendula and SHM
- waves
- wave quantities
- sine waves

Pendula and SHM

pendulum

a massive bob attached to the end rod or string that will oscillate along a circular arc under the influence of gravity

A pendulum bob that is displaced to one side by a small amount and released follows SHM to a good approximation.

Gravity and the tension in the string provide the restoring force.

Pendula and SHM

Pendula and SHM

Pendula also obey simple harmonic motion to a very good approximation, as long as the amplitude of the swing is small.

 $\theta = A\cos(\omega t + \phi)$

Period of a pendulum:

Period,
$$T = 2\pi \sqrt{\frac{L}{g}}$$

where L is the length of the pendulum and g is the acceleration due to gravity.

Problem

An astronaut on the Moon attaches a small brass ball to a 1.00 m length of string and makes a simple pendulum. She times 15 complete swings in a time of 75 seconds. From this measurement she calculates the acceleration due to gravity on the Moon. What is her result?¹

¹Hewitt, "Conceptual Physics", problem 8, page 350.

Problem

An astronaut on the Moon attaches a small brass ball to a 1.00 m length of string and makes a simple pendulum. She times 15 complete swings in a time of 75 seconds. From this measurement she calculates the acceleration due to gravity on the Moon. What is her result?¹

$$T = 2\pi \sqrt{\frac{L}{g}}$$

 1.58 m/s^2

¹Hewitt, "Conceptual Physics", problem 8, page 350.

Waves

Very often an oscillation or one-time disturbance can be detected far away.

Plucking one end of a stretched string will eventually result in the far end of the string vibrating.

The string is a medium along which the vibration travels.

It carries energy from on part of the string to another.

Wave

a disturbance or oscillation that transfers energy through matter or space.

Wave Pulses

As the pulse moves along the string, new elements of the string are displaced from their equilibrium positions.

Wave Motion

Wave a disturbance or oscillation that transfers energy through matter or space.

The waveform moves along the medium and energy is carried with it.

The particles in the medium *do not* move along with the wave.

The particles in the medium are briefly shifted from their equilibrium positions, and then return to them.

Kinds of Waves

medium

a material substance that carries waves. The constituent particles are temporarily displaced as the wave passes, but they return to their original position.

Kinds of waves:

- mechanical waves waves that travel on a medium, eg. sound waves, waves on string, water waves
- electromagnetic waves light, in all its various wavelengths, *eg.* x-rays, uv, infrared, radio waves
- matter waves may hear something about this in Phys2C

Waves

Depending on the medium, waves can travel outward from a disturbance in

- 1 dimension, eg. a plucked guitar string
- 2 dimensions, eg. a ripple on the surface of water
- 3 dimensions, *eg.* typical (incoherent) point sources of light or sound

Waves

If the source of the disturbance continues to oscillate, in can create regular waves that travel outward.

The cycles not only have a frequency, but also take up some amount of physical space.

The distance from the start of one cycle to the start of the next is the *wavelength*.

wavelength

the length of a single complete wave cycle

Wave Quantities

Wave speed

How fast does a wave travel?

speed =
$$\frac{\text{distance}}{\text{time}}$$

It travels the distance of one complete cycle in the time for one complete cycle.

$$v = \frac{\lambda}{T}$$

But since frequency is the inverse of the time period, we can relate speed to frequency and wavelength:

$$v = f\lambda$$

(Angular) Wave number

Recall, the definition of frequency, from period T:

and

$$\omega = \frac{2\pi}{T} = 2\pi f$$

 $f = \frac{1}{\tau}$

We also define a new quantity.

Another expression for wave speed

$$v = f\lambda$$

Since
$$\omega = 2\pi f$$
 and $k = \frac{2\pi}{\lambda}$:
 $v = \left(\frac{\omega}{2\pi}\right) \left(\frac{2\pi}{k}\right)$

$$v = \frac{\omega}{k}$$

Transverse Waves

Transverse wave

a wave with the oscillation in a direction **perpendicular** to the direction of propagation

Longitudinal Waves

Longitudinal wave

a wave with the oscillation in a direction **parallel** to the direction of propagation

Transverse vs. Longitudinal

Examples of transverse waves:

- vibrations on a guitar string
- ripples in water
- light
- S-waves in an earthquake (more destructive)

Examples of longitudinal waves:

- compression waves on a slinky
- sound
- P-waves in an earthquake (initial shockwave, faster moving)

Earthquakes

Earthquakes

Sound waves

Sound is a Pressure Wave

NOTE: "C" stands for compression and "R" stands for rarefaction

Equation for Waves?

Arrive at the Wave Equation

($\partial^2 y$	_	1	$\partial^2 y$	
	∂x^2		v^2	∂t^2)

[Don't need to know it.]

Solutions have the form:

$$y(x,t) = f(x \pm vt)$$

Solutions to the Wave Equation

Wave solutions:

 $y(x,t) = f(x \pm vt)$

should describe waves moving with speed v.

Example:

Sine Waves

Suppose a point on the medium is driven in simple harmonic motion.

What kind of waves would result?

Sine Waves

This is usually written in a slightly different form...

Sine Waves

$$y(x, t) = A\sin(kx - \omega t + \phi)$$

where ϕ is a phase constant.

Summary

- waves
- wave quantities
- sine waves
- refraction
- diffraction

Final Exam Tuesday Dec 11, 9:15–11:15am, S16.

Watch for an email from me later today.

Homework

• Ch 16 Probs: 3, 9