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Last time

• oscillations

• simple harmonic motion

• springs and SHM

• energy and SHM



Overview

• pendula and SHM

• waves

• wave quantities

• sine waves



Pendula and SHM

pendulum

a massive bob attached to the end rod or string that will oscillate
along a circular arc under the influence of gravity

A pendulum bob that is displaced to one side by a small amount
and released follows SHM to a good approximation.

Gravity and the tension in the string provide the restoring force.



Pendula and SHM



Pendula and SHM

Pendula also obey simple harmonic motion to a very good
approximation, as long as the amplitude of the swing is small.

θ = A cos(ωt + φ)

Period of a pendulum:

Period,T = 2π

√
L

g

where L is the length of the pendulum and g is the acceleration
due to gravity.



Problem

An astronaut on the Moon attaches a small brass ball to a 1.00 m
length of string and makes a simple pendulum. She times 15
complete swings in a time of 75 seconds. From this measurement
she calculates the acceleration due to gravity on the Moon. What
is her result?1

T = 2π
√

L
g

1.58 m/s2

1Hewitt, “Conceptual Physics”, problem 8, page 350.
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Waves

Very often an oscillation or one-time disturbance can be detected
far away.

Plucking one end of a stretched string will eventually result in the
far end of the string vibrating.

The string is a medium along which the vibration travels.

It carries energy from on part of the string to another.

Wave

a disturbance or oscillation that transfers energy through matter or
space.



Wave Pulses 484 Chapter 16 Wave Motion

which the pebble is dropped to the position of the object. This feature is central to wave 
motion: energy is transferred over a distance, but matter is not.

16.1 Propagation of a Disturbance
The introduction to this chapter alluded to the essence of wave motion: the trans-
fer of energy through space without the accompanying transfer of matter. In the list 
of energy transfer mechanisms in Chapter 8, two mechanisms—mechanical waves 
and electromagnetic radiation—depend on waves. By contrast, in another mecha-
nism, matter transfer, the energy transfer is accompanied by a movement of matter 
through space with no wave character in the process.
 All mechanical waves require (1) some source of disturbance, (2) a medium con-
taining elements that can be disturbed, and (3) some physical mechanism through 
which elements of the medium can influence each other. One way to demonstrate 
wave motion is to flick one end of a long string that is under tension and has its 
opposite end fixed as shown in Figure 16.1. In this manner, a single bump (called 
a pulse) is formed and travels along the string with a definite speed. Figure 16.1 
represents four consecutive “snapshots” of the creation and propagation of the trav-
eling pulse. The hand is the source of the disturbance. The string is the medium 
through which the pulse travels—individual elements of the string are disturbed 
from their equilibrium position. Furthermore, the elements of the string are con-
nected together so they influence each other. The pulse has a definite height and a 
definite speed of propagation along the medium. The shape of the pulse changes 
very little as it travels along the string.1
 We shall first focus on a pulse traveling through a medium. Once we have explored 
the behavior of a pulse, we will then turn our attention to a wave, which is a periodic 
disturbance traveling through a medium. We create a pulse on our string by flicking 
the end of the string once as in Figure 16.1. If we were to move the end of the string 
up and down repeatedly, we would create a traveling wave, which has characteristics 
a pulse does not have. We shall explore these characteristics in Section 16.2.
 As the pulse in Figure 16.1 travels, each disturbed element of the string moves in 
a direction perpendicular to the direction of propagation. Figure 16.2 illustrates this 
point for one particular element, labeled P. Notice that no part of the string ever 
moves in the direction of the propagation. A traveling wave or pulse that causes 
the elements of the disturbed medium to move perpendicular to the direction of 
propagation is called a transverse wave.
 Compare this wave with another type of pulse, one moving down a long, stretched 
spring as shown in Figure 16.3. The left end of the spring is pushed briefly to the 
right and then pulled briefly to the left. This movement creates a sudden compres-
sion of a region of the coils. The compressed region travels along the spring (to 
the right in Fig. 16.3). Notice that the direction of the displacement of the coils is 
parallel to the direction of propagation of the compressed region. A traveling wave 
or pulse that causes the elements of the medium to move parallel to the direction 
of propagation is called a longitudinal wave.

As the pulse moves along the 
string, new elements of the 
string are displaced from their 
equilibrium positions.

Figure 16.1  A hand moves the 
end of a stretched string up and 
down once (red arrow), causing a 
pulse to travel along the string.

1In reality, the pulse changes shape and gradually spreads out during the motion. This effect, called dispersion, is com-
mon to many mechanical waves as well as to electromagnetic waves. We do not consider dispersion in this chapter.

The direction of the displacement 
of any element at a point P on the 
string is perpendicular to the 
direction of propagation (red 
arrow).

P

P

P

Figure 16.2  The displacement 
of a particular string element for 
a transverse pulse traveling on a 
stretched string.

As the pulse passes by, the 
displacement of the coils is parallel to 
the direction of the propagation.

The hand moves forward 
and back once to create 
a longitudinal pulse.

Figure 16.3  A longitudinal 
pulse along a stretched spring.



Wave Motion

Wave

a disturbance or oscillation that transfers energy through matter or
space.

The waveform moves along the medium and energy is carried with
it.

The particles in the medium do not move along with the wave.

The particles in the medium are briefly shifted from their
equilibrium positions, and then return to them.



Kinds of Waves

medium

a material substance that carries waves. The constituent particles
are temporarily displaced as the wave passes, but they return to
their original position.

Kinds of waves:

• mechanical waves – waves that travel on a medium, eg. sound
waves, waves on string, water waves

• electromagnetic waves – light, in all its various wavelengths,
eg. x-rays, uv, infrared, radio waves

• matter waves – may hear something about this in Phys2C



Waves

Depending on the medium, waves can travel outward from a
disturbance in

• 1 dimension, eg. a plucked guitar string

• 2 dimensions, eg. a ripple on the surface of water

• 3 dimensions, eg. typical (incoherent) point sources of light or
sound



Waves

If the source of the disturbance continues to oscillate, in can create
regular waves that travel outward.

The cycles not only have a frequency, but also take up some
amount of physical space.

The distance from the start of one cycle to the start of the next is
the wavelength.

wavelength

the length of a single complete wave cycle



Wave Quantities



Wave speed

How fast does a wave travel?

speed = distance
time

It travels the distance of one complete cycle in the time for one
complete cycle.

v =
λ

T

But since frequency is the inverse of the time period, we can relate
speed to frequency and wavelength:

v = f λ



(Angular) Wave number

Recall, the definition of frequency, from period T :

f =
1

T

and

ω =
2π

T
= 2πf

We also define a new quantity.

(Angular) Wave number, k

k =
2π

λ

units: m−1



Another expression for wave speed

v = f λ

Since ω = 2πf and k = 2π
λ :

v =
(ω
��2π

)(��2π
k

)

v =
ω

k



Transverse Waves

Transverse wave

a wave with the oscillation in a direction perpendicular to the
direction of propagation



Longitudinal Waves

Longitudinal wave

a wave with the oscillation in a direction parallel to the direction
of propagation



Transverse vs. Longitudinal

Examples of transverse waves:

• vibrations on a guitar string

• ripples in water

• light

• S-waves in an earthquake (more destructive)

Examples of longitudinal waves:

• compression waves on a slinky

• sound

• P-waves in an earthquake (initial shockwave, faster moving)



Earthquakes



Earthquakes



Sound waves



Equation for Waves?

Analyzing a particle in the
medium and using
Fnet = ma

↘

OR

Analyzing Maxwell’s
equations for
electromagnetism (light)
↙

Arrive at the Wave Equation(
∂2y

∂x2
=

1

v2
∂2y

∂t2

)
[Don’t need to know it.]

Solutions have the form:

y(x , t) = f (x ± vt)



Solutions to the Wave Equation
Wave solutions:

y(x , t) = f (x ± vt)

should describe waves moving with speed v .

Example:
y(x , t) = f (x − vt)
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 Sound waves, which we shall discuss in Chapter 17, are another example of lon-
gitudinal waves. The disturbance in a sound wave is a series of high-pressure and 
low-pressure regions that travel through air.
 Some waves in nature exhibit a combination of transverse and longitudinal 
displacements. Surface-water waves are a good example. When a water wave trav-
els on the surface of deep water, elements of water at the surface move in nearly 
circular paths as shown in Figure 16.4. The disturbance has both transverse and 
longitudinal components. The transverse displacements seen in Figure 16.4 rep-
resent the variations in vertical position of the water elements. The longitudinal 
displacements represent elements of water moving back and forth in a horizontal 
direction.
 The three-dimensional waves that travel out from a point under the Earth’s sur-
face at which an earthquake occurs are of both types, transverse and longitudinal. 
The longitudinal waves are the faster of the two, traveling at speeds in the range of 
7 to 8 km/s near the surface. They are called P waves, with “P” standing for primary, 
because they travel faster than the transverse waves and arrive first at a seismo-
graph (a device used to detect waves due to earthquakes). The slower transverse 
waves, called S waves, with “S” standing for secondary, travel through the Earth at 
4 to 5 km/s near the surface. By recording the time interval between the arrivals 
of these two types of waves at a seismograph, the distance from the seismograph to 
the point of origin of the waves can be determined. This distance is the radius of an 
imaginary sphere centered on the seismograph. The origin of the waves is located 
somewhere on that sphere. The imaginary spheres from three or more monitoring 
stations located far apart from one another intersect at one region of the Earth, 
and this region is where the earthquake occurred.
 Consider a pulse traveling to the right on a long string as shown in Figure 16.5. 
Figure 16.5a represents the shape and position of the pulse at time t 5 0. At this 
time, the shape of the pulse, whatever it may be, can be represented by some math-
ematical function that we will write as y(x, 0) 5 f(x). This function describes the 
transverse position y of the element of the string located at each value of x at time 
t 5 0. Because the speed of the pulse is v, the pulse has traveled to the right a 
distance vt at the time t (Fig. 16.5b). We assume the shape of the pulse does not 
change with time. Therefore, at time t, the shape of the pulse is the same as it was 
at time t 5 0 as in Figure 16.5a. Consequently, an element of the string at x at this 
time has the same y position as an element located at x 2 vt had at time t 5 0:

 y(x, t) 5 y(x 2 vt, 0)

 In general, then, we can represent the transverse position y for all positions and 
times, measured in a stationary frame with the origin at O, as

 y(x, t) 5 f(x 2 vt) (16.1)

Similarly, if the pulse travels to the left, the transverse positions of elements of the 
string are described by

 y(x, t) 5 f(x 1 vt) (16.2)

 The function y, sometimes called the wave function, depends on the two vari-
ables x and t. For this reason, it is often written y(x, t), which is read “y as a function 
of x and t.”
 It is important to understand the meaning of y. Consider an element of the 
string at point P in Figure 16.5, identified by a particular value of its x coordinate. 
As the pulse passes through P, the y coordinate of this element increases, reaches 
a maximum, and then decreases to zero. The wave function y(x, t) represents the 
y coordinate—the transverse position—of any element located at position x at any 
time t. Furthermore, if t is fixed (as, for example, in the case of taking a snapshot of 
the pulse), the wave function y(x), sometimes called the waveform, defines a curve 
representing the geometric shape of the pulse at that time.

Figure 16.4 The motion of 
water elements on the surface 
of deep water in which a wave 
is propagating is a combination 
of transverse and longitudinal 
displacements. 

The elements at the surface move 
in nearly circular paths. Each 
element is displaced both 
horizontally and vertically from its 
equilibrium position.
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At t ! 0,  the shape of the 
pulse is given by y ! f(x).

At some later time t, the shape 
of the pulse remains unchanged 
and the vertical position of an 
element of the medium at any 
point P is given by y ! f(x " vt).

b

a

Figure 16.5  A one-dimensional 
pulse traveling to the right on a 
string with a speed v.



Sine Waves

Suppose a point on the medium is driven in simple harmonic
motion.

What kind of waves would result?



Sine Waves
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16.2 Analysis Model: Traveling Wave 
In this section, we introduce an important wave function whose shape is shown in 
Figure 16.7. The wave represented by this curve is called a sinusoidal wave because 
the curve is the same as that of the function sin u plotted against u. A sinusoidal 
wave could be established on the rope in Figure 16.1 by shaking the end of the rope 
up and down in simple harmonic motion.
 The sinusoidal wave is the simplest example of a periodic continuous wave and 
can be used to build more complex waves (see Section 18.8). The brown curve in 
Figure 16.7 represents a snapshot of a traveling sinusoidal wave at t 5 0, and the 
blue curve represents a snapshot of the wave at some later time t. Imagine two types 
of motion that can occur. First, the entire waveform in Figure 16.7 moves to the 
right so that the brown curve moves toward the right and eventually reaches the 
position of the blue curve. This movement is the motion of the wave. If we focus on 
one element of the medium, such as the element at x 5 0, we see that each element 
moves up and down along the y axis in simple harmonic motion. This movement is 
the motion of the elements of the medium. It is important to differentiate between the 
motion of the wave and the motion of the elements of the medium.
 In the early chapters of this book, we developed several analysis models based on 
three simplification models: the particle, the system, and the rigid object. With our 
introduction to waves, we can develop a new simplification model, the wave, that 
will allow us to explore more analysis models for solving problems. An ideal particle 
has zero size. We can build physical objects with nonzero size as combinations of 
particles. Therefore, the particle can be considered a basic building block. An ideal 
wave has a single frequency and is infinitely long; that is, the wave exists throughout 
the Universe. (A wave of finite length must necessarily have a mixture of frequen-
cies.) When this concept is explored in Section 18.8, we will find that ideal waves 
can be combined to build complex waves, just as we combined particles.
 In what follows, we will develop the principal features and mathematical represen-
tations of the analysis model of a traveling wave. This model is used in situations in 
which a wave moves through space without interacting with other waves or particles.
 Figure 16.8a shows a snapshot of a traveling wave moving through a medium. 
Figure 16.8b shows a graph of the position of one element of the medium as a func-
tion of time. A point in Figure 16.8a at which the displacement of the element from 
its normal position is highest is called the crest of the wave. The lowest point is 
called the trough. The distance from one crest to the next is called the wavelength 
l (Greek letter lambda). More generally, the wavelength is the minimum distance 
between any two identical points on adjacent waves as shown in Figure 16.8a.
 If you count the number of seconds between the arrivals of two adjacent crests 
at a given point in space, you measure the period T of the waves. In general, the 
period is the time interval required for two identical points of adjacent waves to 
pass by a point as shown in Figure 16.8b. The period of the wave is the same as the 
period of the simple harmonic oscillation of one element of the medium.
 The same information is more often given by the inverse of the period, which is 
called the frequency f. In general, the frequency of a periodic wave is the number 
of crests (or troughs, or any other point on the wave) that pass a given point in a 
unit time interval. The frequency of a sinusoidal wave is related to the period by the 
expression

 f 5
1
T

 (16.3)

t ! 0 t

y

x

vt
vS

Figure 16.7 A one-dimensional 
sinusoidal wave traveling to the 
right with a speed v. The brown 
curve represents a snapshot of the 
wave at t 5 0, and the blue curve 
represents a snapshot at some 
later time t.

 

▸ 16.1 c o n t i n u e d

Another new feature here is the numerator of 4 rather than 2. Therefore, the new expression represents a pulse with 
twice the height of that in Figure 16.6.
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x
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t

A

A

T

l

l

The wavelength l of a wave is 
the distance between adjacent 
crests or adjacent troughs.

The period T of a wave is the 
time interval required for the 
element to complete one cycle 
of its oscillation and for the 
wave to travel one wavelength.

a

b

Figure 16.8 (a) A snapshot of a 
sinusoidal wave. (b) The position 
of one element of the medium as a 
function of time.

y(x , t) = A sin

(
2π

λ
(x − vt) + φ

)
This is usually written in a slightly different form...



Sine Waves
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y(x , t) = A sin (kx −ωt + φ)

where φ is a phase constant.



Summary

• waves

• wave quantities

• sine waves

• refraction

• diffraction

Final Exam Tuesday Dec 11, 9:15–11:15am, S16.

Watch for an email from me later today.

Homework
• Ch 16 Probs: 3, 9


