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Last time

• kinematic quantities

• graphs of kinematic quantities



Overview

• acceleration

• the kinematics equations (constant acceleration)

• applying the kinematics equations



Question: Average Velocity vs Average Speed

Quick Quiz 2.11 Under which of the following conditions is the
magnitude of the average velocity of a particle moving in one
dimension smaller than the average speed over some time
interval?

A A particle moves in the +x direction without reversing.

B A particle moves in the −x direction without reversing.

C A particle moves in the +x direction and then reverses the
direction of its motion.

D There are no conditions for which this is true.

1Serway & Jewett, page 24.
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Instantaneous Velocity and Position-Time Graphs

26 Chapter 2 Motion in One Dimension

Conceptual Example 2.2   The Velocity of Different Objects

Consider the following one-dimensional motions: (A) a ball thrown directly upward rises to a highest point and falls 
back into the thrower’s hand; (B) a race car starts from rest and speeds up to 100 m/s; and (C) a spacecraft drifts 
through space at constant velocity. Are there any points in the motion of these objects at which the instantaneous 
velocity has the same value as the average velocity over the entire motion? If so, identify the point(s).

represents the velocity of the car at point !. What we have done is determine the 
instantaneous velocity at that moment. In other words, the instantaneous velocity vx 
equals the limiting value of the ratio Dx/Dt as Dt approaches zero:1

 vx ; lim
Dt S 0

 Dx
Dt

 (2.4)

In calculus notation, this limit is called the derivative of x with respect to t, written 
dx/dt:

 vx ; lim
Dt S 0

 Dx
Dt

5
dx
dt

 (2.5)

The instantaneous velocity can be positive, negative, or zero. When the slope of the 
position–time graph is positive, such as at any time during the first 10 s in Figure 2.3, 
vx is positive and the car is moving toward larger values of x. After point ", vx is nega-
tive because the slope is negative and the car is moving toward smaller values of x. 
At point ", the slope and the instantaneous velocity are zero and the car is momen-
tarily at rest.
 From here on, we use the word velocity to designate instantaneous velocity. When 
we are interested in average velocity, we shall always use the adjective average.
 The instantaneous speed of a particle is defined as the magnitude of its instan-
taneous velocity. As with average speed, instantaneous speed has no direction asso-
ciated with it. For example, if one particle has an instantaneous velocity of 125 m/s 
along a given line and another particle has an instantaneous velocity of 225 m/s 
along the same line, both have a speed2 of 25 m/s.

Q uick Quiz 2.2 Are members of the highway patrol more interested in (a) your 
average speed or (b) your instantaneous speed as you drive?
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Figure 2.3 (a) Graph representing the motion of the car in Figure 2.1. (b) An enlargement of the 
upper-left-hand corner of the graph.

1Notice that the displacement Dx also approaches zero as Dt approaches zero, so the ratio looks like 0/0. While this 
ratio may appear to be difficult to evaluate, the ratio does have a specific value. As Dx and Dt become smaller and 
smaller, the ratio Dx/Dt approaches a value equal to the slope of the line tangent to the x -versus-t curve.
2As with velocity, we drop the adjective for instantaneous speed. Speed means “instantaneous speed.”

Pitfall Prevention 2.3
Instantaneous Speed and Instan-
taneous Velocity In Pitfall Pre-
vention 2.1, we argued that the 
magnitude of the average velocity 
is not the average speed. The mag-
nitude of the instantaneous veloc-
ity, however, is the instantaneous 
speed. In an infinitesimal time 
interval, the magnitude of the dis-
placement is equal to the distance 
traveled by the particle.

Pitfall Prevention 2.2
Slopes of Graphs In any graph of 
physical data, the slope represents 
the ratio of the change in the 
quantity represented on the verti-
cal axis to the change in the quan-
tity represented on the horizontal 
axis. Remember that a slope has 
units (unless both axes have the 
same units). The units of slope in 
Figures 2.1b and 2.3 are meters 
per second, the units of velocity.

v = lim
∆t→0

x(t + ∆t) − x(t)

t + ∆t − t
= lim

∆t→0

∆x
∆t

=
dx

dt



Velocity vs. Time Graphs
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 So far, we have evaluated the derivatives of a function by starting with the def-
inition of the function and then taking the limit of a specific ratio. If you are 
familiar with calculus, you should recognize that there are specific rules for taking 

Example 2.6   Average and Instantaneous Acceleration

The velocity of a particle moving along the x axis varies according to the expres-
sion vx 5 40 2 5t 2, where vx is in meters per second and t is in seconds.

(A) Find the average acceleration in the time interval t 5 0 to t 5 2.0 s.

Think about what the particle is doing from the 
mathematical representation. Is it moving at t 5 
0? In which direction? Does it speed up or slow 
down? Figure 2.9 is a vx–t graph that was created 
from the velocity versus time expression given in 
the problem statement. Because the slope of the 
entire vx–t curve is negative, we expect the accel-
eration to be negative.

S O L U T I O N

Find the velocities at ti 5 t! 5 0 and tf 5 t" 5 2.0 s by 
substituting these values of t into the expression for the 
velocity:

vx ! 5 40 2 5t!
2 5 40 2 5(0)2 5 140 m/s

vx " 5 40 2 5t"
2 5 40 2 5(2.0)2 5 120 m/s

Find the average acceleration in the specified time inter-
val Dt 5 t" 2 t! 5 2.0 s:

 ax,avg 5
vxf 2 vxi

tf 2 ti
5

vx " 2 vx !

t " 2 t !

5
20 m/s 2 40 m/s

2.0 s 2 0 s

5   210 m/s2

The negative sign is consistent with our expectations: the average acceleration, represented by the slope of the blue 
line joining the initial and final points on the velocity–time graph, is negative.

(B) Determine the acceleration at t 5 2.0 s.

S O L U T I O N

Knowing that the initial velocity at any time t is  
vxi 5 40 2 5t 2, find the velocity at any later time t 1 Dt:

  vxf 5 40 2 5(t 1 Dt)2 5 40 2 5t 2 2 10t Dt 2 5(Dt)2

Find the change in velocity over the time interval Dt: Dvx 5 vxf 2 vxi 5 210t Dt 2 5(Dt)2

To find the acceleration at any time t, divide this 
expression by Dt and take the limit of the result as Dt 
approaches zero:

   ax 5 lim
Dt S 0

 
Dvx

Dt
5 lim

Dt S 0
1210t 2 5 Dt 2 5 210t

Substitute t 5 2.0 s:    ax 5 (210)(2.0) m/s2 5   220 m/s2

Because the velocity of the particle is positive and the acceleration is negative at this instant, the particle is slowing 
down.
 Notice that the answers to parts (A) and (B) are different. The average acceleration in part (A) is the slope of the 
blue line in Figure 2.9 connecting points ! and ". The instantaneous acceleration in part (B) is the slope of the green 
line tangent to the curve at point ". Notice also that the acceleration is not constant in this example. Situations involv-
ing constant acceleration are treated in Section 2.6.

 

Figure 2.9 (Example 2.6) 
The velocity–time graph for a 
particle moving along the x axis 
according to the expression  
vx 5 40 2 5t 2.

10

!10

0

0 1 2 3 4

t (s)

vx (m/s)

20

30

40

!20

!30

!

"

The acceleration at " is equal to 
the slope of the green tangent 
line at t " 2 s, which is !20 m/s2.

The slope at any point of the velocity-time curve is the
acceleration at that time.



Velocity vs. Time Graphs

34 Chapter 2 Motion in One Dimension

 So far, we have evaluated the derivatives of a function by starting with the def-
inition of the function and then taking the limit of a specific ratio. If you are 
familiar with calculus, you should recognize that there are specific rules for taking 

Example 2.6   Average and Instantaneous Acceleration

The velocity of a particle moving along the x axis varies according to the expres-
sion vx 5 40 2 5t 2, where vx is in meters per second and t is in seconds.

(A) Find the average acceleration in the time interval t 5 0 to t 5 2.0 s.

Think about what the particle is doing from the 
mathematical representation. Is it moving at t 5 
0? In which direction? Does it speed up or slow 
down? Figure 2.9 is a vx–t graph that was created 
from the velocity versus time expression given in 
the problem statement. Because the slope of the 
entire vx–t curve is negative, we expect the accel-
eration to be negative.

S O L U T I O N

Find the velocities at ti 5 t! 5 0 and tf 5 t" 5 2.0 s by 
substituting these values of t into the expression for the 
velocity:

vx ! 5 40 2 5t!
2 5 40 2 5(0)2 5 140 m/s

vx " 5 40 2 5t"
2 5 40 2 5(2.0)2 5 120 m/s

Find the average acceleration in the specified time inter-
val Dt 5 t" 2 t! 5 2.0 s:

 ax,avg 5
vxf 2 vxi

tf 2 ti
5

vx " 2 vx !

t " 2 t !

5
20 m/s 2 40 m/s

2.0 s 2 0 s

5   210 m/s2

The negative sign is consistent with our expectations: the average acceleration, represented by the slope of the blue 
line joining the initial and final points on the velocity–time graph, is negative.

(B) Determine the acceleration at t 5 2.0 s.

S O L U T I O N

Knowing that the initial velocity at any time t is  
vxi 5 40 2 5t 2, find the velocity at any later time t 1 Dt:

  vxf 5 40 2 5(t 1 Dt)2 5 40 2 5t 2 2 10t Dt 2 5(Dt)2

Find the change in velocity over the time interval Dt: Dvx 5 vxf 2 vxi 5 210t Dt 2 5(Dt)2

To find the acceleration at any time t, divide this 
expression by Dt and take the limit of the result as Dt 
approaches zero:

   ax 5 lim
Dt S 0

 
Dvx

Dt
5 lim

Dt S 0
1210t 2 5 Dt 2 5 210t

Substitute t 5 2.0 s:    ax 5 (210)(2.0) m/s2 5   220 m/s2

Because the velocity of the particle is positive and the acceleration is negative at this instant, the particle is slowing 
down.
 Notice that the answers to parts (A) and (B) are different. The average acceleration in part (A) is the slope of the 
blue line in Figure 2.9 connecting points ! and ". The instantaneous acceleration in part (B) is the slope of the green 
line tangent to the curve at point ". Notice also that the acceleration is not constant in this example. Situations involv-
ing constant acceleration are treated in Section 2.6.

 

Figure 2.9 (Example 2.6) 
The velocity–time graph for a 
particle moving along the x axis 
according to the expression  
vx 5 40 2 5t 2.

10

!10

0

0 1 2 3 4

t (s)

vx (m/s)

20

30

40

!20

!30

!

"

The acceleration at " is equal to 
the slope of the green tangent 
line at t " 2 s, which is !20 m/s2.

The slope at any point of the velocity-time curve is the
acceleration at that time.



Acceleration

acceleration a = dv
dt =

d2x
dt2

average acceleration aavg = ∆v
∆t

Acceleration is also a vector quantity.

If the acceleration vector is pointed in the same direction as the
velocity vector (ie. both are positive or both negative), the
particle’s speed is increasing.

If the acceleration vector is pointed in the opposite direction as
the velocity vector (ie. one is positive the other is negative), the
particle’s speed is decreasing. (It is “decelerating”.)
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Acceleration and Velocity-Time Graphs

Acceleration is the slope of a velocity-time curve.

Units: meters per second per second, m/s2

In general, acceleration can be a function of time a(t).
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Acceleration Graphs

36 Chapter 2 Motion in One Dimension

 In Figure 2.10c, we can tell that the car slows as it moves to the right because its 
displacement between adjacent images decreases with time. This case suggests the 
car moves to the right with a negative acceleration. The length of the velocity arrow 
decreases in time and eventually reaches zero. From this diagram, we see that the 
acceleration and velocity arrows are not in the same direction. The car is moving 
with a positive velocity, but with a negative acceleration. (This type of motion is exhib-
ited by a car that skids to a stop after its brakes are applied.) The velocity and accel-
eration are in opposite directions. In terms of our earlier force discussion, imagine 
a force pulling on the car opposite to the direction it is moving: it slows down.
 Each purple acceleration arrow in parts (b) and (c) of Figure 2.10 is the same 
length. Therefore, these diagrams represent motion of a particle under constant accel-
eration. This important analysis model will be discussed in the next section.

Q uick Quiz 2.5 Which one of the following statements is true? (a) If a car is trav-
eling eastward, its acceleration must be eastward. (b) If a car is slowing down, 
its acceleration must be negative. (c) A particle with constant acceleration can 
never stop and stay stopped.

2.6 Analysis Model: Particle  
Under Constant Acceleration

If the acceleration of a particle varies in time, its motion can be complex and difficult 
to analyze. A very common and simple type of one-dimensional motion, however, is 
that in which the acceleration is constant. In such a case, the average acceleration 
ax,avg over any time interval is numerically equal to the instantaneous acceleration ax 
at any instant within the interval, and the velocity changes at the same rate through-
out the motion. This situation occurs often enough that we identify it as an analysis 
model: the particle under constant acceleration. In the discussion that follows, we 
generate several equations that describe the motion of a particle for this model.
 If we replace ax,avg by ax in Equation 2.9 and take ti 5 0 and tf to be any later time 
t, we find that

ax 5
vxf 2 vxi

t 2 0

or

 vxf 5 vxi 1 axt (for constant ax) (2.13)

This powerful expression enables us to determine an object’s velocity at any time 
t if we know the object’s initial velocity vxi and its (constant) acceleration ax. A  
velocity–time graph for this constant-acceleration motion is shown in Figure 2.11b. 
The graph is a straight line, the slope of which is the acceleration ax; the (constant) 
slope is consistent with ax 5 dvx/dt being a constant. Notice that the slope is posi-
tive, which indicates a positive acceleration. If the acceleration were negative, the 
slope of the line in Figure 2.11b would be negative. When the acceleration is con-
stant, the graph of acceleration versus time (Fig. 2.11c) is a straight line having a 
slope of zero.
 Because velocity at constant acceleration varies linearly in time according to 
Equation 2.13, we can express the average velocity in any time interval as the arith-
metic mean of the initial velocity vxi and the final velocity vxf :

 vx,avg 5
vxi 1 vxf

2
  1 for constant ax 2  (2.14)
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Figure 2.11 A particle under 
constant acceleration ax moving 
along the x axis: (a) the position–
time graph, (b) the velocity–time 
graph, and (c) the acceleration–
time graph.
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Returning to Velocity vs Time Graphs
The area under a velocity-time graph has a special interpretation:
it is the displacement of the object over the time interval
considered.

PROBLEMS 49

24. •• IP A tennis player moves back and forth along the base-
line while waiting for her opponent to serve, producing the
position-versus-time graph shown in Figure 2–30. (a) Without
performing a calculation, indicate on which of the segments
of the graph, A, B, or C, the player has the greatest speed. Cal-
culate the player’s speed for (b) segment A, (c) segment B, and
(d) segment C, and show that your results verify your answers
to part (a).
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▲ FIGURE 2–30 Problem 24

33. •• A person on horseback moves according to the velocity-
versus-time graph shown in Figure 2–32. Find the displace-
ment of the person for each of the following segments of the
motion: (a) A, (b) B, and (c) C.

25. ••• On your wedding day you leave for the church 30.0 min-
utes before the ceremony is to begin, which should be plenty of
time since the church is only 10.0 miles away. On the way, how-
ever, you have to make an unanticipated stop for construction
work on the road. As a result, your average speed for the first
15 minutes is only 5.0 mi/h. What average speed do you need
for the rest of the trip to get you to the church on time?

Section 2–3 Instantaneous Velocity
26. •• The position of a particle as a function of time is given by

(a) Plot x versus t for time
from to (b) Find the average velocity of the
particle from to (c) Find the average
velocity from to (d) Do you expect the
instantaneous velocity at to be closer to 0.54 m/s,
0.56 m/s, or 0.58 m/s? Explain.

27. •• The position of a particle as a function of time is given by
(a) Plot x versus t for time

from to . (b) Find the average velocity of the
particle from to (c) Find the average
velocity from to (d) Do you expect the in-
stantaneous velocity at to be closer to 

or Explain.

Section 2–4 Acceleration
28. • A 747 airliner reaches its takeoff speed of 173 mi/h in 35.2 s.

What is the magnitude of its average acceleration?
29. • At the starting gun, a runner accelerates at for 5.2 s.

The runner’s acceleration is zero for the rest of the race. What is
the speed of the runner (a) at and (b) at the end of the
race?

30. • A jet makes a landing traveling due east with a speed of
115 m/s. If the jet comes to rest in 13.0 s, what is the magnitude
and direction of its average acceleration?

31. • A car is traveling due north at 18.1 m/s. Find the velocity of
the car after 7.50 s if its acceleration is (a) due north,
or (b) due south.

32. •• A motorcycle moves according to the velocity-versus-time
graph shown in Figure 2–31. Find the average acceleration of

1.15 m/s2
1.30 m/s2

t = 2.0 s,

1.9 m/s2

-1.66 m/s?-1.64 m/s,
-1.62 m/s,t = 0.200 s

t = 0.210 s.t = 0.190 s
t = 0.250 s.t = 0.150 s

t = 1.00 st = 0
x = 1-2.00 m/s2t + 13.00 m/s32t3.

t = 0.40 s
t = 0.41 s.t = 0.39 s
t = 0.45 s.t = 0.35 s

t = 1.0 s.t = 0
x = 12.0 m/s2t + 1-3.0 m/s32t3.
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34. •• Running with an initial velocity of a horse has an
average acceleration of How long does it take for
the horse to decrease its velocity to 

35. •• IP Assume that the brakes in your car create a constant
deceleration of regardless of how fast you are dri-
ving. If you double your driving speed from 16 m/s to 32 m/s,
(a) does the time required to come to a stop increase by a fac-
tor of two or a factor of four? Explain. Verify your answer to
part (a) by calculating the stopping times for initial speeds of
(b) 16 m/s and (c) 32 m/s.

36. •• IP In the previous problem, (a) does the distance needed
to stop increase by a factor of two or a factor of four? Explain.
Verify your answer to part (a) by calculating the stopping dis-
tances for initial speeds of (b) 16 m/s and (c) 32 m/s.

37. •• As a train accelerates away from a station, it reaches a speed
of 4.7 m/s in 5.0 s. If the train’s acceleration remains constant,
what is its speed after an additional 6.0 s has elapsed?

38. •• A particle has an acceleration of for 0.300 s. At
the end of this time the particle’s velocity is What
was the particle’s initial velocity?

Section 2–5 Motion with Constant Acceleration
39. • Landing with a speed of 81.9 m/s, and traveling due south, a

jet comes to rest in 949 m. Assuming the jet slows with constant
acceleration, find the magnitude and direction of its acceleration.

+9.31 m/s.
+6.24 m/s2

4.2 m/s2

+6.5 m/s?
-1.81 m/s2.

+11 m/s,

the motorcycle during each of the following segments of the
motion: (a) A, (b) B, and (c) C.
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Returning to Velocity vs Time Graphs

The area under a velocity-time graph has a special interpretation:
it is the displacement of the object over the time interval
considered.

PROBLEMS 49

24. •• IP A tennis player moves back and forth along the base-
line while waiting for her opponent to serve, producing the
position-versus-time graph shown in Figure 2–30. (a) Without
performing a calculation, indicate on which of the segments
of the graph, A, B, or C, the player has the greatest speed. Cal-
culate the player’s speed for (b) segment A, (c) segment B, and
(d) segment C, and show that your results verify your answers
to part (a).
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▲ FIGURE 2–30 Problem 24

33. •• A person on horseback moves according to the velocity-
versus-time graph shown in Figure 2–32. Find the displace-
ment of the person for each of the following segments of the
motion: (a) A, (b) B, and (c) C.

25. ••• On your wedding day you leave for the church 30.0 min-
utes before the ceremony is to begin, which should be plenty of
time since the church is only 10.0 miles away. On the way, how-
ever, you have to make an unanticipated stop for construction
work on the road. As a result, your average speed for the first
15 minutes is only 5.0 mi/h. What average speed do you need
for the rest of the trip to get you to the church on time?

Section 2–3 Instantaneous Velocity
26. •• The position of a particle as a function of time is given by

(a) Plot x versus t for time
from to (b) Find the average velocity of the
particle from to (c) Find the average
velocity from to (d) Do you expect the
instantaneous velocity at to be closer to 0.54 m/s,
0.56 m/s, or 0.58 m/s? Explain.

27. •• The position of a particle as a function of time is given by
(a) Plot x versus t for time

from to . (b) Find the average velocity of the
particle from to (c) Find the average
velocity from to (d) Do you expect the in-
stantaneous velocity at to be closer to 

or Explain.

Section 2–4 Acceleration
28. • A 747 airliner reaches its takeoff speed of 173 mi/h in 35.2 s.

What is the magnitude of its average acceleration?
29. • At the starting gun, a runner accelerates at for 5.2 s.

The runner’s acceleration is zero for the rest of the race. What is
the speed of the runner (a) at and (b) at the end of the
race?

30. • A jet makes a landing traveling due east with a speed of
115 m/s. If the jet comes to rest in 13.0 s, what is the magnitude
and direction of its average acceleration?

31. • A car is traveling due north at 18.1 m/s. Find the velocity of
the car after 7.50 s if its acceleration is (a) due north,
or (b) due south.

32. •• A motorcycle moves according to the velocity-versus-time
graph shown in Figure 2–31. Find the average acceleration of

1.15 m/s2
1.30 m/s2

t = 2.0 s,

1.9 m/s2

-1.66 m/s?-1.64 m/s,
-1.62 m/s,t = 0.200 s

t = 0.210 s.t = 0.190 s
t = 0.250 s.t = 0.150 s

t = 1.00 st = 0
x = 1-2.00 m/s2t + 13.00 m/s32t3.

t = 0.40 s
t = 0.41 s.t = 0.39 s
t = 0.45 s.t = 0.35 s

t = 1.0 s.t = 0
x = 12.0 m/s2t + 1-3.0 m/s32t3.
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34. •• Running with an initial velocity of a horse has an
average acceleration of How long does it take for
the horse to decrease its velocity to 

35. •• IP Assume that the brakes in your car create a constant
deceleration of regardless of how fast you are dri-
ving. If you double your driving speed from 16 m/s to 32 m/s,
(a) does the time required to come to a stop increase by a fac-
tor of two or a factor of four? Explain. Verify your answer to
part (a) by calculating the stopping times for initial speeds of
(b) 16 m/s and (c) 32 m/s.

36. •• IP In the previous problem, (a) does the distance needed
to stop increase by a factor of two or a factor of four? Explain.
Verify your answer to part (a) by calculating the stopping dis-
tances for initial speeds of (b) 16 m/s and (c) 32 m/s.

37. •• As a train accelerates away from a station, it reaches a speed
of 4.7 m/s in 5.0 s. If the train’s acceleration remains constant,
what is its speed after an additional 6.0 s has elapsed?

38. •• A particle has an acceleration of for 0.300 s. At
the end of this time the particle’s velocity is What
was the particle’s initial velocity?

Section 2–5 Motion with Constant Acceleration
39. • Landing with a speed of 81.9 m/s, and traveling due south, a

jet comes to rest in 949 m. Assuming the jet slows with constant
acceleration, find the magnitude and direction of its acceleration.

+9.31 m/s.
+6.24 m/s2

4.2 m/s2

+6.5 m/s?
-1.81 m/s2.

+11 m/s,

the motorcycle during each of the following segments of the
motion: (a) A, (b) B, and (c) C.
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Area under Velocity vs. Time Graphs

v -t and x-t graphs for the same object:

Area under v -t graph = ∆x .

Figure 2.40 Vertical position, vertical velocity, and vertical acceleration vs. time for a rock thrown vertically up at the edge of a cliff. Notice that velocity changes linearly
with time and that acceleration is constant. Misconception Alert! Notice that the position vs. time graph shows vertical position only. It is easy to get the impression that
the graph shows some horizontal motion—the shape of the graph looks like the path of a projectile. But this is not the case; the horizontal axis is time, not space. The
actual path of the rock in space is straight up, and straight down.

Discussion

The interpretation of these results is important. At 1.00 s the rock is above its starting point and heading upward, since and are both

positive. At 2.00 s, the rock is still above its starting point, but the negative velocity means it is moving downward. At 3.00 s, both and

are negative, meaning the rock is below its starting point and continuing to move downward. Notice that when the rock is at its highest point (at

1.5 s), its velocity is zero, but its acceleration is still . Its acceleration is for the whole trip—while it is moving up and
while it is moving down. Note that the values for are the positions (or displacements) of the rock, not the total distances traveled. Finally, note

that free-fall applies to upward motion as well as downward. Both have the same acceleration—the acceleration due to gravity, which remains
constant the entire time. Astronauts training in the famous Vomit Comet, for example, experience free-fall while arcing up as well as down, as we
will discuss in more detail later.

Making Connections: Take-Home Experiment—Reaction Time

A simple experiment can be done to determine your reaction time. Have a friend hold a ruler between your thumb and index finger, separated by
about 1 cm. Note the mark on the ruler that is right between your fingers. Have your friend drop the ruler unexpectedly, and try to catch it
between your two fingers. Note the new reading on the ruler. Assuming acceleration is that due to gravity, calculate your reaction time. How far
would you travel in a car (moving at 30 m/s) if the time it took your foot to go from the gas pedal to the brake was twice this reaction time?
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Slope of x-t curve = v .

Figure 2.40 Vertical position, vertical velocity, and vertical acceleration vs. time for a rock thrown vertically up at the edge of a cliff. Notice that velocity changes linearly
with time and that acceleration is constant. Misconception Alert! Notice that the position vs. time graph shows vertical position only. It is easy to get the impression that
the graph shows some horizontal motion—the shape of the graph looks like the path of a projectile. But this is not the case; the horizontal axis is time, not space. The
actual path of the rock in space is straight up, and straight down.

Discussion

The interpretation of these results is important. At 1.00 s the rock is above its starting point and heading upward, since and are both

positive. At 2.00 s, the rock is still above its starting point, but the negative velocity means it is moving downward. At 3.00 s, both and

are negative, meaning the rock is below its starting point and continuing to move downward. Notice that when the rock is at its highest point (at

1.5 s), its velocity is zero, but its acceleration is still . Its acceleration is for the whole trip—while it is moving up and
while it is moving down. Note that the values for are the positions (or displacements) of the rock, not the total distances traveled. Finally, note

that free-fall applies to upward motion as well as downward. Both have the same acceleration—the acceleration due to gravity, which remains
constant the entire time. Astronauts training in the famous Vomit Comet, for example, experience free-fall while arcing up as well as down, as we
will discuss in more detail later.

Making Connections: Take-Home Experiment—Reaction Time

A simple experiment can be done to determine your reaction time. Have a friend hold a ruler between your thumb and index finger, separated by
about 1 cm. Note the mark on the ruler that is right between your fingers. Have your friend drop the ruler unexpectedly, and try to catch it
between your two fingers. Note the new reading on the ruler. Assuming acceleration is that due to gravity, calculate your reaction time. How far
would you travel in a car (moving at 30 m/s) if the time it took your foot to go from the gas pedal to the brake was twice this reaction time?
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Velocity vs. Time Graphs44 Chapter 2 Motion in One Dimension

under the curve in the velocity–time graph. Therefore, in the limit n S ,̀ or Dtn S 0, 
the displacement is

 Dx 5 lim
Dtn S 0an

 vxn,avg Dtn (2.18)

If we know the vx–t graph for motion along a straight line, we can obtain the dis-
placement during any time interval by measuring the area under the curve corre-
sponding to that time interval.
 The limit of the sum shown in Equation 2.18 is called a definite integral and is 
written

  lim
Dtn S 0an

 vxn,avg Dtn 5 3
tf

ti

 vx 1 t 2  dt (2.19)

where vx(t) denotes the velocity at any time t. If the explicit functional form of vx(t) 
is known and the limits are given, the integral can be evaluated. Sometimes the 
vx–t graph for a moving particle has a shape much simpler than that shown in Fig-
ure 2.15. For example, suppose an object is described with the particle under con-
stant velocity model. In this case, the vx–t graph is a horizontal line as in Figure 2.16 
and the displacement of the particle during the time interval Dt is simply the area 
of the shaded rectangle:

Dx 5 vxi Dt (when vx 5 vxi 5 constant)

Kinematic Equations
We now use the defining equations for acceleration and velocity to derive two of 
our kinematic equations, Equations 2.13 and 2.16.
 The defining equation for acceleration (Eq. 2.10),

ax 5
dvx

dt
may be written as dvx 5 ax dt or, in terms of an integral (or antiderivative), as

vxf 2 vxi 5 3
t

0
 ax dt

For the special case in which the acceleration is constant, ax can be removed from 
the integral to give

 vxf 2 vxi 5 ax 3
t

0
 dt 5 ax 1 t 2 0 2 5 axt (2.20)

which is Equation 2.13 in the particle under constant acceleration model.
 Now let us consider the defining equation for velocity (Eq. 2.5):

vx 5
dx
dt

Definite integral X

Figure 2.16  The velocity–time 
curve for a particle moving with 
constant velocity vxi. The displace-
ment of the particle during the 
time interval tf 2 ti is equal to the 
area of the shaded rectangle.

vx ! vxi ! constant

tf

vxi

t

"t

ti

vx

vxi

vx

t

"t n

t i t f

vxn,avg

The area of the shaded rectangle 
is equal to the displacement in 
the time interval "tn.

Figure 2.15 Velocity versus time 
for a particle moving along the 
x axis. The total area under the 
curve is the total displacement of 
the particle.

∆x = lim
∆t→0

∑
n

vn ∆t =

∫ tf
ti

v dt

where ∆x represents the change in position (displacement) in the
time interval ti to tf .
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vx–t graph for a moving particle has a shape much simpler than that shown in Fig-
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We now use the defining equations for acceleration and velocity to derive two of 
our kinematic equations, Equations 2.13 and 2.16.
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dvx
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may be written as dvx 5 ax dt or, in terms of an integral (or antiderivative), as
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For the special case in which the acceleration is constant, ax can be removed from 
the integral to give
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which is Equation 2.13 in the particle under constant acceleration model.
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the particle.

Or we can write

x(t) =

∫ t
ti

v dt ′

if the object starts at position x = 0 when t = ti .



Question

What does the area under an acceleration-time graph represent?



Matching Velocity to Acceleration Graphs

38 Chapter 2 Motion in One Dimension

Q uick Quiz 2.6 In Figure 2.12, match each vx–t graph on the top with the ax–t 
graph on the bottom that best describes the motion.

Example 2.7   Carrier Landing 

A jet lands on an aircraft carrier at a speed of 140 mi/h (< 63 m/s).

(A) What is its acceleration (assumed constant) if it stops in 2.0 s due to an arresting cable that snags the jet and 
brings it to a stop?

You might have seen movies or television shows in which a jet lands on an aircraft carrier and is brought to rest sur-
prisingly fast by an arresting cable. A careful reading of the problem reveals that in addition to being given the initial 
speed of 63 m/s, we also know that the final speed is zero. Because the acceleration of the jet is assumed constant, we 
model it as a particle under constant acceleration. We define our x axis as the direction of motion of the jet. Notice that we 
have no information about the change in position of the jet while it is slowing down.

AM

S O L U T I O N

Analysis Model   Particle Under Constant Acceleration
Examples

along a straight freeway

resistance (Section 2.7)

acts (Chapter 5)

field (Chapter 23)

Imagine a moving object that can be modeled as a particle. If it 
begins from position xi and initial velocity vxi and moves in a straight 
line with a constant acceleration ax, its subsequent position and 
velocity are described by the following kinematic equations: 

 vxf 5 vxi 1 axt (2.13)

 vx,avg 5
vxi 1 vxf

2
  (2.14)

 xf 5 xi 1 1
2 1vxi 1 vxf 2 t (2.15)

 xf 5 xi 1 vxit 1 1
2axt 2 (2.16)

 vxf
2 5 vxi

21 2ax(xf 2 xi) (2.17)
v
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Figure 2.12 (Quick Quiz 2.6)  
Parts (a), (b), and (c) are vx–t graphs 
of objects in one-dimensional 
motion. The possible accelerations 
of each object as a function of time 
are shown in scrambled order in (d), 
(e), and (f).



Summary

• acceleration

Homework - CHANGED!
• Read Ch 2.

• Ch 2, Questions: 1, 2, 4, 5; Problems: 19, 21, 90

• (will be set on Monday: Ch 2, Problems: 23, 25, 31, 35, 41,
69, 73)


