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Last time

• acceleration

• graphs of kinematic quantities



Overview

• finish discussion of graphs

• the kinematics equations (constant acceleration)

• applying the kinematics equations



Kinematics Graphs

36 Chapter 2 Motion in One Dimension

 In Figure 2.10c, we can tell that the car slows as it moves to the right because its 
displacement between adjacent images decreases with time. This case suggests the 
car moves to the right with a negative acceleration. The length of the velocity arrow 
decreases in time and eventually reaches zero. From this diagram, we see that the 
acceleration and velocity arrows are not in the same direction. The car is moving 
with a positive velocity, but with a negative acceleration. (This type of motion is exhib-
ited by a car that skids to a stop after its brakes are applied.) The velocity and accel-
eration are in opposite directions. In terms of our earlier force discussion, imagine 
a force pulling on the car opposite to the direction it is moving: it slows down.
 Each purple acceleration arrow in parts (b) and (c) of Figure 2.10 is the same 
length. Therefore, these diagrams represent motion of a particle under constant accel-
eration. This important analysis model will be discussed in the next section.

Q uick Quiz 2.5 Which one of the following statements is true? (a) If a car is trav-
eling eastward, its acceleration must be eastward. (b) If a car is slowing down, 
its acceleration must be negative. (c) A particle with constant acceleration can 
never stop and stay stopped.

2.6 Analysis Model: Particle  
Under Constant Acceleration

If the acceleration of a particle varies in time, its motion can be complex and difficult 
to analyze. A very common and simple type of one-dimensional motion, however, is 
that in which the acceleration is constant. In such a case, the average acceleration 
ax,avg over any time interval is numerically equal to the instantaneous acceleration ax 
at any instant within the interval, and the velocity changes at the same rate through-
out the motion. This situation occurs often enough that we identify it as an analysis 
model: the particle under constant acceleration. In the discussion that follows, we 
generate several equations that describe the motion of a particle for this model.
 If we replace ax,avg by ax in Equation 2.9 and take ti 5 0 and tf to be any later time 
t, we find that

ax 5
vxf 2 vxi

t 2 0

or

 vxf 5 vxi 1 axt (for constant ax) (2.13)

This powerful expression enables us to determine an object’s velocity at any time 
t if we know the object’s initial velocity vxi and its (constant) acceleration ax. A  
velocity–time graph for this constant-acceleration motion is shown in Figure 2.11b. 
The graph is a straight line, the slope of which is the acceleration ax; the (constant) 
slope is consistent with ax 5 dvx/dt being a constant. Notice that the slope is posi-
tive, which indicates a positive acceleration. If the acceleration were negative, the 
slope of the line in Figure 2.11b would be negative. When the acceleration is con-
stant, the graph of acceleration versus time (Fig. 2.11c) is a straight line having a 
slope of zero.
 Because velocity at constant acceleration varies linearly in time according to 
Equation 2.13, we can express the average velocity in any time interval as the arith-
metic mean of the initial velocity vxi and the final velocity vxf :

 vx,avg 5
vxi 1 vxf

2
  1 for constant ax 2  (2.14)
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Figure 2.11 A particle under 
constant acceleration ax moving 
along the x axis: (a) the position–
time graph, (b) the velocity–time 
graph, and (c) the acceleration–
time graph.
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Velocity vs. Time Graphs44 Chapter 2 Motion in One Dimension

under the curve in the velocity–time graph. Therefore, in the limit n S ,̀ or Dtn S 0, 
the displacement is

 Dx 5 lim
Dtn S 0an

 vxn,avg Dtn (2.18)

If we know the vx–t graph for motion along a straight line, we can obtain the dis-
placement during any time interval by measuring the area under the curve corre-
sponding to that time interval.
 The limit of the sum shown in Equation 2.18 is called a definite integral and is 
written

  lim
Dtn S 0an

 vxn,avg Dtn 5 3
tf

ti

 vx 1 t 2  dt (2.19)

where vx(t) denotes the velocity at any time t. If the explicit functional form of vx(t) 
is known and the limits are given, the integral can be evaluated. Sometimes the 
vx–t graph for a moving particle has a shape much simpler than that shown in Fig-
ure 2.15. For example, suppose an object is described with the particle under con-
stant velocity model. In this case, the vx–t graph is a horizontal line as in Figure 2.16 
and the displacement of the particle during the time interval Dt is simply the area 
of the shaded rectangle:

Dx 5 vxi Dt (when vx 5 vxi 5 constant)

Kinematic Equations
We now use the defining equations for acceleration and velocity to derive two of 
our kinematic equations, Equations 2.13 and 2.16.
 The defining equation for acceleration (Eq. 2.10),

ax 5
dvx

dt
may be written as dvx 5 ax dt or, in terms of an integral (or antiderivative), as

vxf 2 vxi 5 3
t

0
 ax dt

For the special case in which the acceleration is constant, ax can be removed from 
the integral to give

 vxf 2 vxi 5 ax 3
t

0
 dt 5 ax 1 t 2 0 2 5 axt (2.20)

which is Equation 2.13 in the particle under constant acceleration model.
 Now let us consider the defining equation for velocity (Eq. 2.5):

vx 5
dx
dt

Definite integral X

Figure 2.16  The velocity–time 
curve for a particle moving with 
constant velocity vxi. The displace-
ment of the particle during the 
time interval tf 2 ti is equal to the 
area of the shaded rectangle.
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the time interval "tn.

Figure 2.15 Velocity versus time 
for a particle moving along the 
x axis. The total area under the 
curve is the total displacement of 
the particle.

∆x = lim
∆t→0

∑
n

vn ∆t =

∫ tf
ti

v dt

where ∆x represents the change in position (displacement) in the
time interval ti to tf .
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Or we can write

x(t) =

∫ t
ti

v dt ′

if the object starts at position x = 0 when t = ti .



Question

What does the area under an acceleration-time graph represent?



Matching Velocity to Acceleration Graphs

38 Chapter 2 Motion in One Dimension

Q uick Quiz 2.6 In Figure 2.12, match each vx–t graph on the top with the ax–t 
graph on the bottom that best describes the motion.

Example 2.7   Carrier Landing 

A jet lands on an aircraft carrier at a speed of 140 mi/h (< 63 m/s).

(A) What is its acceleration (assumed constant) if it stops in 2.0 s due to an arresting cable that snags the jet and 
brings it to a stop?

You might have seen movies or television shows in which a jet lands on an aircraft carrier and is brought to rest sur-
prisingly fast by an arresting cable. A careful reading of the problem reveals that in addition to being given the initial 
speed of 63 m/s, we also know that the final speed is zero. Because the acceleration of the jet is assumed constant, we 
model it as a particle under constant acceleration. We define our x axis as the direction of motion of the jet. Notice that we 
have no information about the change in position of the jet while it is slowing down.

AM

S O L U T I O N

Analysis Model   Particle Under Constant Acceleration
Examples

along a straight freeway

resistance (Section 2.7)

acts (Chapter 5)

field (Chapter 23)

Imagine a moving object that can be modeled as a particle. If it 
begins from position xi and initial velocity vxi and moves in a straight 
line with a constant acceleration ax, its subsequent position and 
velocity are described by the following kinematic equations: 

 vxf 5 vxi 1 axt (2.13)

 vx,avg 5
vxi 1 vxf

2
  (2.14)

 xf 5 xi 1 1
2 1vxi 1 vxf 2 t (2.15)

 xf 5 xi 1 vxit 1 1
2axt 2 (2.16)

 vxf
2 5 vxi

21 2ax(xf 2 xi) (2.17)
v
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Figure 2.12 (Quick Quiz 2.6)  
Parts (a), (b), and (c) are vx–t graphs 
of objects in one-dimensional 
motion. The possible accelerations 
of each object as a function of time 
are shown in scrambled order in (d), 
(e), and (f).



The Kinematics Equations

This is a set of very useful equations for the case of constant
acceleration.

Very often in real life accelerations are not constant, but one
important case where acceleration is constant1 is for falling objects.

1At least nearly constant, neglecting air resistance and small variations in g
near the Earth’s surface.



The Kinematics Equations

For constant acceleration:

v = v0 + at

∆x = v0t +
1

2
at2

∆x = vt −
1

2
at2

∆x =
v0 + v

2
t

v2 = v20 + 2 a∆x

For zero acceleration:

∆x = vt



Vector Equations vs Scalar Equations
I will write the kinematics equations in vector form, for example:

∆x = vt

since displacement and velocity are vector quantities.

However, we are looking only at 1-dimension for the moment. We
know the displacement will be either in the positive or negative x
direction (±i direction).

What we can do, is write this equation instead as a scalar equation
by factoring out the unit vectors from each side:

∆x =

In that last expression, ∆x and v are the signed magnitudes of the
∆x and v vectors.

That is, ∆x and v can be positive or negative.
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The Kinematics Equations: the “no-displacement”
equation

From the definition of average acceleration:

aavg =
∆v
∆t

∆v = v − v0

and starting at time t = 0 means ∆t = t − 0 = t.

For constant acceleration aavg = a, so a = v−v0
t

v(t) = v0 + at (1)

where v0 is the velocity at t = 0 and v(t) is the velocity at time t.
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Average Velocity

IF the acceleration of an object is constant, then the velocity-time
graph is a straight line,

30 CHAPTER 2 ONE-DIMENSIONAL KINEMATICS

average acceleration, Equation 2–5, we have

where the initial and final times may be chosen arbitrarily. For example, let 
for the initial time, and let denote the velocity at time zero. For the final
time and velocity we drop the subscripts to simplify notation; thus we let 
and With these identifications we have

Therefore,

or

Constant-Acceleration Equation of Motion: Velocity as a Function of Time

2–7

Note that Equation 2–7 describes a straight line on a v-versus-t plot. The line
crosses the velocity axis at the value and has a slope a, in agreement with the
graphical interpretations discussed in the previous section. For example, in curve
I of Figure 2–9, the equation of motion is 
Also, note that has the units thus each term in
Equation 2–7 has the same dimensions (as it must to be a valid physical equation).

EXERCISE 2–2
A ball is thrown straight upward with an initial velocity of If the acceleration
of the ball is what is its velocity after

a. 0.50 s, and b. 1.0 s?

Solution

a. Substituting in Equation 2–7 yields

b. Similarly, using in Equation 2–7 gives

Next, how far does a particle move in a given time if its acceleration is con-
stant? To answer this question, recall the definition of average velocity:

Using the same identifications given previously for initial and final times, and let-
ting and we have

Thus,

or

2–8

Now, Equation 2–8 is fine as it is. In fact, it applies whether the acceleration is
constant or not. A more useful expression, for the case of constant acceleration, is
obtained by writing in terms of the initial and final velocities. This can be done
by referring to Figure 2–13 (a). Here the velocity changes linearly (since a is

vav

x = x0 + vavt

x - x0 = vav1t - 02 = vavt

vav =
x - x0

t - 0

xf = x,xi = x0

vav = ¢x
¢t =

xf - xi

tf - ti

v = 8.2 m/s + 1-9.81 m/s2211.0 s2 = -1.6 m/s

t = 1.0 s

v = 8.2 m/s + 1-9.81 m/s2210.50 s2 = 3.3 m/s

t = 0.50 s

-9.81 m/s2,
+8.2 m/s.

1m/s221s2 = m/s;1-0.5 m/s22t v = v0 + at = 11 m/s2 + 1-0.5 m/s22t.v0

v = v0 + at

v - v0 = a1t - 02 = at

aav =
v - v0

t - 0
= a

vf = v.
tf = t

vi = v0

ti = 0

aav =
vf - vi

tf - ti
= a

v

vav=   (v0 + v)

v

v0

O
t

t

t

1
2

v

vav

v

v0

O
t

(a)

(b)
▲ FIGURE 2–13 The average velocity
(a) When acceleration is constant, the
velocity varies linearly with time. As a
result, the average velocity, is simply
the average of the initial velocity, and
the final velocity, v. (b) The velocity
curve for nonconstant acceleration is
nonlinear. In this case, the average
velocity is no longer midway between
the initial and final velocities.

v0,
vav,
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vavg =
1

2
(v0 + v)



The Kinematics Equations: the “no-acceleration”
equation

From the definition of average velocity:

vavg =
∆x
t

and vavg = v0+v
2

Equating them, and multiplying by t:

∆x =

(
v0 + v

2

)
t (2)



The Kinematics Equations: the “no-final-velocity”
equation

Using the equation

∆x =

(
v0 + v

2

)
t

and the equation
v = v0 + at

replace v in the first equation.

∆x =

(
v0 + (v0 + at)

2

)
t

= v0t +
1

2
at2

For constant acceleration:

x(t) = x0 + v0t +
1

2
at2 (3)



Example 2-6, page 34

A drag racer starts from rest and accelerates at 7.40 m/s2. How
far has it traveled in (a) 1.00 s, (b) 2.00 s, (c) 3.00 s?

Sketch:

2–5 MOTION WITH CONSTANT ACCELERATION 33

EXAMPLE 2–6 Put the Pedal to the Metal
A drag racer starts from rest and accelerates at How far has it traveled in (a) 1.00 s, (b) 2.00 s, (c) 3.00 s?

Picture the Problem
We set up a coordinate system in which the drag racer starts
at the origin and accelerates in the positive x direction. With
this choice, it follows that and Also,
since the racer starts from rest, its initial velocity is zero,

Incidentally, the positions of the racer in the sketch
have been drawn to scale.
Strategy
Since this problem gives the acceleration, which is constant,
and asks for a relationship between position and time, we
use Equation 2–11.

Solution
Part (a)

1. Evaluate Equation 2–11 with and 

Part (b)

2. From the calculation in part (a), Equation 2–11 reduces 
to in this situation. Evaluate at 

Part (c)

3. Repeat with 

Insight
This Example illustrates one of the key features of accelerated motion—position does not change uniformly with time when an
object accelerates. In this case, the distance traveled in the first two seconds is 4 times the distance traveled in the first second,
and the distance traveled in the first three seconds is 9 times the distance traveled in the first second. This kind of behavior is a
direct result of the fact that x depends on when the acceleration is nonzero.

Practice Problem
In one second the racer travels 3.70 m. How long does it take for the racer to travel 
[Answer: ]

Some related homework problems: Problem 44, Problem 59

t = 22 s = 1.41 s
213.70 m2 = 7.40 m?

t2

 = 1
217.40 m/s2213.00 s22 = 33.3 m = 913.70 m2 x = 1
2 at2t = 3.00 s:

 = 1
217.40 m/s2212.00 s22 = 14.8 m = 413.70 m2t = 2.00 s:x = 1

2 at2x = 1
2 at2

 x = 1
2 at2

 x = 1
217.40 m/s2211.00 s22 = 3.70 m

 x = x0 + v0t + 1
2 at2 = 0 + 0 + 1

2 at2 = 1
2 at2t = 1.00 s:a = 7.40 m/s2

v0 = 0.

a = +7.40 m/s2.x0 = 0

7.40 m/s2.

x

t = 0.00 t = 2.00 s t = 3.00 st = 1.00 s

O

Figure 2–15 shows a graph of x versus t for Example 2–6. Notice the parabolic
shape of the x-versus-t curve, which is due to the term, and is characteristic of
constant acceleration. In particular, if acceleration is positive then a plot
of x-versus-t curves upward; if acceleration is negative a plot of x-versus-
t curves downward. The greater the magnitude of a, the greater the curvature. In
contrast, if a particle moves with constant velocity the dependence van-
ishes, and the x-versus-t plot is a straight line.

Our final equation of motion with constant acceleration relates velocity to
position. We start by solving for the time, t, in Equation 2–7:

Next, we substitute this result into Equation 2–10, thus eliminating t:

Noting that we have

x = x0 +
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▲ FIGURE 2–15 Position versus time for
Example 2–6
The upward-curving, parabolic shape of
this x-versus-t plot indicates a positive,
constant acceleration. The dots on the
curve show the position of the drag racer
in Example 2–6 at the times 1.00 s, 2.00 s,
and 3.00 s.
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Example 2-6, page 34

A drag racer starts from rest and accelerates at 7.40 m/s2. How
far has it traveled in (a) 1.00 s, (b) 2.00 s, (c) 3.00 s?

Sketch:

2–5 MOTION WITH CONSTANT ACCELERATION 33

EXAMPLE 2–6 Put the Pedal to the Metal
A drag racer starts from rest and accelerates at How far has it traveled in (a) 1.00 s, (b) 2.00 s, (c) 3.00 s?

Picture the Problem
We set up a coordinate system in which the drag racer starts
at the origin and accelerates in the positive x direction. With
this choice, it follows that and Also,
since the racer starts from rest, its initial velocity is zero,

Incidentally, the positions of the racer in the sketch
have been drawn to scale.
Strategy
Since this problem gives the acceleration, which is constant,
and asks for a relationship between position and time, we
use Equation 2–11.

Solution
Part (a)

1. Evaluate Equation 2–11 with and 

Part (b)

2. From the calculation in part (a), Equation 2–11 reduces 
to in this situation. Evaluate at 

Part (c)

3. Repeat with 

Insight
This Example illustrates one of the key features of accelerated motion—position does not change uniformly with time when an
object accelerates. In this case, the distance traveled in the first two seconds is 4 times the distance traveled in the first second,
and the distance traveled in the first three seconds is 9 times the distance traveled in the first second. This kind of behavior is a
direct result of the fact that x depends on when the acceleration is nonzero.

Practice Problem
In one second the racer travels 3.70 m. How long does it take for the racer to travel 
[Answer: ]

Some related homework problems: Problem 44, Problem 59

t = 22 s = 1.41 s
213.70 m2 = 7.40 m?

t2
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217.40 m/s2213.00 s22 = 33.3 m = 913.70 m2 x = 1
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2 at2
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2 at2
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Figure 2–15 shows a graph of x versus t for Example 2–6. Notice the parabolic
shape of the x-versus-t curve, which is due to the term, and is characteristic of
constant acceleration. In particular, if acceleration is positive then a plot
of x-versus-t curves upward; if acceleration is negative a plot of x-versus-
t curves downward. The greater the magnitude of a, the greater the curvature. In
contrast, if a particle moves with constant velocity the dependence van-
ishes, and the x-versus-t plot is a straight line.

Our final equation of motion with constant acceleration relates velocity to
position. We start by solving for the time, t, in Equation 2–7:

Next, we substitute this result into Equation 2–10, thus eliminating t:

Noting that we have
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Example 2–6
The upward-curving, parabolic shape of
this x-versus-t plot indicates a positive,
constant acceleration. The dots on the
curve show the position of the drag racer
in Example 2–6 at the times 1.00 s, 2.00 s,
and 3.00 s.
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Using the Kinematics Equations

Process:

1 Identify which quantity we need to find and which ones we are
given.

2 Is there a quantity that we are not given and are not asked
for?

1 If so, use the equation that does not include that quantity.
2 If there is not, more that one kinematics equation may be

required or there may be several equivalent approaches.

3 Input known quantities and solve.



Example 2-6, page 34

A drag racer starts from rest and accelerates at 7.40 m/s2. How
far has it traveled in (a) 1.00 s, (b) 2.00 s, (c) 3.00 s?

Given: a = 7.40 m/s2, v0 = 0 m/s, t.
Asked for: ∆x

Strategy: Use equation

∆x = x(t) − x0 = v0t +
1

2
at2

(a) Letting the x-direction in my sketch be positive:

∆x = �
��

0
v0 t +

1

2
at2

=
1

2
(7.40 m/s2)(1.00 s)2

= 3.70 m
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Example 2-6, page 34
A drag racer starts from rest and accelerates at 7.40 m/s2. How
far has it traveled in (a) 1.00 s, (b) 2.00 s, (c) 3.00 s?

Use the same equation for (b), (c)

∆x = x(t) − x0 = v0t +
1

2
at2

(b) ∆x =
1

2
at2

=
1

2
(7.40 m/s2)(2.00 s)2

= 14.8 m

(c) ∆x =
1

2
at2

=
1

2
(7.40 m/s2)(3.00 s)2

= 33.3 m



Example 2-6, page 34

(a) 3.70 m, (b) 14.8 m, (c) 33.3 m

Analysis:
It makes sense that the distances covered by the car increases with
time, and it makes sense that the distance covered in each one
second interval is greater than the distance covered in the previous
interval since the car is still accelerating.

The distance covered over 3 seconds is 9 times the distance
covered in 1 second.

The car covers ∼ 30 m in 3 s, giving an average speed of ∼ 10 m/s.
We know cars can go much faster than this, so the answer is not
unreasonable.
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The Kinematics Equations: the “no-initial-velocity”
equation

Exercise for you: try to prove this equation.

For constant acceleration:

x(t) = x0 + vt −
1

2
at2 (4)



The Kinematics Equations: the “no-time” equation

The last equation we will derive is a scalar equation.

∆x =

(
v0 + v

2

)
t

We could also write this as:

(∆x) =

(
v0 + v

2
t

)
where ∆x , vi , and vf could each be positive or negative.
We do the same for equation (1):

v = (v0 + at)

Rearranging for t:

t =
v − v0

a



The Kinematics Equations: the “no-time” equation

The last equation we will derive is a scalar equation.
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)
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2
t

)
i
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We do the same for equation (1):

v = (v0 + at)

Rearranging for t:

t =
v − v0

a
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)
t

We could also write this as:

(∆x) �i =

(
v0 + v

2
t
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where ∆x , vi , and vf could each be positive or negative.
We do the same for equation (1):

v �i = (v0 + at) �i

Rearranging for t:

t =
v − v0

a



The Kinematics Equations: the “no-time” equation

The last equation we will derive is a scalar equation.

∆x =

(
v0 + v

2

)
t

We could also write this as:

(∆x) =

(
v0 + v

2
t

)
where ∆x , vi , and vf could each be positive or negative.
We do the same for equation (1):

v = (v0 + at)

Rearranging for t:

t =
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The Kinematics Equations: the “no-time” equation

t =
v − v0

a
; ∆x =

(
v0 + v

2

)
t

Substituting for t in our ∆x equation:

∆x =

(
v0 + v

2

)(
v − v0

a

)
2a∆x = (v0 + v)(v − v0)

so,

v2 = v20 + 2 a∆x (5)



The Kinematics Equations Summary

For constant acceleration:

v = v0 + at

∆x = v0t +
1

2
at2

∆x = vt −
1

2
at2

∆x =
v0 + v

2
t

v2 = v20 + 2 a∆x

For zero acceleration:

x = vt



Summary

• acceleration

• the “kinematics equations”

• applying the kinematics equations

Homework
• previous: Ch 2, Questions: 1, 2, 4, 5; Problems: 19, 21, 90

• new: Ch 2, Problems: 23, 25, 31, 35, 41, 69, (73 - can wait
to do)


