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Last time

o free fall



Overview

e representing vectors

e vector properties



Math you will need for 2-Dimensions

Before going into motion in 2 dimensions, we will review some
things about vectors.



Vectors

scalar

A scalar quantity indicates an amount. It is represented by a real
number. (Assuming it is a physical quantity.)

vector

A vector quantity indicates both an amount and a direction. It is
represented more than one real number. (Assuming it is a physical
quantity.)

There are many ways to represent a vector.
e a magnitude and (an) angle(s)

e magnitudes in several perpendicular directions



Representing Vectors: Angles
Bearing angles

Example, a plane flies 750 km h—! N
at a bearing of 70°

Generic reference angles

A baseball is thrown at 10 m s~ 1, 30° above the horizontal.

Path of
the ball

v
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Magnitudes in several perpendicular directions: using unit vectors.

Unit vectors have a magnitude of one unit.
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Representing Vectors: Unit Vectors

Magnitudes in several perpendicular directions: using unit vectors.

Unit vectors have a magnitude of one unit.

A set of perpendicular unit vectors defines a basis or decomposition
of a vector space.

In two dimensions, a pair of perpendicular unit vectors are usually
denoted i and j (or sometimes X, ¥).



Components

Consider the 2 dimensional vector A = A,i+ A j, where A, and
A, are numbers.

We then say that A, is the i-component (or x-component) of A
and A, is the j-component (or y-component) of A.
y

=

<
<

Notice that Ay = Acos0 and A, = Asin0.



Components vs Magnitude-and-Angle Notation
Notice that Ay = Acos0 and A, = Asin0.

)
A Ky
0

— X

0 A
Also notice,

A=Al = ,/A)2<+A}2,

and

A
O=tan (2
an (AX>

if the angle is given as shown.
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Why Vectors?

Of course, there is no reason to limit this to two dimensions.

With three dimensions we introduce another unit vector k = 2.
And we can have as many dimensions as we need by adding more
perpendicular unit vectors.

Vectors are the right tool for working in higher dimensions.

They have a property that correctly reflects what it means for
there to be more than one dimension: that each perpendicular
direction is independent of the others.

This makes life much easier: we will be able to solve for motion in
the x direction separately from motion in the y direction.



Visualizing Motion in 2 Dimensions

Imagine an air hockey puck moving with horizontally constant
velocity:

-0 0 -0 0 0

—_—— — — ——p ——

If it experiences a momentary upward (in the diagram)
acceleration, it will have a component of velocity upwards.
The horizontal motion remains unchanged!



Vectors Properties and Operations

Equality
Vectors A = B if and only if the magnitudes and directions are the
same. (Each component is the same.)

Addition
A+B




Vectors Properties and Operations
Properties of Addition

Draw ﬁ, =
then add A. A

e A+ B =B + A (commutative)

z 1
Drawx,
then add B.
e (A+B)+C=A+(B+C) (associative)
Add B and E; AddKangl_?:;
then addihe then addC to

result to A. the result.




Vectors Properties and Operations

Doing addition:
Almost always the right answer is to break each vector into
components and sum each component independently.

-~
=12
=N

<7Ax*>+Bx+
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Vectors Properties and Operations

Doing addition:
Almost always the right answer is to break each vector into
components and sum each component independently.

Example

w =5 m at 36.9° above the horizontal.
u=17 m at 28.1° above the horizontal.

This meansw =4i+3jmand u=15i4+8j m.

w+u = 7
= (4+15)i+ (3+8)j
= (19i+11j) m

or 22.0 m at 30.1° above the horizontal.



Vectors Properties and Operations

Negation

If u = —v then u has the same magnitude as v but points in the

opposite direction.

Subtraction
A—B=A+(-B)

We would draw l{ Vector G = & — Bis

B here if we were ¢ the vector we must
- s = —

adding it to A. ,' B add to B to obtain A.

>l

Adding —BwoA
is equivalemﬁto
subtracting B
from A.




Summary

e vectors

Homework

e announced yesterday: Ch 3 Questions: 1, 4, 7; Problems: 1,
3, 5.

e new: Ch 3 Problems: 11, 15.

e new: Ch 4 Problem 76, 83 (relative motion - can wait to do).



