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Vectors Properties and Operations

Negation
If u = −v then u has the same magnitude as v but points in the

opposite direction.

Subtraction
A− B = A+ (−B)

 3.3 Some Properties of Vectors 63

 When three or more vectors are added, their sum is independent of the way in 
which the individual vectors are grouped together. A geometric proof of this rule 
for three vectors is given in Figure 3.9. This property is called the associative law of 
addition:
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 In summary, a vector quantity has both magnitude and direction and also obeys 
the laws of vector addition as described in Figures 3.6 to 3.9. When two or more 
vectors are added together, they must all have the same units and they must all 
be the same type of quantity. It would be meaningless to add a velocity vector (for 
example, 60 km/h to the east) to a displacement vector (for example, 200 km to the 
north) because these vectors represent different physical quantities. The same rule 
also applies to scalars. For example, it would be meaningless to add time intervals 
to temperatures.

Negative of a Vector
The negative of the vector A

S
 is defined as the vector that when added to A

S
 gives 

zero for the vector sum. That is, A
S

1 12 A
S 2 5 0. The vectors A

S
 and 2 A

S
 have the 

same magnitude but point in opposite directions.

Subtracting Vectors
The operation of vector subtraction makes use of the definition of the negative of a 
vector. We define the operation A

S
2 B

S
 as vector 2 B

S
 added to vector A

S
:
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S

2 B
S

5 A
S

1 12 B
S 2  (3.7)

The geometric construction for subtracting two vectors in this way is illustrated in 
Figure 3.10a.
 Another way of looking at vector subtraction is to notice that the difference 
A
S

2 B
S

 between two vectors A
S

 and B
S

 is what you have to add to the second vector  
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Figure 3.9  Geometric construc-
tions for verifying the associative 
law of addition.
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Motion in 2 Dimensions

 4.1 The Position, Velocity, and Acceleration Vectors 79

! to " is not necessarily a straight line. As the particle moves from ! to " in the 
time interval Dt 5 tf 2 ti, its position vector changes from rSi to rSf . As we learned 
in Chapter 2, displacement is a vector, and the displacement of the particle is the 
difference between its final position and its initial position. We now define the dis-
placement vector D rS for a particle such as the one in Figure 4.1 as being the differ-
ence between its final position vector and its initial position vector:

 D rS ; rSf 2 rSi (4.1)

The direction of D rS is indicated in Figure 4.1. As we see from the figure, the mag-
nitude of D rS is less than the distance traveled along the curved path followed by the 
particle.
 As we saw in Chapter 2, it is often useful to quantify motion by looking at the 
displacement divided by the time interval during which that displacement occurs, 
which gives the rate of change of position. Two-dimensional (or three-dimensional) 
kinematics is similar to one-dimensional kinematics, but we must now use full vector 
notation rather than positive and negative signs to indicate the direction of motion.
 We define the average velocity vSavg of a particle during the time interval Dt as 
the displacement of the particle divided by the time interval:

 vSavg ;
D rS

Dt
 (4.2)

Multiplying or dividing a vector quantity by a positive scalar quantity such as Dt 
changes only the magnitude of the vector, not its direction. Because displacement 
is a vector quantity and the time interval is a positive scalar quantity, we conclude 
that the average velocity is a vector quantity directed along D rS. Compare Equa-
tion 4.2 with its one-dimensional counterpart, Equation 2.2.
 The average velocity between points is independent of the path taken. That is 
because average velocity is proportional to displacement, which depends only 
on the initial and final position vectors and not on the path taken. As with one- 
dimensional motion, we conclude that if a particle starts its motion at some point and 
returns to this point via any path, its average velocity is zero for this trip because its 
displacement is zero. Consider again our basketball players on the court in Figure 2.2  
(page 23). We previously considered only their one-dimensional motion back and 
forth between the baskets. In reality, however, they move over a two-dimensional sur-
face, running back and forth between the baskets as well as left and right across the 
width of the court. Starting from one basket, a given player may follow a very compli-
cated two-dimensional path. Upon returning to the original basket, however, a play-
er’s average velocity is zero because the player’s displacement for the whole trip is zero.
 Consider again the motion of a particle between two points in the xy plane as 
shown in Figure 4.2 (page 80). The dashed curve shows the path of the particle. As 
the time interval over which we observe the motion becomes smaller and smaller—
that is, as " is moved to "9 and then to "0 and so on—the direction of the displace-
ment approaches that of the line tangent to the path at !. The instantaneous velocity  
vS is defined as the limit of the average velocity D rS/Dt as Dt approaches zero:

 vS ; lim
Dt S0

 
D rS

Dt
5

d rS

dt
 (4.3)

That is, the instantaneous velocity equals the derivative of the position vector with 
respect to time. The direction of the instantaneous velocity vector at any point in 
a particle’s path is along a line tangent to the path at that point and in the direc-
tion of motion. Compare Equation 4.3 with the corresponding one-dimensional 
version, Equation 2.5.
 The magnitude of the instantaneous velocity vector v 5 0 vS 0  of a particle is called 
the speed of the particle, which is a scalar quantity.

WW  Displacement vector

WW Average velocity

WW Instantaneous velocity

Path of
particle

x

y

 ti

i

!
 t f

f

O

rS 

rS 

rS 

!r.S 
The displacement of the 
particle is the vector

!
"

Figure 4.1  A particle moving 
in the xy plane is located with 
the position vector rS drawn from 
the origin to the particle. The 
displacement of the particle as it 
moves from ! to " in the time 
interval Dt 5 tf 2 ti is equal to the 
vector D rS 5 rSf 2 rSi.

r = x i+ y j

∆r = rf − ri



Motion in 2 Dimensions

All other kinematic quantities generalize in a straightforward way.

v =
dr

dt

where v = vx i+ vy j

vavg =
∆r
∆t

a =
dv

dt
(same expression as 1 dim)

where a = ax i+ ay j

aavg =
∆v
∆t

(same expression as 1 dim)



Constant Velocity in 2 Dimensions

80 CHAPTER 4 TWO-DIMENSIONAL KINEMATICS

x

y

y = d sin θd = v0 t 

x = d cos θ
x = v0x t

y = v0y t

x

y

(a) (b)

θ = 25° θ = 25°
v0y = v0 sin θ

v0x = v0 cos θ

v0

O O

▲ FIGURE 4–1 Constant velocity
A turtle walks from the origin with a speed of (a) In a time t the turtle moves through a straight-line distance of
thus the x and y displacements are (b) Equivalently, the turtle’s x and y components of velocity are
and hence and y = v0yt.x = v0xtv0y = v0 sin u;

v0x = v0 cos ux = d cos u, y = d sin u.
d = v0t;v0 = 0.26 m/s.

4–1 Motion in Two Dimensions
In this section we develop equations of motion to describe objects moving in two
dimensions. First, we consider motion with constant velocity, determining x and
y as functions of time. Next, we investigate motion with constant acceleration. We
show that the one-dimensional kinematic equations of Chapter 2 can be extended
in a straightforward way to apply to two dimensions.

Constant Velocity
To begin, consider the simple situation shown in Figure 4–1. A turtle starts at the ori-
gin at and moves with a constant speed in a direction 25° above
the x-axis. How far has the turtle moved in the x and y directions after 5.0 seconds?

First, note that the turtle moves in a straight line a distance

as indicated in Figure 4–1(a). From the definitions of sine and cosine given in the
previous chapter, we see that

An alternative way to approach this problem is to treat the x and y motions
separately. First, we determine the speed of the turtle in each direction. Referring
to Figure 4–1(b), we see that the x component of velocity is

and the y component is

Next, we find the distance traveled by the turtle in the x and y directions by mul-
tiplying the speed in each direction by the time:

and

This is in agreement with our previous results. To summarize, we can think of the
turtle’s actual motion as a combination of separate x and y motions.

In general, the turtle might start at a position and at time 
In this case, we have

4–1

and
4–2

as the x and y equations of motion.

y = y0 + v0yt

x = x0 + v0xt

t = 0.y = y0x = x0

y = v0yt = 10.11 m/s215.0 s2 = 0.55 m

x = v0xt = 10.24 m/s215.0 s2 = 1.2 m

v0y = v0 sin 25° = 0.11 m/s

v0x = v0 cos 25° = 0.24 m/s

 y = d sin 25° = 0.55 m
 x = d cos 25° = 1.2 m

d = v0t = 10.26 m/s215.0 s2 = 1.3 m

v0 = 0.26 m/st = 0

WALKMC04_0131536311.QXD  11/16/05  17:57  Page 80

Or, we can find the distance it travels in the x-direction by
considering what is its rate of change of x-position with time!

v0x =
∆x

∆t
= v0 cos θ ⇒ x = (v0 cos θ)t

And in the y -direction:

v0y =
∆y

∆t
= v0 sin θ ⇒ y = (v0 sin θ)t

1Figure from Walker, “Physics”.



Relative Motion

We can use the notion of motion in 2 dimensions to consider how
one object moves relative to something else.

All motion is relative.

Our reference frame tells us what is a fixed position.

An example of a reference for time and space might be picking an
object, declaring that it is at rest, and describing the motion of all
objects relative to that.



Intuitive Example for Relative Velocities
5 Projectile Motion

The airplane’s velocity relative to 
the ground depends on the 
airplane’s velocity relative to the 
air and on the wind’s velocity.

5.2 Velocity Vectors

1Figure by Paul Hewitt.



Intuitive Example

Now, imagine an airplane that is flying North at 80 km/h but is
blown off course by a cross wind going East at 60 km/h.

How fast is the airplane moving? In which direction?

Sketch:

5 Projectile Motion

An 80-km/h airplane flying in a 60-km/h crosswind has a 
resultant speed of 100 km/h relative to the ground.

5.2 Velocity Vectors

1Figure by Paul Hewitt.
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Intuitive Example
5 Projectile Motion

An 80-km/h airplane flying in a 60-km/h crosswind has a 
resultant speed of 100 km/h relative to the ground.

5.2 Velocity Vectors

Strategy: vector addition!

In this case, the two vectors are at right-angles. We can use the
Pythagorean theorem.

v = 100 km/h at 36.9◦ East of North (or 53.1◦ North of East)
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Relative Motion
One very useful technique for physical reasoning is considering
other frames of reference.

A reference frame is a coordinate system that an observer adopts.

Different observers may have different perspectives: different
frames of reference. Consider a pair of observers, one stationary
(A), one moving with constant velocity vBA. Both observe a
particle P.

 4.6 Relative Velocity and Relative Acceleration 97

will be separated by a distance vBAt. We label the position P of the particle relative 
to observer A with the position vector rSP A and that relative to observer B with the 
position vector rSP B, both at time t. From Figure 4.20, we see that the vectors rSP A 
and rSP B are related to each other through the expression

 rSP A 5 rSP B 1 vSBAt (4.22)

 By differentiating Equation 4.22 with respect to time, noting that vSBA is con-
stant, we obtain

d rSP A

dt
5

d rSP B

dt
1 vSBA 

 uSP A 5 uSP B 1 vSBA (4.23)

where uSPA is the velocity of the particle at P measured by observer A and uSP B is its 
velocity measured by B. (We use the symbol uS for particle velocity rather than vS, 
which we have already used for the relative velocity of two reference frames.) Equa-
tions 4.22 and 4.23 are known as Galilean transformation equations. They relate 
the position and velocity of a particle as measured by observers in relative motion. 
Notice the pattern of the subscripts in Equation 4.23. When relative velocities are 
added, the inner subscripts (B) are the same and the outer ones (P, A) match the 
subscripts on the velocity on the left of the equation.
 Although observers in two frames measure different velocities for the particle, 
they measure the same acceleration when vSBA is constant. We can verify that by taking 
the time derivative of Equation 4.23:

d uSP A

dt
5

d uSP B

dt
1

d vSBA

dt

Because vSBA is constant, d vSBA/dt 5 0. Therefore, we conclude that aSP A 5 aSP B 
because aSP A 5 d uSP A/dt and aSP B 5 d uSP B/dt. That is, the acceleration of the parti-
cle measured by an observer in one frame of reference is the same as that measured 
by any other observer moving with constant velocity relative to the first frame.

WW  Galilean velocity 
transformation

continued

Example 4.8   A Boat Crossing a River

A boat crossing a wide river moves with a speed of  
10.0 km/h relative to the water. The water in the river has a 
uniform speed of 5.00 km/h due east relative to the Earth.

(A) If the boat heads due north, determine the velocity of 
the boat relative to an observer standing on either bank.

Conceptualize Imagine moving in a boat across a river 
while the current pushes you down the river. You will not 
be able to move directly across the river, but will end up 
downstream as suggested in Figure 4.21a.

Categorize Because of the combined velocities of you rela-
tive to the river and the river relative to the Earth, we can 
categorize this problem as one involving relative velocities.

Analyze We know vSbr, the velocity of the boat relative to the river, and vSrE, the velocity of the river relative to the Earth. 
What we must find is vSbE, the velocity of the boat relative to the Earth. The relationship between these three quantities 
is vSbE 5 vSbr 1 vSrE. The terms in the equation must be manipulated as vector quantities; the vectors are shown in Fig-
ure 4.21a. The quantity vSbr is due north; vSrE is due east; and the vector sum of the two, vSbE, is at an angle u as defined 
in Figure 4.21a.
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Figure 4.21 (Example 4.8) (a) A boat aims directly across a 
river and ends up downstream. (b) To move directly across the 
river, the boat must aim upstream.
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Figure 4.20  A particle located 
at P is described by two observers,  
one in the fixed frame of refer-
ence SA and the other in the 
frame SB, which moves to the right 
with a constant velocity vSBA. The 
vector rSPA is the particle’s position 
vector relative to SA, and rSP B is its 
position vector relative to SB.



Frames of Reference

How do we relate coordinates in different frames of reference?

Two frames S and S ′

1194 Chapter 39 Relativity

constant velocity with respect to the ground. If a passenger in the truck throws a 
ball straight up and if air resistance is neglected, the passenger observes that the 
ball moves in a vertical path. The motion of the ball appears to be precisely the 
same as if the ball were thrown by a person at rest on the Earth. The law of univer-
sal gravitation and the equations of motion under constant acceleration are obeyed 
whether the truck is at rest or in uniform motion.
 Consider also an observer on the ground as in Figure 39.1b. Both observers agree 
on the laws of physics: the observer in the truck throws a ball straight up, and it 
rises and falls back into his hand according to the particle under constant accelera-
tion model. Do the observers agree on the path of the ball thrown by the observer 
in the truck? The observer on the ground sees the path of the ball as a parabola as 
illustrated in Figure 39.1b, whereas, as mentioned earlier, the observer in the truck 
sees the ball move in a vertical path. Furthermore, according to the observer on the 
ground, the ball has a horizontal component of velocity equal to the velocity of the 
truck, and the horizontal motion of the ball is described by the particle under con-
stant velocity model. Although the two observers disagree on certain aspects of the 
situation, they agree on the validity of Newton’s laws and on the results of applying 
appropriate analysis models that we have learned. This agreement implies that no 
mechanical experiment can detect any difference between the two inertial frames. 
The only thing that can be detected is the relative motion of one frame with respect 
to the other.

Q uick Quiz 39.1  Which observer in Figure 39.1 sees the ball’s correct path? (a) the 
observer in the truck  (b) the observer on the ground  (c) both observers
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x
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vS

Figure 39.2  An event occurs at 
a point P. The event is seen by two 
observers in inertial frames S and 
S9, where S9 moves with a velocity 
vS relative to S.

 Suppose some physical phenomenon, which we call an event, occurs and is 
observed by an observer at rest in an inertial reference frame. The wording “in a 
frame” means that the observer is at rest with respect to the origin of that frame. 
The event’s location and time of occurrence can be specified by the four coordi-
nates (x, y, z, t). We would like to be able to transform these coordinates from those 
of an observer in one inertial frame to those of another observer in a frame moving 
with uniform relative velocity compared with the first frame.
 Consider two inertial frames S and S9 (Fig. 39.2). The S9 frame moves with a con-
stant velocity vS along the common x and x 9 axes, where vS is measured relative to S. 
We assume the origins of S and S9 coincide at t 5 0 and an event occurs at point P in 
space at some instant of time. For simplicity, we show the observer O in the S frame 
and the observer O 9 in the S9 frame as blue dots at the origins of their coordinate 
frames in Figure 39.2, but that is not necessary: either observer could be at any 
fixed location in his or her frame. Observer O describes the event with space–time 
coordinates (x, y, z, t), whereas observer O 9 in S9 uses the coordinates (x 9, y 9, z 9, 
t9) to describe the same event. Model the origin of S9 as a particle under constant 
velocity relative to the origin of S. As we see from the geometry in Figure 39.2, the 
relationships among these various coordinates can be written

 x 9 5 x 2 vt   y 9 5 y   z 9 5 z   t 9 5 t (39.1)

These equations are the Galilean space–time transformation equations. Note that 
time is assumed to be the same in both inertial frames. That is, within the frame-
work of classical mechanics, all clocks run at the same rate, regardless of their 
velocity, so the time at which an event occurs for an observer in S is the same as the 
time for the same event in S9. Consequently, the time interval between two succes-
sive events should be the same for both observers. Although this assumption may 
seem obvious, it turns out to be incorrect in situations where v is comparable to the 
speed of light.
 Now suppose a particle moves through a displacement of magnitude dx along 
the x axis in a time interval dt as measured by an observer in S. It follows from Equa-
tions 39.1 that the corresponding displacement dx 9 measured by an observer in S9 is 

Galilean transformation X
 equations

Galilean transformations:

x = x ′ + vt ′, y = y ′, z = z ′, t = t ′



Relative Motion
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will be separated by a distance vBAt. We label the position P of the particle relative 
to observer A with the position vector rSP A and that relative to observer B with the 
position vector rSP B, both at time t. From Figure 4.20, we see that the vectors rSP A 
and rSP B are related to each other through the expression

 rSP A 5 rSP B 1 vSBAt (4.22)

 By differentiating Equation 4.22 with respect to time, noting that vSBA is con-
stant, we obtain

d rSP A

dt
5

d rSP B

dt
1 vSBA 

 uSP A 5 uSP B 1 vSBA (4.23)

where uSPA is the velocity of the particle at P measured by observer A and uSP B is its 
velocity measured by B. (We use the symbol uS for particle velocity rather than vS, 
which we have already used for the relative velocity of two reference frames.) Equa-
tions 4.22 and 4.23 are known as Galilean transformation equations. They relate 
the position and velocity of a particle as measured by observers in relative motion. 
Notice the pattern of the subscripts in Equation 4.23. When relative velocities are 
added, the inner subscripts (B) are the same and the outer ones (P, A) match the 
subscripts on the velocity on the left of the equation.
 Although observers in two frames measure different velocities for the particle, 
they measure the same acceleration when vSBA is constant. We can verify that by taking 
the time derivative of Equation 4.23:

d uSP A

dt
5

d uSP B

dt
1

d vSBA

dt

Because vSBA is constant, d vSBA/dt 5 0. Therefore, we conclude that aSP A 5 aSP B 
because aSP A 5 d uSP A/dt and aSP B 5 d uSP B/dt. That is, the acceleration of the parti-
cle measured by an observer in one frame of reference is the same as that measured 
by any other observer moving with constant velocity relative to the first frame.

WW  Galilean velocity 
transformation

continued

Example 4.8   A Boat Crossing a River

A boat crossing a wide river moves with a speed of  
10.0 km/h relative to the water. The water in the river has a 
uniform speed of 5.00 km/h due east relative to the Earth.

(A) If the boat heads due north, determine the velocity of 
the boat relative to an observer standing on either bank.

Conceptualize Imagine moving in a boat across a river 
while the current pushes you down the river. You will not 
be able to move directly across the river, but will end up 
downstream as suggested in Figure 4.21a.

Categorize Because of the combined velocities of you rela-
tive to the river and the river relative to the Earth, we can 
categorize this problem as one involving relative velocities.

Analyze We know vSbr, the velocity of the boat relative to the river, and vSrE, the velocity of the river relative to the Earth. 
What we must find is vSbE, the velocity of the boat relative to the Earth. The relationship between these three quantities 
is vSbE 5 vSbr 1 vSrE. The terms in the equation must be manipulated as vector quantities; the vectors are shown in Fig-
ure 4.21a. The quantity vSbr is due north; vSrE is due east; and the vector sum of the two, vSbE, is at an angle u as defined 
in Figure 4.21a.
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Figure 4.21 (Example 4.8) (a) A boat aims directly across a 
river and ends up downstream. (b) To move directly across the 
river, the boat must aim upstream.
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Figure 4.20  A particle located 
at P is described by two observers,  
one in the fixed frame of refer-
ence SA and the other in the 
frame SB, which moves to the right 
with a constant velocity vSBA. The 
vector rSPA is the particle’s position 
vector relative to SA, and rSP B is its 
position vector relative to SB.

rPA = rPB + vBAt

vPA = vPB + vBA



Relative Motion Example
A boat crossing a wide river moves with a speed of 10.0 km/h
relative to the water. The water in the river has a uniform speed of
5.00 km/h due east relative to the Earth. If the boat heads due
north, determine the velocity of the boat relative to an observer
standing on either bank.1
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will be separated by a distance vBAt. We label the position P of the particle relative 
to observer A with the position vector rSP A and that relative to observer B with the 
position vector rSP B, both at time t. From Figure 4.20, we see that the vectors rSP A 
and rSP B are related to each other through the expression

 rSP A 5 rSP B 1 vSBAt (4.22)

 By differentiating Equation 4.22 with respect to time, noting that vSBA is con-
stant, we obtain

d rSP A

dt
5

d rSP B

dt
1 vSBA 

 uSP A 5 uSP B 1 vSBA (4.23)

where uSPA is the velocity of the particle at P measured by observer A and uSP B is its 
velocity measured by B. (We use the symbol uS for particle velocity rather than vS, 
which we have already used for the relative velocity of two reference frames.) Equa-
tions 4.22 and 4.23 are known as Galilean transformation equations. They relate 
the position and velocity of a particle as measured by observers in relative motion. 
Notice the pattern of the subscripts in Equation 4.23. When relative velocities are 
added, the inner subscripts (B) are the same and the outer ones (P, A) match the 
subscripts on the velocity on the left of the equation.
 Although observers in two frames measure different velocities for the particle, 
they measure the same acceleration when vSBA is constant. We can verify that by taking 
the time derivative of Equation 4.23:

d uSP A

dt
5

d uSP B

dt
1

d vSBA

dt

Because vSBA is constant, d vSBA/dt 5 0. Therefore, we conclude that aSP A 5 aSP B 
because aSP A 5 d uSP A/dt and aSP B 5 d uSP B/dt. That is, the acceleration of the parti-
cle measured by an observer in one frame of reference is the same as that measured 
by any other observer moving with constant velocity relative to the first frame.
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Example 4.8   A Boat Crossing a River

A boat crossing a wide river moves with a speed of  
10.0 km/h relative to the water. The water in the river has a 
uniform speed of 5.00 km/h due east relative to the Earth.

(A) If the boat heads due north, determine the velocity of 
the boat relative to an observer standing on either bank.

Conceptualize Imagine moving in a boat across a river 
while the current pushes you down the river. You will not 
be able to move directly across the river, but will end up 
downstream as suggested in Figure 4.21a.

Categorize Because of the combined velocities of you rela-
tive to the river and the river relative to the Earth, we can 
categorize this problem as one involving relative velocities.

Analyze We know vSbr, the velocity of the boat relative to the river, and vSrE, the velocity of the river relative to the Earth. 
What we must find is vSbE, the velocity of the boat relative to the Earth. The relationship between these three quantities 
is vSbE 5 vSbr 1 vSrE. The terms in the equation must be manipulated as vector quantities; the vectors are shown in Fig-
ure 4.21a. The quantity vSbr is due north; vSrE is due east; and the vector sum of the two, vSbE, is at an angle u as defined 
in Figure 4.21a.
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Figure 4.21 (Example 4.8) (a) A boat aims directly across a 
river and ends up downstream. (b) To move directly across the 
river, the boat must aim upstream.
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Figure 4.20  A particle located 
at P is described by two observers,  
one in the fixed frame of refer-
ence SA and the other in the 
frame SB, which moves to the right 
with a constant velocity vSBA. The 
vector rSPA is the particle’s position 
vector relative to SA, and rSP B is its 
position vector relative to SB.

vbr = 10.0 km/h
vrE = 5.00 km/h

vbE = vbr + vrE

Simply use vector addition to
find vbE .

vbE =
√

102 + 52

= 11.2 km/h

θ = tan−1

(
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)
= 26.6◦
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will be separated by a distance vBAt. We label the position P of the particle relative 
to observer A with the position vector rSP A and that relative to observer B with the 
position vector rSP B, both at time t. From Figure 4.20, we see that the vectors rSP A 
and rSP B are related to each other through the expression

 rSP A 5 rSP B 1 vSBAt (4.22)

 By differentiating Equation 4.22 with respect to time, noting that vSBA is con-
stant, we obtain

d rSP A

dt
5

d rSP B

dt
1 vSBA 

 uSP A 5 uSP B 1 vSBA (4.23)

where uSPA is the velocity of the particle at P measured by observer A and uSP B is its 
velocity measured by B. (We use the symbol uS for particle velocity rather than vS, 
which we have already used for the relative velocity of two reference frames.) Equa-
tions 4.22 and 4.23 are known as Galilean transformation equations. They relate 
the position and velocity of a particle as measured by observers in relative motion. 
Notice the pattern of the subscripts in Equation 4.23. When relative velocities are 
added, the inner subscripts (B) are the same and the outer ones (P, A) match the 
subscripts on the velocity on the left of the equation.
 Although observers in two frames measure different velocities for the particle, 
they measure the same acceleration when vSBA is constant. We can verify that by taking 
the time derivative of Equation 4.23:

d uSP A

dt
5

d uSP B

dt
1

d vSBA

dt

Because vSBA is constant, d vSBA/dt 5 0. Therefore, we conclude that aSP A 5 aSP B 
because aSP A 5 d uSP A/dt and aSP B 5 d uSP B/dt. That is, the acceleration of the parti-
cle measured by an observer in one frame of reference is the same as that measured 
by any other observer moving with constant velocity relative to the first frame.
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Categorize Because of the combined velocities of you rela-
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categorize this problem as one involving relative velocities.
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What we must find is vSbE, the velocity of the boat relative to the Earth. The relationship between these three quantities 
is vSbE 5 vSbr 1 vSrE. The terms in the equation must be manipulated as vector quantities; the vectors are shown in Fig-
ure 4.21a. The quantity vSbr is due north; vSrE is due east; and the vector sum of the two, vSbE, is at an angle u as defined 
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will be separated by a distance vBAt. We label the position P of the particle relative 
to observer A with the position vector rSP A and that relative to observer B with the 
position vector rSP B, both at time t. From Figure 4.20, we see that the vectors rSP A 
and rSP B are related to each other through the expression

 rSP A 5 rSP B 1 vSBAt (4.22)

 By differentiating Equation 4.22 with respect to time, noting that vSBA is con-
stant, we obtain

d rSP A
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5

d rSP B

dt
1 vSBA 

 uSP A 5 uSP B 1 vSBA (4.23)

where uSPA is the velocity of the particle at P measured by observer A and uSP B is its 
velocity measured by B. (We use the symbol uS for particle velocity rather than vS, 
which we have already used for the relative velocity of two reference frames.) Equa-
tions 4.22 and 4.23 are known as Galilean transformation equations. They relate 
the position and velocity of a particle as measured by observers in relative motion. 
Notice the pattern of the subscripts in Equation 4.23. When relative velocities are 
added, the inner subscripts (B) are the same and the outer ones (P, A) match the 
subscripts on the velocity on the left of the equation.
 Although observers in two frames measure different velocities for the particle, 
they measure the same acceleration when vSBA is constant. We can verify that by taking 
the time derivative of Equation 4.23:

d uSP A

dt
5

d uSP B

dt
1

d vSBA

dt

Because vSBA is constant, d vSBA/dt 5 0. Therefore, we conclude that aSP A 5 aSP B 
because aSP A 5 d uSP A/dt and aSP B 5 d uSP B/dt. That is, the acceleration of the parti-
cle measured by an observer in one frame of reference is the same as that measured 
by any other observer moving with constant velocity relative to the first frame.
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(A) If the boat heads due north, determine the velocity of 
the boat relative to an observer standing on either bank.

Conceptualize Imagine moving in a boat across a river 
while the current pushes you down the river. You will not 
be able to move directly across the river, but will end up 
downstream as suggested in Figure 4.21a.

Categorize Because of the combined velocities of you rela-
tive to the river and the river relative to the Earth, we can 
categorize this problem as one involving relative velocities.

Analyze We know vSbr, the velocity of the boat relative to the river, and vSrE, the velocity of the river relative to the Earth. 
What we must find is vSbE, the velocity of the boat relative to the Earth. The relationship between these three quantities 
is vSbE 5 vSbr 1 vSrE. The terms in the equation must be manipulated as vector quantities; the vectors are shown in Fig-
ure 4.21a. The quantity vSbr is due north; vSrE is due east; and the vector sum of the two, vSbE, is at an angle u as defined 
in Figure 4.21a.

S O L U T I O N u

br

bE

rE

E

N

S

W

a

vS

vS

vS

E

N

S

W

b

u
br

bE

rEvS

vS

vS

Figure 4.21 (Example 4.8) (a) A boat aims directly across a 
river and ends up downstream. (b) To move directly across the 
river, the boat must aim upstream.

SA SB

BA

P

x
BAt

BA

PB

PA

vS vS

rS 
rS 

Figure 4.20  A particle located 
at P is described by two observers,  
one in the fixed frame of refer-
ence SA and the other in the 
frame SB, which moves to the right 
with a constant velocity vSBA. The 
vector rSPA is the particle’s position 
vector relative to SA, and rSP B is its 
position vector relative to SB.

vbr = 10.0 km/h
vrE = 5.00 km/h

vbE = vbr + vrE

Simply use vector addition to
find vbE .

vbE =
√

102 + 52

= 11.2 km/h

θ = tan−1

(
5

10

)
= 26.6◦

2Page 97, Serway & Jewett



Relative Motion Example
A boat crossing a wide river moves with a speed of 10.0 km/h
relative to the water. The water in the river has a uniform speed of
5.00 km/h due east relative to the Earth. If the boat heads due
north, determine the velocity of the boat relative to an observer
standing on either bank.1

 4.6 Relative Velocity and Relative Acceleration 97

will be separated by a distance vBAt. We label the position P of the particle relative 
to observer A with the position vector rSP A and that relative to observer B with the 
position vector rSP B, both at time t. From Figure 4.20, we see that the vectors rSP A 
and rSP B are related to each other through the expression

 rSP A 5 rSP B 1 vSBAt (4.22)

 By differentiating Equation 4.22 with respect to time, noting that vSBA is con-
stant, we obtain
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d rSP B
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 uSP A 5 uSP B 1 vSBA (4.23)

where uSPA is the velocity of the particle at P measured by observer A and uSP B is its 
velocity measured by B. (We use the symbol uS for particle velocity rather than vS, 
which we have already used for the relative velocity of two reference frames.) Equa-
tions 4.22 and 4.23 are known as Galilean transformation equations. They relate 
the position and velocity of a particle as measured by observers in relative motion. 
Notice the pattern of the subscripts in Equation 4.23. When relative velocities are 
added, the inner subscripts (B) are the same and the outer ones (P, A) match the 
subscripts on the velocity on the left of the equation.
 Although observers in two frames measure different velocities for the particle, 
they measure the same acceleration when vSBA is constant. We can verify that by taking 
the time derivative of Equation 4.23:
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5

d uSP B

dt
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d vSBA

dt

Because vSBA is constant, d vSBA/dt 5 0. Therefore, we conclude that aSP A 5 aSP B 
because aSP A 5 d uSP A/dt and aSP B 5 d uSP B/dt. That is, the acceleration of the parti-
cle measured by an observer in one frame of reference is the same as that measured 
by any other observer moving with constant velocity relative to the first frame.
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A boat crossing a wide river moves with a speed of  
10.0 km/h relative to the water. The water in the river has a 
uniform speed of 5.00 km/h due east relative to the Earth.

(A) If the boat heads due north, determine the velocity of 
the boat relative to an observer standing on either bank.

Conceptualize Imagine moving in a boat across a river 
while the current pushes you down the river. You will not 
be able to move directly across the river, but will end up 
downstream as suggested in Figure 4.21a.

Categorize Because of the combined velocities of you rela-
tive to the river and the river relative to the Earth, we can 
categorize this problem as one involving relative velocities.

Analyze We know vSbr, the velocity of the boat relative to the river, and vSrE, the velocity of the river relative to the Earth. 
What we must find is vSbE, the velocity of the boat relative to the Earth. The relationship between these three quantities 
is vSbE 5 vSbr 1 vSrE. The terms in the equation must be manipulated as vector quantities; the vectors are shown in Fig-
ure 4.21a. The quantity vSbr is due north; vSrE is due east; and the vector sum of the two, vSbE, is at an angle u as defined 
in Figure 4.21a.
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Relative Motion and Rip Currents
Life and death application: rip currents.

In shallow ocean water, a rip current is a strong flow of water away
from the shore.
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If you are caught in one, which way should you swim?

1Diagram from Wikipedia.
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Example, Ch 4, #72

A rugby player runs with the ball directly toward his opponent’s
goal, along the positive direction of an x axis. He can legally pass
the ball to a teammate as long as the ball’s velocity relative to the
field does not have a positive x component.

Suppose the player runs at speed 4.00 m/s relative to the field
while he passes the ball with velocity vBP relative to himself. If
vBP has magnitude 6.00 m/s, what is the smallest angle it can
have for the pass to be legal?

vPA = vPB + vBA

vPA must have a zero or negative x-component. For the smallest
angle, vPA,x = 0.

1Halliday Resnick Walker, 9th ed, page 82..
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Example, Ch 4, #72

If vBP has magnitude 6.00 m/s, what is the smallest angle it can
have for the pass to be legal?

vPA must have a zero or negative x-component. For the smallest
angle, vPA,x = 0.

vPA,x = vPB,x + vBA,x

vPB,x = vPA,x − vBA,x

vPB,x = −4 m/s

vPB = vPB,x i + vPB,y j

θ = cos−1

(
-4

6

)
= 132◦ (counterclockwise from x azxis)
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projectile

Any object that is thrown. We will use this word specifically to
refer to thrown objects that experience a vertical acceleration g .

Assumption

Air resistance is negligible.

Why do we care?
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Figure 4.7 The parabolic path 
of a projectile that leaves the ori-
gin with a velocity vSi . The velocity 
vector vS changes with time in 
both magnitude and direction. 
This change is the result of accel-
eration aS 5 gS in the negative  
y direction.
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Figure 4.8  The position vector 
rSf  of a projectile launched from 
the origin whose initial velocity 
at the origin is vSi . The vector vSit 
would be the displacement of the 
projectile if gravity were absent, 
and the vector 12 gSt 2 is its vertical 
displacement from a straight-line 
path due to its downward gravita-
tional acceleration.
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Figure 4.9 A projectile launched 
over a flat surface from the origin 
at ti 5 0 with an initial velocity 
vSi . The maximum height of the 
projectile is h, and the horizontal 
range is R. At !, the peak of the 
trajectory, the particle has coordi-
nates (R/2, h).

 In Section 4.2, we stated that two-dimensional motion with constant accelera-
tion can be analyzed as a combination of two independent motions in the x and y 
directions, with accelerations ax and ay. Projectile motion can also be handled in 
this way, with acceleration ax 5 0 in the x direction and a constant acceleration ay 5 
2g in the y direction. Therefore, when solving projectile motion problems, use two 
analysis models: (1) the particle under constant velocity in the horizontal direction 
(Eq. 2.7):

xf 5 xi 1 vxit

and (2) the particle under constant acceleration in the vertical direction (Eqs. 
2.13–2.17 with x changed to y and ay = –g):

vyf 5 vyi 2 gt

vy,avg 5
vyi 1 vyf

2

   yf 5 yi 1 1
2 1vyi 1 vyf 2 t 

 yf 5 yi 1 vyit 2 1
2gt 2

vyf
2 5 vyi

2
 2 2g 1 yf 2 yi 2

The horizontal and vertical components of a projectile’s motion are completely 
independent of each other and can be handled separately, with time t as the com-
mon variable for both components.

Q uick Quiz 4.2  (i) As a projectile thrown upward moves in its parabolic path 
(such as in Fig. 4.8), at what point along its path are the velocity and accelera-
tion vectors for the projectile perpendicular to each other? (a) nowhere (b) the 
highest point (c) the launch point (ii) From the same choices, at what point are 
the velocity and acceleration vectors for the projectile parallel to each other?

Horizontal Range and Maximum Height of a Projectile
Before embarking on some examples, let us consider a special case of projectile 
motion that occurs often. Assume a projectile is launched from the origin at ti 5 
0 with a positive vyi component as shown in Figure 4.9 and returns to the same hori-
zontal level. This situation is common in sports, where baseballs, footballs, and golf 
balls often land at the same level from which they were launched.
 Two points in this motion are especially interesting to analyze: the peak point !, 
which has Cartesian coordinates (R/2, h), and the point ", which has coordinates  
(R , 0). The distance R is called the horizontal range of the projectile, and the distance 
h is its maximum height. Let us find h and R mathematically in terms of vi, ui, and g.
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The horizontal and vertical components of a projectile’s motion are completely 
independent of each other and can be handled separately, with time t as the com-
mon variable for both components.

Q uick Quiz 4.2  (i) As a projectile thrown upward moves in its parabolic path 
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Before embarking on some examples, let us consider a special case of projectile 
motion that occurs often. Assume a projectile is launched from the origin at ti 5 
0 with a positive vyi component as shown in Figure 4.9 and returns to the same hori-
zontal level. This situation is common in sports, where baseballs, footballs, and golf 
balls often land at the same level from which they were launched.
 Two points in this motion are especially interesting to analyze: the peak point !, 
which has Cartesian coordinates (R/2, h), and the point ", which has coordinates  
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eration aS 5 gS in the negative  
y direction.
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Figure 4.8  The position vector 
rSf  of a projectile launched from 
the origin whose initial velocity 
at the origin is vSi . The vector vSit 
would be the displacement of the 
projectile if gravity were absent, 
and the vector 12 gSt 2 is its vertical 
displacement from a straight-line 
path due to its downward gravita-
tional acceleration.
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Figure 4.9 A projectile launched 
over a flat surface from the origin 
at ti 5 0 with an initial velocity 
vSi . The maximum height of the 
projectile is h, and the horizontal 
range is R. At !, the peak of the 
trajectory, the particle has coordi-
nates (R/2, h).

 In Section 4.2, we stated that two-dimensional motion with constant accelera-
tion can be analyzed as a combination of two independent motions in the x and y 
directions, with accelerations ax and ay. Projectile motion can also be handled in 
this way, with acceleration ax 5 0 in the x direction and a constant acceleration ay 5 
2g in the y direction. Therefore, when solving projectile motion problems, use two 
analysis models: (1) the particle under constant velocity in the horizontal direction 
(Eq. 2.7):

xf 5 xi 1 vxit

and (2) the particle under constant acceleration in the vertical direction (Eqs. 
2.13–2.17 with x changed to y and ay = –g):

vyf 5 vyi 2 gt

vy,avg 5
vyi 1 vyf

2

   yf 5 yi 1 1
2 1vyi 1 vyf 2 t 

 yf 5 yi 1 vyit 2 1
2gt 2

vyf
2 5 vyi

2
 2 2g 1 yf 2 yi 2

The horizontal and vertical components of a projectile’s motion are completely 
independent of each other and can be handled separately, with time t as the com-
mon variable for both components.

Q uick Quiz 4.2  (i) As a projectile thrown upward moves in its parabolic path 
(such as in Fig. 4.8), at what point along its path are the velocity and accelera-
tion vectors for the projectile perpendicular to each other? (a) nowhere (b) the 
highest point (c) the launch point (ii) From the same choices, at what point are 
the velocity and acceleration vectors for the projectile parallel to each other?

Horizontal Range and Maximum Height of a Projectile
Before embarking on some examples, let us consider a special case of projectile 
motion that occurs often. Assume a projectile is launched from the origin at ti 5 
0 with a positive vyi component as shown in Figure 4.9 and returns to the same hori-
zontal level. This situation is common in sports, where baseballs, footballs, and golf 
balls often land at the same level from which they were launched.
 Two points in this motion are especially interesting to analyze: the peak point !, 
which has Cartesian coordinates (R/2, h), and the point ", which has coordinates  
(R , 0). The distance R is called the horizontal range of the projectile, and the distance 
h is its maximum height. Let us find h and R mathematically in terms of vi, ui, and g.
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The y component of 
velocity is zero at the 
peak of the path.

The x component of 
velocity remains 
constant because 
there is no 
acceleration in the x 
direction.
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with initial velocity vi.
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The velocity of the projectile (red 
arrows) changes in direction and 
magnitude, but its acceleration 
(purple arrows) remains constant.

a

Target

Line of si
ght

y

x

Point of
collisionGun 0 ui

x T tan ui 
gt2

y T

x T

b

1
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Figure 4.12  (Example 4.3) (a) Multiflash photograph of the projectile–target demonstration. If the gun 
is aimed directly at the target and is fired at the same instant the target begins to fall, the projectile will 
hit the target. (b) Schematic diagram of the projectile–target demonstration.

 

Example 4.3   A Bull’s-Eye Every Time 

In a popular lecture demonstration, a projectile is fired at a target in such a way that the projectile leaves the gun at 
the same time the target is dropped from rest. Show that if the gun is initially aimed at the stationary target, the pro-
jectile hits the falling target as shown in Figure 4.12a.

Conceptualize We conceptualize the problem by studying Figure 4.12a. Notice that the problem does not ask for 
numerical values. The expected result must involve an algebraic argument.

AM

S O L U T I O N

Write an expression for the y coordinate 
of the target at any moment after release, 
noting that its initial velocity is zero:

(1)   yT 5 yi T 1 10 2 t 2 1
2gt 2 5 x T tan ui 2 1

2gt 2

Write an expression for the y coordinate 
of the projectile at any moment:

(2)   yP 5 yi P 1 vyi Pt 2 1
2gt 2 5 0 1 1vi P sin ui 2 t 2 1

2gt 2 5 1vi P sin ui 2 t 2 1
2gt 2

Write an expression for the x coordinate 
of the projectile at any moment:

 xP 5 xiP 1 vxi Pt 5 0 1 1vi P cos ui 2 t 5 1viP cos ui 2 t 
Solve this expression for time as a function 
of the horizontal position of the projectile:

t 5
xP

vi P cos ui

Substitute this expression into Equation (2): (3)   yP 5 1viP sin ui 2 a xP

viP cos ui
b 2 1

2gt 2 5 xP tan ui 2 1
2gt 2

Finalize Compare Equations (1) and (3). We see that when the x coordinates of the projectile and target are the 
same—that is, when xT 5 xP—their y coordinates given by Equations (1) and (3) are the same and a collision results.

Categorize Because both objects are subject only to gravity, we categorize this problem as one involving two objects 
in free fall, the target moving in one dimension and the projectile moving in two. The target T is modeled as a particle 
under constant acceleration in one dimension. The projectile P is modeled as a particle under constant acceleration in the  
y direction and a particle under constant velocity in the x direction.

Analyze Figure 4.12b shows that the initial y coordinate yi T of the target is xT tan ui and its initial velocity is zero. It falls 
with acceleration ay 5 2g. 

rf = vi t −
1

2
gt2j
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is aimed directly at the target and is fired at the same instant the target begins to fall, the projectile will 
hit the target. (b) Schematic diagram of the projectile–target demonstration.

 

Example 4.3   A Bull’s-Eye Every Time 

In a popular lecture demonstration, a projectile is fired at a target in such a way that the projectile leaves the gun at 
the same time the target is dropped from rest. Show that if the gun is initially aimed at the stationary target, the pro-
jectile hits the falling target as shown in Figure 4.12a.

Conceptualize We conceptualize the problem by studying Figure 4.12a. Notice that the problem does not ask for 
numerical values. The expected result must involve an algebraic argument.

AM

S O L U T I O N

Write an expression for the y coordinate 
of the target at any moment after release, 
noting that its initial velocity is zero:

(1)   yT 5 yi T 1 10 2 t 2 1
2gt 2 5 x T tan ui 2 1

2gt 2

Write an expression for the y coordinate 
of the projectile at any moment:

(2)   yP 5 yi P 1 vyi Pt 2 1
2gt 2 5 0 1 1vi P sin ui 2 t 2 1

2gt 2 5 1vi P sin ui 2 t 2 1
2gt 2

Write an expression for the x coordinate 
of the projectile at any moment:

 xP 5 xiP 1 vxi Pt 5 0 1 1vi P cos ui 2 t 5 1viP cos ui 2 t 
Solve this expression for time as a function 
of the horizontal position of the projectile:

t 5
xP

vi P cos ui

Substitute this expression into Equation (2): (3)   yP 5 1viP sin ui 2 a xP

viP cos ui
b 2 1

2gt 2 5 xP tan ui 2 1
2gt 2

Finalize Compare Equations (1) and (3). We see that when the x coordinates of the projectile and target are the 
same—that is, when xT 5 xP—their y coordinates given by Equations (1) and (3) are the same and a collision results.

Categorize Because both objects are subject only to gravity, we categorize this problem as one involving two objects 
in free fall, the target moving in one dimension and the projectile moving in two. The target T is modeled as a particle 
under constant acceleration in one dimension. The projectile P is modeled as a particle under constant acceleration in the  
y direction and a particle under constant velocity in the x direction.

Analyze Figure 4.12b shows that the initial y coordinate yi T of the target is xT tan ui and its initial velocity is zero. It falls 
with acceleration ay 5 2g. 

rf = vi t −
1

2
gt2j

vi t



Summary

• motion in 2 dimensions

• relative motion

• introducing projectiles

Homework
• prev: Ch 4 Problem 76, 83 (relative motion).

• new: Ch 4 Problem 73, 75 (relative motion).

• new: Ch 4 (projectiles)


