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Overview

• Current in a circuit

• Resistance and resistivity

• Reading resistor markings

• Ammeters and voltmeters

• Ohm’s Law



Current and Potential Difference

Current is the flow of charge. Its symbol is I or i .

The units of current are Amps, A.

Potential difference is the potential energy of each charged object,
divided by the object’s charge.

For now, think of it as the “pump” that drives the flow of charge.

Its symbol is V , and the units are Volts, V.
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As Fig. 26-1a reminds us, any isolated conducting loop—regardless of
whether it has an excess charge—is all at the same potential. No electric field can
exist within it or along its surface. Although conduction electrons are available,
no net electric force acts on them and thus there is no current.

If, as in Fig. 26-1b, we insert a battery in the loop, the conducting loop is no
longer at a single potential. Electric fields act inside the material making up
the loop, exerting forces on the conduction electrons, causing them to move
and thus establishing a current. After a very short time, the electron flow
reaches a constant value and the current is in its steady state (it does not vary
with time).

Figure 26-2 shows a section of a conductor, part of a conducting loop in
which current has been established. If charge dq passes through a hypothetical
plane (such as aa!) in time dt, then the current i through that plane is defined as

(definition of current). (26-1)

We can find the charge that passes through the plane in a time interval
extending from 0 to t by integration:

(26-2)

in which the current i may vary with time.

q " ! dq " !t

0
 i dt,

i "
dq
dt

Fig. 26-1 (a) A loop of copper in
electrostatic equilibrium.The entire
loop is at a single potential, and the
electric field is zero at all points in-
side the copper. (b) Adding a battery
imposes an electric potential differ-
ence between the ends of the loop
that are connected to the terminals
of the battery.The battery thus pro-
duces an electric field within the
loop, from terminal to terminal, and
the field causes charges to move
around the loop.This movement of
charges is a current i.

(a)

(b)

Battery

+ – ii

i

i
i

Fig. 26-2 The current i
through the conductor has
the same value at planes
aa!, bb!, and cc!.

i i 
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The current is the same in 
any cross section.

Under steady-state conditions, the current is the same for planes aa!, bb!, and
cc! and indeed for all planes that pass completely through the conductor, no
matter what their location or orientation.This follows from the fact that charge is
conserved. Under the steady-state conditions assumed here, an electron must
pass through plane aa! for every electron that passes through plane cc!. In the
same way, if we have a steady flow of water through a garden hose, a drop of
water must leave the nozzle for every drop that enters the hose at the other end.
The amount of water in the hose is a conserved quantity.

The SI unit for current is the coulomb per second, or the ampere (A), which
is an SI base unit:

1 ampere " 1 A " 1 coulomb per second " 1 C/s.

The formal definition of the ampere is discussed in Chapter 29.
Current, as defined by Eq. 26-1, is a scalar because both charge and time in

that equation are scalars. Yet, as in Fig. 26-1b, we often represent a current with
an arrow to indicate that charge is moving. Such arrows are not vectors, however,
and they do not require vector addition. Figure 26-3a shows a conductor with
current i0 splitting at a junction into two branches. Because charge is conserved,
the magnitudes of the currents in the branches must add to yield the magnitude
of the current in the original conductor, so that

i0 " i1 # i2. (26-3)

As Fig. 26-3b suggests, bending or reorienting the wires in space does not change
the validity of Eq. 26-3. Current arrows show only a direction (or sense) of flow
along a conductor, not a direction in space.

Fig. 26-3 The relation i0 " i1 # i2

is true at junction a no matter what the
orientation in space of the three wires.
Currents are scalars, not vectors.

i 0  

a  

i 1  

i 2  

(a) 

(b) 

a  
i 2  

i1  

i 0  

The current into the
junction must equal
the current out
(charge is conserved).
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Resistance

A resistor resists the flow of current in a circuit.

All materials, even conductors, have some resistance. The only
exception is superconductors.

We measure resistance using this equation

R =
V

I

Resistance is a property of a particular component in a circuit.

The unit of resistance are Ohms, written Ω.



Resistivity

Resistivity is a property of a material. Its symbol is ρ.



Resistivity

26-4 Resistance and Resistivity
If we apply the same potential difference between the ends of geometrically similar
rods of copper and of glass, very different currents result. The characteristic of the
conductor that enters here is its electrical resistance. We determine the resistance
between any two points of a conductor by applying a potential difference V be-
tween those points and measuring the current i that results.The resistance R is then

(definition of R). (26-8)

The SI unit for resistance that follows from Eq. 26-8 is the volt per ampere.This com-
bination occurs so often that we give it a special name, the ohm (symbol !); that is,

(26-9)

A conductor whose function in a circuit is to provide a specified resistance is
called a resistor (see Fig. 26-7). In a circuit diagram, we represent a resistor and
a resistance with the symbol . If we write Eq. 26-8 as

we see that, for a given V, the greater the resistance, the smaller the current.
The resistance of a conductor depends on the manner in which the potential

difference is applied to it. Figure 26-8, for example, shows a given potential dif-
ference applied in two different ways to the same conductor. As the current
density streamlines suggest, the currents in the two cases—hence the measured
resistances—will be different. Unless otherwise stated, we shall assume that any
given potential difference is applied as in Fig. 26-8b.

i "
V
R

,

 " 1 V/A.
 1 ohm " 1 ! " 1 volt per ampere

R "
V
i

Fig. 26-8 Two ways of applying a potential difference to a conducting rod.The gray
connectors are assumed to have negligible resistance.When they are arranged as in
(a) in a small region at each rod end, the measured resistance is larger than when they
are arranged as in (b) to cover the entire rod end.

(a) (b)

Fig. 26-7 An assortment of resistors.
The circular bands are color-coding marks
that identify the value of the resistance.
(The Image Works)
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Table 26-1

Resistivities of Some Materials at Room
Temperature (20°C)

Resistivity, r Temperature  
Material (! # m) Coefficient

of Resistivity,
a (K$1)

Typical Metals
Silver 1.62 % 10$8 4.1 % 10$3

Copper 1.69 % 10$8 4.3 % 10$3

Gold 2.35 % 10$8 4.0 % 10$3

Aluminum 2.75 % 10$8 4.4 % 10$3

Manganina 4.82 % 10$8 0.002 % 10$3

Tungsten 5.25 % 10$8 4.5 % 10$3

Iron 9.68 % 10$8 6.5 % 10$3

Platinum 10.6 % 10$8 3.9 % 10$3

Typical 
Semiconductors

Silicon,
pure 2.5 % 103 $70 % 10$3

Silicon,
n-typeb 8.7 % 10$4

Silicon,
p-typec 2.8 % 10$3

Typical 
Insulators

Glass 1010 $1014

Fused 
quartz !1016

aAn alloy specifically designed to have a small value
of a.
bPure silicon doped with phosphorus impurities to a
charge carrier density of 1023 m$3.
cPure silicon doped with aluminum impurities to a
charge carrier density of 1023 m$3.

As we have done several times in other connections, we often wish to take a
general view and deal not with particular objects but with materials. Here we do so
by focusing not on the potential difference V across a particular resistor but on the
electric field at a point in a resistive material. Instead of dealing with the current i
through the resistor, we deal with the current density at the point in question.
Instead of the resistance R of an object, we deal with the resistivity r of the material:

(definition of r). (26-10)

(Compare this equation with Eq. 26-8.)
If we combine the SI units of E and J according to Eq. 26-10, we get, for the

unit of r, the ohm-meter (! # m):

(Do not confuse the ohm-meter, the unit of resistivity, with the ohmmeter, which
is an instrument that measures resistance.) Table 26-1 lists the resistivities of
some materials.

unit (E)
unit (J)

"
V/m
A/m2 "

V
A

 m " !#m.

& "
E
J

J
:

E
:
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Resistivity

Resistivity is a property of a material. Its symbol is ρ.

Together with the geometry of the component made of that
material, we can predict the resistance of the component.

For a wire or cylinder made of material with resistivity ρ:

R =
ρL

A

where A is the cross-sectional area of the wire, and L is the length
of the wire.

690 CHAPTE R 26 CU R R E NT AN D R E S I STANCE

Resistance is a property of an object. Resistivity is a property of a material.

CHECKPOINT 3

The figure here shows three
cylindrical copper conductors
along with their face areas and
lengths. Rank them according to
the current through them, great-
est first, when the same potential difference V is placed across their lengths.

(a) (b)

A

L

(c)

1.5L
A_
2

A_
2

L/2

Fig. 26-9 A potential difference
V is applied between the ends of a
wire of length L and cross section A,
establishing a current i.

L 

i i 

A 
V 

Current is driven by
a potential difference.

We can write Eq. 26-10 in vector form as

(26-11)

Equations 26-10 and 26-11 hold only for isotropic materials—materials whose
electrical properties are the same in all directions.

We often speak of the conductivity s of a material.This is simply the recipro-
cal of its resistivity, so

(definition of s). (26-12)

The SI unit of conductivity is the reciprocal ohm-meter, (! " m)#1. The unit name
mhos per meter is sometimes used (mho is ohm backwards). The definition of s
allows us to write Eq. 26-11 in the alternative form

(26-13)

Calculating Resistance from Resistivity
We have just made an important distinction:

J
:

$ %E
:

.

% $
1
&

E
:

$ &J
:

.

If we know the resistivity of a substance such as copper, we can calculate the
resistance of a length of wire made of that substance. Let A be the cross-sectional
area of the wire, let L be its length, and let a potential difference V exist between
its ends (Fig. 26-9). If the streamlines representing the current density are uniform
throughout the wire, the electric field and the current density will be constant for
all points within the wire and, from Eqs. 24-42 and 26-5, will have the values

E $ V/L and J $ i/A. (26-14)

We can then combine Eqs. 26-10 and 26-14 to write

(26-15)

However, V/i is the resistance R, which allows us to recast Eq. 26-15 as

(26-16)

Equation 26-16 can be applied only to a homogeneous isotropic conductor of
uniform cross section, with the potential difference applied as in Fig. 26-8b.

The macroscopic quantities V, i, and R are of greatest interest when we are
making electrical measurements on specific conductors. They are the quantities
that we read directly on meters. We turn to the microscopic quantities E, J, and r
when we are interested in the fundamental electrical properties of materials.

R $ & 
L
A

.

& $
E
J

$
V/L
i/A

.
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Resistivity can depend on Temperature
69126-4 R E S I STANCE AN D R E S I STIVITY
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Variation with Temperature
The values of most physical properties vary with temperature, and resistivity is no
exception. Figure 26-10, for example, shows the variation of this property for
copper over a wide temperature range. The relation between temperature and
resistivity for copper—and for metals in general—is fairly linear over a rather
broad temperature range. For such linear relations we can write an empirical
approximation that is good enough for most engineering purposes:

r ! r0 " r0a(T !T0). (26-17)

Here T0 is a selected reference temperature and r0 is the resistivity at that tem-
perature. Usually T0 " 293 K (room temperature), for which r0 " 1.69 # 10!8

$ % m for copper.
Because temperature enters Eq. 26-17 only as a difference, it does not matter

whether you use the Celsius or Kelvin scale in that equation because the sizes of
degrees on these scales are identical. The quantity a in Eq. 26-17, called the
temperature coefficient of resistivity, is chosen so that the equation gives good
agreement with experiment for temperatures in the chosen range. Some values of
a for metals are listed in Table 26-1.

Fig. 26-10 The re-
sistivity of copper as a
function of tempera-
ture.The dot on the
curve marks a conve-
nient reference point at
temperature T0 " 293
K and resistivity r0 "
1.69 # 10!8 $ % m.
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Resistivity can depend
on temperature.

Sample Problem

Calculations: For arrangement 1, we have L " 15 cm "
0.15 m and

A " (1.2 cm)2 " 1.44 # 10!4 m2.

Substituting into Eq. 26-16 with the resistivity r from Table
26-1, we then find that for arrangement 1,

3

(Answer)

Similarly, for arrangement 2, with distance L " 1.2 cm
and area A " (1.2 cm)(15 cm), we obtain

(Answer) " 6.5 # 10 !7 $ " 0.65 &$.

  R "
'L
A

"
(9.68 # 10 !8 $%m)(1.2 # 10 !2 m)

1.80 # 10 !3 m2

 " 1.0 # 10 !4 $ " 100 &$.

  R "
'L
(

"
(9.68 # 10 !8 $%m)(0.15 m)

1.44 # 10 !4 m2

A material has resistivity, a block of the material has resistance

A rectangular block of iron has dimensions 1.2 cm # 1.2
cm # 15 cm. A potential difference is to be applied to
the block between parallel sides and in such a way that
those sides are equipotential surfaces (as in Fig. 26-8b).
What is the resistance of the block if the two parallel
sides are (1) the square ends (with dimensions 1.2 cm #
1.2 cm) and (2) two rectangular sides (with dimensions
1.2 cm # 15 cm)?

The resistance R of an object depends on how the electric
potential is applied to the object. In particular, it depends
on the ratio L/A, according to Eq. 26-16 (R " rL/A),
where A is the area of the surfaces to which the potential
difference is applied and L is the distance between those
surfaces.

KEY I DEA

Additional examples, video, and practice available at WileyPLUS
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Reading the Value of Resistors

Color guide:

1Images from orcadxcc.org.



Ohm’s Law

Ohm’s law is the principle we will use to measure resistance when
we plot ∆V vs I.

In this lab, we want to understand Ohm’s law, and thereby
understand how the resistance meters we use work.

If Ohm’s Law holds for a resistor:

∆V ∝ I

This means that ∆V = IR, with R the constant of proportionality.
R is independent of ∆V .



Current and Potential Difference in a Circuit

70927-5 OTH E R S I NG LE-LOOP CI RCU ITS
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HALLIDAY REVISED

RESISTANCE RULE: For a move through a resistance in the direction of the 
current, the change in potential is !iR; in the opposite direction it is "iR.

EMF RULE: For a move through an ideal emf device in the direction of the emf 
arrow, the change in potential is "!; in the opposite direction it is !!.

CHECKPOINT 1

The figure shows the current i in a single-loop circuit
with a battery B and a resistance R (and wires of
negligible resistance). (a) Should the emf arrow at B
be drawn pointing leftward or rightward? At points
a, b, and c, rank (b) the magnitude of the current, (c)
the electric potential, and (d) the electric potential
energy of the charge carriers, greatest first.

a b c 
B 

i 

R 

27-5 Other Single-Loop Circuits
In this section we extend the simple circuit of Fig. 27-3 in two ways.

Internal Resistance
Figure 27-4a shows a real battery, with internal resistance r, wired to an external
resistor of resistance R. The internal resistance of the battery is the electrical
resistance of the conducting materials of the battery and thus is an unremovable
feature of the battery. In Fig. 27-4a, however, the battery is drawn as if it could be
separated into an ideal battery with emf ! and a resistor of resistance r.The order
in which the symbols for these separated parts are drawn does not matter.

If we apply the loop rule clockwise beginning at point a, the changes in
potential give us

! ! ir ! iR # 0. (27-3)
Solving for the current, we find

. (27-4)

Note that this equation reduces to Eq. 27-2 if the battery is ideal—that is, if r # 0.
Figure 27-4b shows graphically the changes in electric potential around the

circuit. (To better link Fig. 27-4b with the closed circuit in Fig. 27-4a, imagine
curling the graph into a cylinder with point a at the left overlapping point a at

i #
!

R " r

R i

i

i

Real battery

r

i

a

b +

– 

(a)

Emf device Resistor

a b a

r

ir

Po
te

nt
ia

l (
V

)

R

i

iR
VaVa

Vb

(b)

Fig. 27-4 (a) A single-loop circuit containing a real battery having internal resistance
r and emf !. (b) The same circuit, now spread out in a line.The potentials encountered
in traversing the circuit clockwise from a are also shown.The potential Va is arbitrarily
assigned a value of zero, and other potentials in the circuit are graphed relative to Va.
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Series and Parallel

Example

Resistors in series:710 CHAPTE R 27 CI RCU ITS

HALLIDAY REVISED

the right.) Note how traversing the circuit is like walking around a (potential)
mountain back to your starting point—you return to the starting elevation.

In this book, when a battery is not described as real or if no internal resistance
is indicated, you can generally assume that it is ideal—but, of course, in the real
world batteries are always real and have internal resistance.

Resistances in Series
Figure 27-5a shows three resistances connected in series to an ideal battery with
emf !. This description has little to do with how the resistances are drawn.
Rather, “in series” means that the resistances are wired one after another and
that a potential difference V is applied across the two ends of the series. In Fig.
27-5a, the resistances are connected one after another between a and b, and a
potential difference is maintained across a and b by the battery. The potential
differences that then exist across the resistances in the series produce identical
currents i in them. In general,

Fig. 27-5 (a) Three resistors are con-
nected in series between points a and b.
(b) An equivalent circuit, with the three
resistors replaced with their equivalent
resistance Req.

When a potential difference V is applied across resistances connected in series,
the resistances have identical currents i. The sum of the potential differences across
the resistances is equal to the applied potential difference V.

Note that charge moving through the series resistances can move along only a
single route. If there are additional routes, so that the currents in different resis-
tances are different, the resistances are not connected in series.

Resistances connected in series can be replaced with an equivalent resistance Req that has
the same current i and the same total potential difference V as the actual resistances.

You might remember that Req and all the actual series resistances have the same
current i with the nonsense word “ser-i.” Figure 27-5b shows the equivalent resis-
tance Req that can replace the three resistances of Fig. 27-5a.

To derive an expression for Req in Fig. 27-5b, we apply the loop rule to both 
circuits. For Fig. 27-5a, starting at a and going clockwise around the circuit, we find

! ! iR1 ! iR2 ! iR3 " 0,

or (27-5)

For Fig. 27-5b, with the three resistances replaced with a single equivalent resis-
tance Req, we find

! ! iReq " 0,

or (27-6)

Comparison of Eqs. 27-5 and 27-6 shows that

Req " R1 # R2 # R3.

The extension to n resistances is straightforward and is

(n resistances in series). (27-7)

Note that when resistances are in series, their equivalent resistance is greater
than any of the individual resistances.

Req " !
n

j"1
 Rj

i "
!

Req
.

i "
!

R1 # R2 # R3
.

CHECKPOINT 2

In Fig. 27-5a, if R1 $ R2 $ R3, rank the
three resistances according to (a) the
current through them and (b) the po-
tential difference across them, greatest
first.

+  
–  

a  

b  

i R 2  

R3 

R1 

i 

i 

(a) 

+
–

a

b

iR eq

(b)

Series resistors 
and their
equivalent have 
the same
current (“ser-i”).
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Resistors in parallel:
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JUNCTION RULE: The sum of the currents entering any junction must be equal to
the sum of the currents leaving that junction.

Fig. 27-9 A multiloop circuit consisting
of three branches: left-hand branch bad,
right-hand branch bcd, and central branch
bd.The circuit also consists of three loops:
left-hand loop badb, right-hand loop bcdb,
and big loop badcb.

This rule is often called Kirchhoff’s junction rule (or Kirchhoff’s current law). It is
simply a statement of the conservation of charge for a steady flow of charge—
there is neither a buildup nor a depletion of charge at a junction. Thus, our basic
tools for solving complex circuits are the loop rule (based on the conservation of
energy) and the junction rule (based on the conservation of charge).

Equation 27-18 is a single equation involving three unknowns. To solve the cir-
cuit completely (that is, to find all three currents), we need two more equations in-
volving those same unknowns.We obtain them by applying the loop rule twice. In the
circuit of Fig. 27-9, we have three loops from which to choose: the left-hand loop
(badb), the right-hand loop (bcdb), and the big loop (badcb). Which two loops we
choose does not matter—let’s choose the left-hand loop and the right-hand loop.

If we traverse the left-hand loop in a counterclockwise direction from point
b, the loop rule gives us

!1 ! i1R1 " i3R3 # 0. (27-19)

If we traverse the right-hand loop in a counterclockwise direction from point b,
the loop rule gives us !i3R3 ! i2R2 ! !2 # 0. (27-20)

We now have three equations (Eqs. 27-18, 27-19, and 27-20) in the three unknown
currents, and they can be solved by a variety of techniques.

If we had applied the loop rule to the big loop, we would have obtained
(moving counterclockwise from b) the equation

!1 ! i1R1 ! i2R2 ! !2 # 0.

However, this is merely the sum of Eqs. 27-19 and 27-20.

Resistances in Parallel
Figure 27-10a shows three resistances connected in parallel to an ideal battery of emf
!.The term “in parallel” means that the resistances are directly wired together on one
side and directly wired together on the other side, and that a potential difference V is
applied across the pair of connected sides. Thus, all three resistances have the same 
potential difference V across them,producing a current through each.In general,

Fig. 27-10 (a) Three resistors
connected in parallel across points a
and b. (b) An equivalent circuit, with
the three resistors replaced with
their equivalent resistance Req.

R 2  R3 R1 

a  b  c  

d  

 i 1   i 3   i 2  

+ – 
1 2 

– + 

The current into the junction
must equal the current out
(charge is conserved).

27-7 Multiloop Circuits
Figure 27-9 shows a circuit containing more than one loop. For simplicity, we
assume the batteries are ideal. There are two junctions in this circuit, at b and d,
and there are three branches connecting these junctions.The branches are the left
branch (bad), the right branch (bcd), and the central branch (bd). What are the
currents in the three branches?

We arbitrarily label the currents, using a different subscript for each branch.
Current i1 has the same value everywhere in branch bad, i2 has the same value
everywhere in branch bcd, and i3 is the current through branch bd. The directions
of the currents are assumed arbitrarily.

Consider junction d for a moment: Charge comes into that junction via
incoming currents i1 and i3, and it leaves via outgoing current i2. Because there is
no variation in the charge at the junction, the total incoming current must equal
the total outgoing current:

i1 " i3 # i2. (27-18)

You can easily check that applying this condition to junction b leads to exactly
the same equation. Equation 27-18 thus suggests a general principle:

R3 R1 

a  

b  

 i 1   i 3   i 2  
+ 
– R 2  

(a) 

b  

i R eq 

(b) 

a  

i 

+  
–  

i 

i 

i 

i2 + i3 

i2 + i3 

Parallel resistors and their
equivalent have the same
potential difference (“par-V”).
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Meters

Ammeter

A device for measuring current in a circuit.

The ammeter must be connected in series in the part of the circuit
where you want to test the current.

Voltmeter

A device for measuring potential difference across a component
of a circuit.

The voltmeter must be connected in parallel across the component
where you wish to measure the potential drop.



HP DMM wiring
To measure resistance:

To measure current (ammeter):



Procedure

We will construct this circuit:

Notice the ammeter (HP DMM) is in series in the circuit and the
voltmeter (Hand Held DMM) is in parallel across the resistor only.



Procedure

On your table that will look like:




