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Overview

• reminder about RC circuits

• setup

• making measurements



RC Circuits

Circuits with resistors and capacitors are called “RC circuits.”
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Fig. 27-14 A single-loop circuit, show-
ing how to connect an ammeter (A) and a
voltmeter (V).

Fig. 27-15 When switch S is closed on
a, the capacitor is charged through the re-
sistor.When the switch is afterward closed
on b, the capacitor discharges through the
resistor.
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Additional examples, video, and practice available at WileyPLUS

With Eq. 27-26 we then find that

i3 ! i1 " i2 ! #0.50 A " 0.25 A
! #0.25 A.

The positive answer we obtained for i2 signals that our
choice of direction for that current is correct. However, the
negative answers for i1 and i3 indicate that our choices for

those currents are wrong.Thus, as a last step here, we correct
the answers by reversing the arrows for i1 and i3 in Fig. 27-13
and then writing

i1 = 0.50 A and i3 = 0.25 A. (Answer)

Caution: Always make any such correction as the last step
and not before calculating all the currents.

27-8 The Ammeter and the Voltmeter
An instrument used to measure currents is called an ammeter. To measure the
current in a wire, you usually have to break or cut the wire and insert the amme-
ter so that the current to be measured passes through the meter. (In Fig. 27-14,
ammeter A is set up to measure current i.)

It is essential that the resistance RA of the ammeter be very much smaller
than other resistances in the circuit. Otherwise, the very presence of the meter
will change the current to be measured.

A meter used to measure potential differences is called a voltmeter. To find
the potential difference between any two points in the circuit, the voltmeter ter-
minals are connected between those points without breaking or cutting the wire.
(In Fig. 27-14, voltmeter V is set up to measure the voltage across R1.)

It is essential that the resistance RV of a voltmeter be very much larger than
the resistance of any circuit element across which the voltmeter is connected.
Otherwise, the meter itself becomes an important circuit element and alters the
potential difference that is to be measured.

Often a single meter is packaged so that, by means of a switch, it can be made
to serve as either an ammeter or a voltmeter—and usually also as an ohmmeter,
designed to measure the resistance of any element connected between its termi-
nals. Such a versatile unit is called a multimeter.

27-9 RC Circuits
In preceding sections we dealt only with circuits in which the currents did not
vary with time. Here we begin a discussion of time-varying currents.

Charging a Capacitor
The capacitor of capacitance C in Fig. 27-15 is initially uncharged.To charge it, we
close switch S on point a. This completes an RC series circuit consisting of the
capacitor, an ideal battery of emf !, and a resistance R.

From Section 25-2, we already know that as soon as the circuit is complete,
charge begins to flow (current exists) between a capacitor plate and a battery
terminal on each side of the capacitor. This current increases the charge q on the
plates and the potential difference VC (! q/C) across the capacitor. When that
potential difference equals the potential difference across the battery (which
here is equal to the emf !), the current is zero. From Eq. 25-1 (q ! CV), the equi-
librium (final) charge on the then fully charged capacitor is equal to C !.

Here we want to examine the charging process. In particular we want to
know how the charge q(t) on the capacitor plates, the potential difference VC(t)
across the capacitor, and the current i(t) in the circuit vary with time during the
charging process. We begin by applying the loop rule to the circuit, traversing it
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Charging a Capacitor

When an uncharged capacitor is first connected to an electrical
potential difference, a current will flow.

Once the capacitor is fully charged however, q = C (∆V ), current
has no where to flow and stops.

The capacitor gently “switches off” the current.



RC Circuits: Charging Capacitor

If we replace i in our equation with the derivative:

E− R
dq

dt
−
q

C
= 0

This is a differential equation. There is a way to solve such
equations to find solutions for how q depends on time. (You do
not need to know them.)

The solution is:
q = CE(1 − e−t/RC )



RC Circuits: Charging Capacitor

Charge:

q = CE(1 − e−t/RC )

Current:

i =

(
E

R

)
e−t/RC

Dividing the charge by the capacitance, C , the potential drop
across the capacitor:

∆VC = E(1 − e−t/RC )



RC Circuits: Charging Capacitor

How the solutions appear with time:

Charge:

q = q0 (1 − e−t/RC )
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clockwise from the negative terminal of the battery.We find

(27-30)

The last term on the left side represents the potential difference across the capac-
itor. The term is negative because the capacitor’s top plate, which is connected to
the battery’s positive terminal, is at a higher potential than the lower plate. Thus,
there is a drop in potential as we move down through the capacitor.

We cannot immediately solve Eq. 27-30 because it contains two variables,
i and q. However, those variables are not independent but are related by

(27-31)

Substituting this for i in Eq. 27-30 and rearranging, we find

(charging equation). (27-32)

This differential equation describes the time variation of the charge q on the
capacitor in Fig. 27-15. To solve it, we need to find the function q(t) that satisfies
this equation and also satisfies the condition that the capacitor be initially
uncharged; that is, q ! 0 at t ! 0.

We shall soon show that the solution to Eq. 27-32 is

q ! C !(1 " e"t/RC) (charging a capacitor). (27-33)

(Here e is the exponential base, 2.718 . . . , and not the elementary charge.) Note
that Eq. 27-33 does indeed satisfy our required initial condition, because at t ! 0
the term e"t/RC is unity; so the equation gives q ! 0. Note also that as t goes to
infinity (that is, a long time later), the term e"t/RC goes to zero; so the equation
gives the proper value for the full (equilibrium) charge on the capacitor—
namely, q ! C !.A plot of q(t) for the charging process is given in Fig. 27-16a.

The derivative of q(t) is the current i(t) charging the capacitor:

(charging a capacitor). (27-34)

A plot of i(t) for the charging process is given in Fig. 27-16b. Note that the current
has the initial value !/R and that it decreases to zero as the capacitor becomes
fully charged.

i !
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R "e"t/RC
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dq
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A capacitor that is being charged initially acts like ordinary connecting wire relative
to the charging current.A long time later, it acts like a broken wire.

By combining Eq. 25-1 (q ! CV ) and Eq. 27-33, we find that the potential
difference VC(t) across the capacitor during the charging process is

(charging a capacitor). (27-35)

This tells us that VC ! 0 at t ! 0 and that VC ! ! when the capacitor becomes
fully charged as t : $.

The Time Constant
The product RC that appears in Eqs. 27-33, 27-34, and 27-35 has the dimensions
of time (both because the argument of an exponential must be dimensionless and

VC !
q
C

! !(1 " e"t/RC)
Fig. 27-16 (a) A plot of Eq. 27-33,
which shows the buildup of charge on the
capacitor of Fig. 27-15. (b) A plot of Eq.
27-34, which shows the decline of the
charging current in the circuit of Fig. 27-
15.The curves are plotted for R ! 2000 %,
C ! 1 mF, and ! ! 10 V; the small trian-
gles represent successive intervals of one
time constant t.
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where for this circuit q0 = CE

Current:

i = i0 e
−t/RC
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clockwise from the negative terminal of the battery.We find

(27-30)

The last term on the left side represents the potential difference across the capac-
itor. The term is negative because the capacitor’s top plate, which is connected to
the battery’s positive terminal, is at a higher potential than the lower plate. Thus,
there is a drop in potential as we move down through the capacitor.

We cannot immediately solve Eq. 27-30 because it contains two variables,
i and q. However, those variables are not independent but are related by

(27-31)

Substituting this for i in Eq. 27-30 and rearranging, we find

(charging equation). (27-32)

This differential equation describes the time variation of the charge q on the
capacitor in Fig. 27-15. To solve it, we need to find the function q(t) that satisfies
this equation and also satisfies the condition that the capacitor be initially
uncharged; that is, q ! 0 at t ! 0.

We shall soon show that the solution to Eq. 27-32 is

q ! C !(1 " e"t/RC) (charging a capacitor). (27-33)

(Here e is the exponential base, 2.718 . . . , and not the elementary charge.) Note
that Eq. 27-33 does indeed satisfy our required initial condition, because at t ! 0
the term e"t/RC is unity; so the equation gives q ! 0. Note also that as t goes to
infinity (that is, a long time later), the term e"t/RC goes to zero; so the equation
gives the proper value for the full (equilibrium) charge on the capacitor—
namely, q ! C !.A plot of q(t) for the charging process is given in Fig. 27-16a.

The derivative of q(t) is the current i(t) charging the capacitor:

(charging a capacitor). (27-34)

A plot of i(t) for the charging process is given in Fig. 27-16b. Note that the current
has the initial value !/R and that it decreases to zero as the capacitor becomes
fully charged.
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A capacitor that is being charged initially acts like ordinary connecting wire relative
to the charging current.A long time later, it acts like a broken wire.

By combining Eq. 25-1 (q ! CV ) and Eq. 27-33, we find that the potential
difference VC(t) across the capacitor during the charging process is

(charging a capacitor). (27-35)

This tells us that VC ! 0 at t ! 0 and that VC ! ! when the capacitor becomes
fully charged as t : $.

The Time Constant
The product RC that appears in Eqs. 27-33, 27-34, and 27-35 has the dimensions
of time (both because the argument of an exponential must be dimensionless and
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q
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Fig. 27-16 (a) A plot of Eq. 27-33,
which shows the buildup of charge on the
capacitor of Fig. 27-15. (b) A plot of Eq.
27-34, which shows the decline of the
charging current in the circuit of Fig. 27-
15.The curves are plotted for R ! 2000 %,
C ! 1 mF, and ! ! 10 V; the small trian-
gles represent successive intervals of one
time constant t.
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where for this circuit i0 =
E
R



RC Circuits: Discharging Capacitor

Imagine that we have charged up the capacitor, so that the charge
on it is q0.

Now we flip the switch, the battery is disconnected, but charge
flows off the capacitor, creating a current:
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Fig. 27-14 A single-loop circuit, show-
ing how to connect an ammeter (A) and a
voltmeter (V).

Fig. 27-15 When switch S is closed on
a, the capacitor is charged through the re-
sistor.When the switch is afterward closed
on b, the capacitor discharges through the
resistor.
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Additional examples, video, and practice available at WileyPLUS

With Eq. 27-26 we then find that

i3 ! i1 " i2 ! #0.50 A " 0.25 A
! #0.25 A.

The positive answer we obtained for i2 signals that our
choice of direction for that current is correct. However, the
negative answers for i1 and i3 indicate that our choices for

those currents are wrong.Thus, as a last step here, we correct
the answers by reversing the arrows for i1 and i3 in Fig. 27-13
and then writing

i1 = 0.50 A and i3 = 0.25 A. (Answer)

Caution: Always make any such correction as the last step
and not before calculating all the currents.

27-8 The Ammeter and the Voltmeter
An instrument used to measure currents is called an ammeter. To measure the
current in a wire, you usually have to break or cut the wire and insert the amme-
ter so that the current to be measured passes through the meter. (In Fig. 27-14,
ammeter A is set up to measure current i.)

It is essential that the resistance RA of the ammeter be very much smaller
than other resistances in the circuit. Otherwise, the very presence of the meter
will change the current to be measured.

A meter used to measure potential differences is called a voltmeter. To find
the potential difference between any two points in the circuit, the voltmeter ter-
minals are connected between those points without breaking or cutting the wire.
(In Fig. 27-14, voltmeter V is set up to measure the voltage across R1.)

It is essential that the resistance RV of a voltmeter be very much larger than
the resistance of any circuit element across which the voltmeter is connected.
Otherwise, the meter itself becomes an important circuit element and alters the
potential difference that is to be measured.

Often a single meter is packaged so that, by means of a switch, it can be made
to serve as either an ammeter or a voltmeter—and usually also as an ohmmeter,
designed to measure the resistance of any element connected between its termi-
nals. Such a versatile unit is called a multimeter.

27-9 RC Circuits
In preceding sections we dealt only with circuits in which the currents did not
vary with time. Here we begin a discussion of time-varying currents.

Charging a Capacitor
The capacitor of capacitance C in Fig. 27-15 is initially uncharged.To charge it, we
close switch S on point a. This completes an RC series circuit consisting of the
capacitor, an ideal battery of emf !, and a resistance R.

From Section 25-2, we already know that as soon as the circuit is complete,
charge begins to flow (current exists) between a capacitor plate and a battery
terminal on each side of the capacitor. This current increases the charge q on the
plates and the potential difference VC (! q/C) across the capacitor. When that
potential difference equals the potential difference across the battery (which
here is equal to the emf !), the current is zero. From Eq. 25-1 (q ! CV), the equi-
librium (final) charge on the then fully charged capacitor is equal to C !.

Here we want to examine the charging process. In particular we want to
know how the charge q(t) on the capacitor plates, the potential difference VC(t)
across the capacitor, and the current i(t) in the circuit vary with time during the
charging process. We begin by applying the loop rule to the circuit, traversing it
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RC Circuits: Discharging Capacitor

Charge on the capacitor:

q = q0 e
−t/RC

Current:

i = i0 e
−t/RC

where i0 =
q0
RC .

Again dividing the charge by the capacitance:

∆VC = ∆V0 e
−t/RC

where ∆V0 =
q0
C = i0

R .



RC Circuits: Discharging Capacitor
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clockwise from the negative terminal of the battery.We find

(27-30)

The last term on the left side represents the potential difference across the capac-
itor. The term is negative because the capacitor’s top plate, which is connected to
the battery’s positive terminal, is at a higher potential than the lower plate. Thus,
there is a drop in potential as we move down through the capacitor.

We cannot immediately solve Eq. 27-30 because it contains two variables,
i and q. However, those variables are not independent but are related by

(27-31)

Substituting this for i in Eq. 27-30 and rearranging, we find

(charging equation). (27-32)

This differential equation describes the time variation of the charge q on the
capacitor in Fig. 27-15. To solve it, we need to find the function q(t) that satisfies
this equation and also satisfies the condition that the capacitor be initially
uncharged; that is, q ! 0 at t ! 0.

We shall soon show that the solution to Eq. 27-32 is

q ! C !(1 " e"t/RC) (charging a capacitor). (27-33)

(Here e is the exponential base, 2.718 . . . , and not the elementary charge.) Note
that Eq. 27-33 does indeed satisfy our required initial condition, because at t ! 0
the term e"t/RC is unity; so the equation gives q ! 0. Note also that as t goes to
infinity (that is, a long time later), the term e"t/RC goes to zero; so the equation
gives the proper value for the full (equilibrium) charge on the capacitor—
namely, q ! C !.A plot of q(t) for the charging process is given in Fig. 27-16a.

The derivative of q(t) is the current i(t) charging the capacitor:

(charging a capacitor). (27-34)

A plot of i(t) for the charging process is given in Fig. 27-16b. Note that the current
has the initial value !/R and that it decreases to zero as the capacitor becomes
fully charged.

i !
dq
dt

! ! !

R "e"t/RC

R 
dq
dt

#
q
C

! !

i !
dq
dt

.

! " iR "
q
C

! 0.

A capacitor that is being charged initially acts like ordinary connecting wire relative
to the charging current.A long time later, it acts like a broken wire.

By combining Eq. 25-1 (q ! CV ) and Eq. 27-33, we find that the potential
difference VC(t) across the capacitor during the charging process is

(charging a capacitor). (27-35)

This tells us that VC ! 0 at t ! 0 and that VC ! ! when the capacitor becomes
fully charged as t : $.

The Time Constant
The product RC that appears in Eqs. 27-33, 27-34, and 27-35 has the dimensions
of time (both because the argument of an exponential must be dimensionless and

VC !
q
C

! !(1 " e"t/RC)
Fig. 27-16 (a) A plot of Eq. 27-33,
which shows the buildup of charge on the
capacitor of Fig. 27-15. (b) A plot of Eq.
27-34, which shows the decline of the
charging current in the circuit of Fig. 27-
15.The curves are plotted for R ! 2000 %,
C ! 1 mF, and ! ! 10 V; the small trian-
gles represent successive intervals of one
time constant t.
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Waveforms



Measures of amplitude-type quantities

1Figure from Wikipedia by AlanM1.



Measurements with the Hand-Held DMM of
Capacitance



RC Circuit



Measuring VC



Changing Frequency



Changing Frequency



Grounding




