

Electricity and Magnetism Lab 6 RC Circuits

Lana Sheridan

De Anza College

Nov 12, 2015

Overview

- reminder about RC circuits
- setup
- making measurements

RC Circuits

Circuits with resistors and capacitors are called "RC circuits."

When an uncharged capacitor is first connected to an electrical potential difference, a current will flow.

Once the capacitor is fully charged however, $q = C(\Delta V)$, current has no where to flow and stops.

The capacitor gently "switches off" the current.

RC Circuits: Charging Capacitor

If we replace i in our equation with the derivative:

$$\mathcal{E} - R \, \frac{\mathrm{dq}}{\mathrm{dt}} - \frac{q}{C} = 0$$

This is a differential equation. There is a way to solve such equations to find solutions for how q depends on time. (You do not need to know them.)

The solution is:

$$q = C\mathcal{E}(1 - e^{-t/RC})$$

RC Circuits: Charging Capacitor

Charge:

$$q = C\mathcal{E}(1 - e^{-t/RC})$$

Current:

$$i = \left(rac{\mathcal{E}}{R}
ight) e^{-t/RC}$$

Dividing the charge by the capacitance, C, the potential drop across the capacitor:

$$\Delta V_C = \mathcal{E}(1 - e^{-t/RC})$$

RC Circuits: Charging Capacitor

How the solutions appear with time:

Charge: $q = q_0 (1 - e^{-t/RC})$ $i = i_0 e^{-t/RC}$ 12 6 $C\mathscr{C}$ \mathcal{E}/R $q~(\mu {\rm C})$ *i* (mA) 8 4 2 0 2 6 8 2 4 10 0 4 Time (ms)

where for this circuit $q_0 = C \mathcal{E}$

Current:

RC Circuits: Discharging Capacitor

Imagine that we have charged up the capacitor, so that the charge on it is q_0 .

Now we flip the switch, the battery is disconnected, but charge flows off the capacitor, creating a current:

RC Circuits: Discharging Capacitor

Charge on the capacitor:

$$q = q_0 \, e^{-t/RC}$$

Current:

$$i = i_0 e^{-t/RC}$$

where $\dot{i}_0 = \frac{q_0}{RC}$.

Again dividing the charge by the capacitance:

 $\Delta V_C = \Delta V_0 \, e^{-t/RC}$

where $\Delta V_0 = rac{q_0}{C} = rac{i_0}{R}$.

RC Circuits: Discharging Capacitor

Waveforms

Sine

		Square

Measures of amplitude-type quantities

¹Figure from Wikipedia by AlanM1.

Measurements with the Hand-Held DMM of Capacitance

RC Circuit

Measuring V_C

Changing Frequency

Changing Frequency

Grounding

