Electricity and Magnetism Lab 6
 RC Circuits

Lana Sheridan
De Anza College

Nov 12, 2015

Overview

- reminder about RC circuits
- setup
- making measurements

RC Circuits

Circuits with resistors and capacitors are called "RC circuits."

Charging a Capacitor

When an uncharged capacitor is first connected to an electrical potential difference, a current will flow.

Once the capacitor is fully charged however, $q=C(\Delta V)$, current has no where to flow and stops.

The capacitor gently "switches off" the current.

RC Circuits: Charging Capacitor

If we replace i in our equation with the derivative:

$$
\mathcal{E}-R \frac{\mathrm{dq}}{\mathrm{dt}}-\frac{q}{C}=0
$$

This is a differential equation. There is a way to solve such equations to find solutions for how q depends on time. (You do not need to know them.)

The solution is:

$$
q=C \mathcal{E}\left(1-e^{-t / R C}\right)
$$

RC Circuits: Charging Capacitor

Charge:

$$
q=C \mathcal{E}\left(1-e^{-t / R C}\right)
$$

Current:

$$
i=\left(\frac{\varepsilon}{R}\right) e^{-t / R C}
$$

Dividing the charge by the capacitance, C, the potential drop across the capacitor:

$$
\Delta V_{C}=\mathcal{E}\left(1-e^{-t / R C}\right)
$$

RC Circuits: Charging Capacitor

How the solutions appear with time:

Charge:

$$
q=q_{0}\left(1-e^{-t / R C}\right)
$$

where for this circuit $q_{0}=C \mathcal{E}$

Current:

$$
i=i_{0} e^{-t / R C}
$$

where for this circuit $i_{0}=\frac{\mathcal{E}}{R}$

RC Circuits: Discharging Capacitor

Imagine that we have charged up the capacitor, so that the charge on it is q_{0}.

Now we flip the switch, the battery is disconnected, but charge flows off the capacitor, creating a current:

RC Circuits: Discharging Capacitor

Charge on the capacitor:

$$
q=q_{0} e^{-t / R C}
$$

Current:

$$
i=i_{0} e^{-t / R C}
$$

where $i_{0}=\frac{q_{0}}{R C}$.
Again dividing the charge by the capacitance:

$$
\Delta V_{C}=\Delta V_{0} e^{-t / R C}
$$

where $\Delta V_{0}=\frac{q_{0}}{C}=\frac{i_{0}}{R}$.

RC Circuits: Discharging Capacitor

Waveforms

Measures of amplitude-type quantities

${ }^{1}$ Figure from Wikipedia by AlanM1.

Measurements with the Hand-Held DMM of Capacitance

RC Circuit

Measuring V_{C}

Changing Frequency

Changing Frequency

Grounding

