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Last time

• energy stored in a capacitor

• uses of capacitors



Overview

• current

• current density

• drift speed

• resistance

• resistivity

• conductance

• Ohm’s Law

• power



Motion of Charge

Up until now, we have mostly considered charges in fixed positions.

We will now look at moving charges, particularly in circuits.



Electric Current
Electric current, I, is the rate of flow of charge through some
defined plane:

I =
∆q

∆t

∆q is an amount of charge and ∆t is a time interval.

The defined plane might be aa ′. However, since charge is
conserved if an amount of charge ∆q flows through aa ′, then the
same amount of charge ∆q must flow through bb ′ and cc ′ in the
same time interval.
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As Fig. 26-1a reminds us, any isolated conducting loop—regardless of
whether it has an excess charge—is all at the same potential. No electric field can
exist within it or along its surface. Although conduction electrons are available,
no net electric force acts on them and thus there is no current.

If, as in Fig. 26-1b, we insert a battery in the loop, the conducting loop is no
longer at a single potential. Electric fields act inside the material making up
the loop, exerting forces on the conduction electrons, causing them to move
and thus establishing a current. After a very short time, the electron flow
reaches a constant value and the current is in its steady state (it does not vary
with time).

Figure 26-2 shows a section of a conductor, part of a conducting loop in
which current has been established. If charge dq passes through a hypothetical
plane (such as aa!) in time dt, then the current i through that plane is defined as

(definition of current). (26-1)

We can find the charge that passes through the plane in a time interval
extending from 0 to t by integration:

(26-2)

in which the current i may vary with time.

q " ! dq " !t

0
 i dt,

i "
dq
dt

Fig. 26-1 (a) A loop of copper in
electrostatic equilibrium.The entire
loop is at a single potential, and the
electric field is zero at all points in-
side the copper. (b) Adding a battery
imposes an electric potential differ-
ence between the ends of the loop
that are connected to the terminals
of the battery.The battery thus pro-
duces an electric field within the
loop, from terminal to terminal, and
the field causes charges to move
around the loop.This movement of
charges is a current i.

(a)

(b)

Battery

+ – ii

i

i
i

Fig. 26-2 The current i
through the conductor has
the same value at planes
aa!, bb!, and cc!.

i i 

a 

a' 

b 

b' 

c 

c' 

The current is the same in 
any cross section.

Under steady-state conditions, the current is the same for planes aa!, bb!, and
cc! and indeed for all planes that pass completely through the conductor, no
matter what their location or orientation.This follows from the fact that charge is
conserved. Under the steady-state conditions assumed here, an electron must
pass through plane aa! for every electron that passes through plane cc!. In the
same way, if we have a steady flow of water through a garden hose, a drop of
water must leave the nozzle for every drop that enters the hose at the other end.
The amount of water in the hose is a conserved quantity.

The SI unit for current is the coulomb per second, or the ampere (A), which
is an SI base unit:

1 ampere " 1 A " 1 coulomb per second " 1 C/s.

The formal definition of the ampere is discussed in Chapter 29.
Current, as defined by Eq. 26-1, is a scalar because both charge and time in

that equation are scalars. Yet, as in Fig. 26-1b, we often represent a current with
an arrow to indicate that charge is moving. Such arrows are not vectors, however,
and they do not require vector addition. Figure 26-3a shows a conductor with
current i0 splitting at a junction into two branches. Because charge is conserved,
the magnitudes of the currents in the branches must add to yield the magnitude
of the current in the original conductor, so that

i0 " i1 # i2. (26-3)

As Fig. 26-3b suggests, bending or reorienting the wires in space does not change
the validity of Eq. 26-3. Current arrows show only a direction (or sense) of flow
along a conductor, not a direction in space.

Fig. 26-3 The relation i0 " i1 # i2

is true at junction a no matter what the
orientation in space of the three wires.
Currents are scalars, not vectors.

i 0  

a  

i 1  

i 2  

(a) 

(b) 

a  
i 2  

i1  

i 0  

The current into the
junction must equal
the current out
(charge is conserved).
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Current
Charge will only move when there is a net force on it. A supplying
a potential difference across two points on a wire will do this.
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Electric Current

The units of current are Amps, A. Formally, amperes.

1 A = 1 C/s

Current is a scalar, however, a negative sign can be used to
indicate a current flowing backwards through a loop.



Conventional Current

By convention, current is labeled indicating the direction in which
positive charge carriers would move.

Of course, in very many circumstances, and particularly in
conducting metals, electrons, which are negative charge carries, are
the moving charges.

This means that a current arrow is drawn opposite to the direction
of motion of electrons.



Conventional Current
A conducting wire:

−
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conductor of cross-sectional area A (Fig. 27.2). The volume of a segment of the con-
ductor of length Dx (between the two circular cross sections shown in Fig. 27.2) is  
A  Dx. If n represents the number of mobile charge carriers per unit volume (in 
other words, the charge carrier density), the number of carriers in the segment is 
nA Dx. Therefore, the total charge DQ in this segment is

 DQ 5 (nA Dx)q 

where q is the charge on each carrier. If the carriers move with a velocity vSd paral-
lel to the axis of the cylinder, the magnitude of the displacement they experience 
in the x direction in a time interval Dt is Dx 5 vd Dt. Let Dt be the time interval 
required for the charge carriers in the segment to move through a displacement 
whose magnitude is equal to the length of the segment. This time interval is also 
the same as that required for all the charge carriers in the segment to pass through 
the circular area at one end. With this choice, we can write DQ as

 DQ 5 (nAvd Dt)q 

Dividing both sides of this equation by Dt, we find that the average current in the 
conductor is

 I avg 5
DQ
Dt

5 nqvdA  (27.4)

 In reality, the speed of the charge carriers vd is an average speed called the 
drift speed. To understand the meaning of drift speed, consider a conductor in 
which the charge carriers are free electrons. If the conductor is isolated—that 
is, the potential difference across it is zero—these electrons undergo random 
motion that is analogous to the motion of gas molecules. The electrons collide 
repeatedly with the metal atoms, and their resultant motion is complicated and 
zigzagged as in Figure 27.3a. As discussed earlier, when a potential difference 
is applied across the conductor (for example, by means of a battery), an electric 
field is set up in the conductor; this field exerts an electric force on the electrons, 
producing a current. In addition to the zigzag motion due to the collisions with 
the metal atoms, the electrons move slowly along the conductor (in a direction 
opposite that of E

S
) at the drift velocity vSd as shown in Figure 27.3b.

 You can think of the atom–electron collisions in a conductor as an effective 
internal friction (or drag force) similar to that experienced by a liquid’s mol-
ecules flowing through a pipe stuffed with steel wool. The energy transferred 
from the electrons to the metal atoms during collisions causes an increase in 
the atom’s vibrational energy and a corresponding increase in the conductor’s 
temperature.

Q uick Quiz 27.1  Consider positive and negative charges moving horizontally 
through the four regions shown in Figure 27.4. Rank the current in these four 
regions from highest to lowest.
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Figure 27.2  A segment of a uni-
form conductor of cross-sectional 
area A.
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charge carriers is modified by 
the field, and they have a drift 
velocity opposite the direction 
of the electric field.

Figure 27.3 (a) A schematic 
diagram of the random motion of 
two charge carriers in a conductor 
in the absence of an electric field. 
The drift velocity is zero. (b) The 
motion of the charge carriers in 
a conductor in the presence of an 
electric field. Because of the accel-
eration of the charge carriers due 
to the electric force, the paths are 
actually parabolic. The drift speed, 
however, is much smaller than the 
average speed, so the parabolic 
shape is not visible on this scale.
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Figure 27.4  (Quick Quiz 27.1) Charges move through four regions.

+← current, i ←

We imagine posititive charges moving:

−
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they tend to drift with a drift speed vd in the direction opposite that of the applied
electric field that causes the current. The drift speed is tiny compared with the
speeds in the random motion. For example, in the copper conductors of house-
hold wiring, electron drift speeds are perhaps 10!5 or 10!4 m/s, whereas the
random-motion speeds are around 106 m/s.

We can use Fig. 26-5 to relate the drift speed vd of the conduction electrons
in a current through a wire to the magnitude J of the current density in the
wire. For convenience, Fig. 26-5 shows the equivalent drift of positive charge
carriers in the direction of the applied electric field Let us assume that these
charge carriers all move with the same drift speed vd and that the current den-
sity J is uniform across the wire’s cross-sectional area A. The number of charge
carriers in a length L of the wire is nAL, where n is the number of carriers per
unit volume. The total charge of the carriers in the length L, each with charge
e, is then

q " (nAL)e.

Because the carriers all move along the wire with speed vd, this total charge
moves through any cross section of the wire in the time interval

Equation 26-1 tells us that the current i is the time rate of transfer of charge
across a cross section, so here we have

(26-6)

Solving for vd and recalling Eq. 26-5 (J " i/A), we obtain

or, extended to vector form,

(26-7)

Here the product ne, whose SI unit is the coulomb per cubic meter (C/m3), is the
carrier charge density. For positive carriers, ne is positive and Eq. 26-7 predicts
that and have the same direction. For negative carriers, ne is negative and 
and have opposite directions.v:d

J
:v:dJ

:

 J
:

" (ne)v:d.

vd "
i

nAe
"

J
ne

i "
q
t
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L/vd
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L
vd

.

E
:

.

Fig. 26-5 Positive charge carri-
ers drift at speed vd in the direc-
tion of the applied electric field 
By convention, the direction of
the current density and the
sense of the current arrow are
drawn in that same direction.
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CHECKPOINT 2

The figure shows conduction electrons moving left-
ward in a wire. Are the following leftward or right-
ward: (a) the current i, (b) the current density (c)
the electric field in the wire?E

:
J
:

,
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+ 
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J 

Current is said to be due to positive charges that
are propelled by the electric field.
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Current Question

QuickQuiz 27.1: Consider positive and negative charges moving
horizontally through the four regions. Rank the current in these
four regions from highest to lowest.
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Current Question

QuickQuiz 27.1: Consider positive and negative charges moving
horizontally through the four regions. Rank the current in these
four regions from highest to lowest.
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Current and Junctions

Since charge is conserved, all charge that flows into a point, must
flow out of it as well.

We can apply this to a junction: a point at which wires join or
split.

This gives Kirchhoff’s junction rule:

Junction Rule

The sum of the currents entering any junction must be equal to
the sum of the currents leaving that junction.



Current and Junctions

Junction Rule

The sum of the currents entering any junction must be equal to
the sum of the currents leaving that junction.
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As Fig. 26-1a reminds us, any isolated conducting loop—regardless of
whether it has an excess charge—is all at the same potential. No electric field can
exist within it or along its surface. Although conduction electrons are available,
no net electric force acts on them and thus there is no current.

If, as in Fig. 26-1b, we insert a battery in the loop, the conducting loop is no
longer at a single potential. Electric fields act inside the material making up
the loop, exerting forces on the conduction electrons, causing them to move
and thus establishing a current. After a very short time, the electron flow
reaches a constant value and the current is in its steady state (it does not vary
with time).

Figure 26-2 shows a section of a conductor, part of a conducting loop in
which current has been established. If charge dq passes through a hypothetical
plane (such as aa!) in time dt, then the current i through that plane is defined as

(definition of current). (26-1)

We can find the charge that passes through the plane in a time interval
extending from 0 to t by integration:

(26-2)

in which the current i may vary with time.
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Fig. 26-1 (a) A loop of copper in
electrostatic equilibrium.The entire
loop is at a single potential, and the
electric field is zero at all points in-
side the copper. (b) Adding a battery
imposes an electric potential differ-
ence between the ends of the loop
that are connected to the terminals
of the battery.The battery thus pro-
duces an electric field within the
loop, from terminal to terminal, and
the field causes charges to move
around the loop.This movement of
charges is a current i.
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Fig. 26-2 The current i
through the conductor has
the same value at planes
aa!, bb!, and cc!.
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The current is the same in 
any cross section.

Under steady-state conditions, the current is the same for planes aa!, bb!, and
cc! and indeed for all planes that pass completely through the conductor, no
matter what their location or orientation.This follows from the fact that charge is
conserved. Under the steady-state conditions assumed here, an electron must
pass through plane aa! for every electron that passes through plane cc!. In the
same way, if we have a steady flow of water through a garden hose, a drop of
water must leave the nozzle for every drop that enters the hose at the other end.
The amount of water in the hose is a conserved quantity.

The SI unit for current is the coulomb per second, or the ampere (A), which
is an SI base unit:

1 ampere " 1 A " 1 coulomb per second " 1 C/s.

The formal definition of the ampere is discussed in Chapter 29.
Current, as defined by Eq. 26-1, is a scalar because both charge and time in

that equation are scalars. Yet, as in Fig. 26-1b, we often represent a current with
an arrow to indicate that charge is moving. Such arrows are not vectors, however,
and they do not require vector addition. Figure 26-3a shows a conductor with
current i0 splitting at a junction into two branches. Because charge is conserved,
the magnitudes of the currents in the branches must add to yield the magnitude
of the current in the original conductor, so that

i0 " i1 # i2. (26-3)

As Fig. 26-3b suggests, bending or reorienting the wires in space does not change
the validity of Eq. 26-3. Current arrows show only a direction (or sense) of flow
along a conductor, not a direction in space.

Fig. 26-3 The relation i0 " i1 # i2

is true at junction a no matter what the
orientation in space of the three wires.
Currents are scalars, not vectors.

i 0  

a  

i 1  

i 2  

(a) 

(b) 

a  
i 2  

i1  

i 0  

The current into the
junction must equal
the current out
(charge is conserved).
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In the diagram, i0 = i1 + i2



Question

What are the magnitude and direction of the current i in the lower
right-hand wire?
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We can use this convention because in most situations, the assumed motion
of positive charge carriers in one direction has the same effect as the actual
motion of negative charge carriers in the opposite direction. (When the effect is
not the same, we shall drop the convention and describe the actual motion.)

A current arrow is drawn in the direction in which positive charge carriers would move,
even if the actual charge carriers are negative and move in the opposite direction.

CHECKPOINT 1

The figure here shows a portion of a circuit.
What are the magnitude and direction of the
current i in the lower right-hand wire?

1 A

2 A

3 A 4 A

2 A

2 A

i

Sample Problem

We can express the rate dN/dt in terms of the given vol-
ume flow rate dV/dt by first writing

“Molecules per mole” is Avogadro’s number NA.“Moles per
unit mass” is the inverse of the mass per mole, which is the
molar mass M of water. “Mass per unit volume” is the
(mass) density rmass of water. The volume per second is the
volume flow rate dV/dt.Thus, we have

Substituting this into the equation for i, we find

i ! 10eNAM"1#mass 
dV
dt

.

dN
dt

! NA! 1
M "#mass! dV

dt " !
NA#mass

M
 

dV
dt

.

$ ! mass
per unit
volume

 " !volume
per

second
 ".

!molecules
per

second  " ! !molecules
per

mole  " ! moles
per unit

mass  " 

Current is the rate at which charge passes a point

Water flows through a garden hose at a volume flow rate dV/dt
of 450 cm3/s.What is the current of negative charge?

KEY I DEAS

The current i of negative charge is due to the electrons in the wa-
ter molecules moving through the hose.The current is the rate at
which that negative charge passes through any plane that cuts
completely across the hose.

Calculations: We can write the current in terms of the
number of molecules that pass through such a plane per sec-
ond as

or

We substitute 10 electrons per molecule because a water
(H2O) molecule contains 8 electrons in the single oxygen atom
and 1 electron in each of the two hydrogen atoms.

i ! (e)(10) 
dN
dt

.

i !  ! charge
per

electron " !electrons
per

molecule " !molecules
per

second  "

The Directions of Currents
In Fig. 26-1b we drew the current arrows in the direction in which positively
charged particles would be forced to move through the loop by the electric field.
Such positive charge carriers, as they are often called, would move away from the
positive battery terminal and toward the negative terminal. Actually, the charge
carriers in the copper loop of Fig. 26-1b are electrons and thus are negatively
charged. The electric field forces them to move in the direction opposite the
current arrows, from the negative terminal to the positive terminal. For historical
reasons, however, we use the following convention:
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Current Density

Current Density, J

The current per unit area through a conductor.

J =
I

A

Strictly, this is the average current density through the area A,
assuming the area A is perpendicular to the direction of the
current.

This view of current density will be sufficient for most purposes in
this course.



Current Density

In more detail, current is very similar to flux:

I =
∑

J (∆A) cos θ

Whereas flux:
Φ =

∑
E (∆A) cos θ

Current density J can be compared with the electric field, E .
606 CHAPTE R 23 GAUSS’ LAW

HALLIDAY REVISED

Before we discuss a flux involved in electrostatics, we need to rewrite Eq.
23-1 in terms of vectors. To do this, we first define an area vector as being a
vector whose magnitude is equal to an area (here the area of the loop) and whose
direction is normal to the plane of the area (Fig. 23-2c). We then rewrite Eq. 23-1
as the scalar (or dot) product of the velocity vector of the airstream and the area
vector of the loop:

(23-2)

where u is the angle between and .
The word “flux” comes from the Latin word meaning “to flow.” That meaning

makes sense if we talk about the flow of air volume through the loop. However, Eq.
23-2 can be regarded in a more abstract way.To see this different way, note that we
can assign a velocity vector to each point in the airstream passing through the loop
(Fig. 23-2d). Because the composite of all those vectors is a velocity field, we can in-
terpret Eq. 23-2 as giving the flux of the velocity field through the loop. With this in-
terpretation, flux no longer means the actual flow of something through an area—
rather it means the product of an area and the field across that area.

23-3 Flux of an Electric Field
To define the flux of an electric field, consider Fig. 23-3, which shows an arbitrary
(asymmetric) Gaussian surface immersed in a nonuniform electric field. Let us
divide the surface into small squares of area !A, each square being small enough
to permit us to neglect any curvature and to consider the individual square to be
flat. We represent each such element of area with an area vector , whose mag-
nitude is the area !A. Each vector is perpendicular to the Gaussian surface
and directed away from the interior of the surface.

Because the squares have been taken to be arbitrarily small, the electric field
may be taken as constant over any given square. The vectors and for

each square then make some angle u with each other. Figure 23-3 shows an
enlarged view of three squares on the Gaussian surface and the angle u for each.

A provisional definition for the flux of the electric field for the Gaussian
surface of Fig. 23-3 is

(23-3)

This equation instructs us to visit each square on the Gaussian surface, evaluate the
scalar product for the two vectors and we find there, and sum the re-
sults algebraically (that is, with signs included) for all the squares that make up the
surface. The value of each scalar product (positive, negative, or zero) determines
whether the flux through its square is positive, negative, or zero. Squares like square
1 in Fig. 23-3, in which points inward, make a negative contribution to the sum of
Eq. 23-3. Squares like 2, in which lies in the surface, make zero contribution.
Squares like 3, in which points outward, make a positive contribution.E

:
E
:

E
:

!A
:

E
:

E
:

! !"
:

# $ ! %
:

! !"
:

.

E
:

!A
:

E
:

!A
:

!A
:

A
:

v:
# $ vA cos & $ v: ! A

:
,

A
:

v:

A
:

(a)

Air flow

(b)

θ

(c) (d)

θ
vv

v A

Fig. 23-2 (a) A uniform airstream of ve-
locity is perpendicular to the plane of a
square loop of area A.(b) The component
of perpendicular to the plane of the loop
is v cos u, where u is the angle between 
and a normal to the plane. (c) The area vec-
tor is perpendicular to the plane of the
loop and makes an angle u with . (d) The
velocity field intercepted by the area of the
loop.

v:
A
:

v:
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v:

Gaussian 
surface 

1 3 
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1 
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∆ A 
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inward:
negative 
flux
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outward:
positive 
flux

Skim: zero flux

Fig. 23-3 A Gaussian surface of 
arbitrary shape immersed in an 
electric field.The surface is divided into
small squares of area !A.The electric field
vectors and the area vectors for three
representative squares, marked 1, 2, and 3,
are shown.
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:
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Current Density

Current density can be represented with streamlines that are
denser where the current density is higher.

(cf. electric field and electric field lines)

26-3 Current Density
Sometimes we are interested in the current i in a particular conductor. At other
times we take a localized view and study the flow of charge through a cross sec-
tion of the conductor at a particular point. To describe this flow, we can use the
current density which has the same direction as the velocity of the moving
charges if they are positive and the opposite direction if they are negative. For
each element of the cross section, the magnitude J is equal to the current per unit
area through that element. We can write the amount of current through the ele-
ment as where is the area vector of the element, perpendicular to the
element.The total current through the surface is then

(26-4)

If the current is uniform across the surface and parallel to then is also uni-
form and parallel to Then Eq. 26-4 becomes

so (26-5)

where A is the total area of the surface. From Eq. 26-4 or 26-5 we see that the SI
unit for current density is the ampere per square meter (A/m2).

In Chapter 22 we saw that we can represent an electric field with electric
field lines. Figure 26-4 shows how current density can be represented with a
similar set of lines, which we can call streamlines. The current, which is toward
the right in Fig. 26-4, makes a transition from the wider conductor at the left to
the narrower conductor at the right. Because charge is conserved during the
transition, the amount of charge and thus the amount of current cannot
change. However, the current density does change—it is greater in the narrower
conductor. The spacing of the streamlines suggests this increase in current den-
sity; streamlines that are closer together imply greater current density.

Drift Speed
When a conductor does not have a current through it, its conduction electrons
move randomly, with no net motion in any direction. When the conductor does
have a current through it, these electrons actually still move randomly, but now

J !
i

A
,

i ! ! J dA ! J ! dA ! JA,

dA
:

.
J
:

dA
:

,

i ! ! J
:

! dA
:

.

dA
:

J
:

! dA
:

,

J
:

,

We know that Avogadro’s number NA is 6.02 " 10 23 mole-
cules/mol, or 6.02 " 10 23 mol#1, and from Table 15-1 we
know that the density of water rmass under normal condi-
tions is 1000 kg/m3. We can get the molar mass of water
from the molar masses listed in Appendix F (in grams per
mole): We add the molar mass of oxygen (16 g/mol) to
twice the molar mass of hydrogen (1 g/mol), obtaining 18
g/mol ! 0.018 kg/mol. So, the current of negative charge
due to the electrons in the water is

(Answer)

This current of negative charge is exactly compensated by a
current of positive charge associated with the nuclei of the
three atoms that make up the water molecule. Thus, there is
no net flow of charge through the hose.

!  24.1 MA.
!  2.41 " 10 7 C/s ! 2.41 " 10 7 A

" (0.018 kg/mol)#1(1000 kg/m3)(450 " 10 #6 m3/s)
i ! (10)(1.6 " 10 #19 C)(6.02 " 10 23 mol#1)

Additional examples, video, and practice available at WileyPLUS

Fig. 26-4 Streamlines representing
current density in the flow of charge
through a constricted conductor.

i
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Microscopic Model of Current

Conduction electrons can be though of as moving in a random way,
colliding with atoms.

Electrons with E = 0:

810 Chapter 27 Current and Resistance

conductor of cross-sectional area A (Fig. 27.2). The volume of a segment of the con-
ductor of length Dx (between the two circular cross sections shown in Fig. 27.2) is  
A  Dx. If n represents the number of mobile charge carriers per unit volume (in 
other words, the charge carrier density), the number of carriers in the segment is 
nA Dx. Therefore, the total charge DQ in this segment is

 DQ 5 (nA Dx)q 

where q is the charge on each carrier. If the carriers move with a velocity vSd paral-
lel to the axis of the cylinder, the magnitude of the displacement they experience 
in the x direction in a time interval Dt is Dx 5 vd Dt. Let Dt be the time interval 
required for the charge carriers in the segment to move through a displacement 
whose magnitude is equal to the length of the segment. This time interval is also 
the same as that required for all the charge carriers in the segment to pass through 
the circular area at one end. With this choice, we can write DQ as

 DQ 5 (nAvd Dt)q 

Dividing both sides of this equation by Dt, we find that the average current in the 
conductor is

 I avg 5
DQ
Dt

5 nqvdA  (27.4)

 In reality, the speed of the charge carriers vd is an average speed called the 
drift speed. To understand the meaning of drift speed, consider a conductor in 
which the charge carriers are free electrons. If the conductor is isolated—that 
is, the potential difference across it is zero—these electrons undergo random 
motion that is analogous to the motion of gas molecules. The electrons collide 
repeatedly with the metal atoms, and their resultant motion is complicated and 
zigzagged as in Figure 27.3a. As discussed earlier, when a potential difference 
is applied across the conductor (for example, by means of a battery), an electric 
field is set up in the conductor; this field exerts an electric force on the electrons, 
producing a current. In addition to the zigzag motion due to the collisions with 
the metal atoms, the electrons move slowly along the conductor (in a direction 
opposite that of E

S
) at the drift velocity vSd as shown in Figure 27.3b.

 You can think of the atom–electron collisions in a conductor as an effective 
internal friction (or drag force) similar to that experienced by a liquid’s mol-
ecules flowing through a pipe stuffed with steel wool. The energy transferred 
from the electrons to the metal atoms during collisions causes an increase in 
the atom’s vibrational energy and a corresponding increase in the conductor’s 
temperature.

Q uick Quiz 27.1  Consider positive and negative charges moving horizontally 
through the four regions shown in Figure 27.4. Rank the current in these four 
regions from highest to lowest.

A
q
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S

Figure 27.2  A segment of a uni-
form conductor of cross-sectional 
area A.
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Figure 27.3 (a) A schematic 
diagram of the random motion of 
two charge carriers in a conductor 
in the absence of an electric field. 
The drift velocity is zero. (b) The 
motion of the charge carriers in 
a conductor in the presence of an 
electric field. Because of the accel-
eration of the charge carriers due 
to the electric force, the paths are 
actually parabolic. The drift speed, 
however, is much smaller than the 
average speed, so the parabolic 
shape is not visible on this scale.
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Figure 27.4  (Quick Quiz 27.1) Charges move through four regions.

with an E-field:
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internal friction (or drag force) similar to that experienced by a liquid’s mol-
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from the electrons to the metal atoms during collisions causes an increase in 
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With an external field, they tend to drift in the opposite direction
to the field lines.



Drift Speed
The drift speed vd of charge carriers in a conductor is the average
speed at which a charge carrier is expected to move through a
conductor.

The average speed of a charge carrier through a circuit, by
definition is:

vavg =
∆x

∆t

How far (∆x) do we expect a charge carrier to move in time ∆t?
810 Chapter 27 Current and Resistance
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Drift Speed

Need an expression for ∆x in terms of current.

Suppose there are n free conduction electrons per unit volume.

Then n A∆x electrons move through a cross section A in time ∆t.
(Vol = A∆x)

I =
Q

∆t
=

(nA∆x)e

∆t

Then we can rearrange for ∆x :

∆x =
I ∆t

nAe



Drift Speed

Need an expression for ∆x in terms of current.

Suppose there are n free conduction electrons per unit volume.

Then n A∆x electrons move through a cross section A in time ∆t.
(Vol = A∆x)

I =
Q

∆t
=

(nA∆x)e

∆t

Then we can rearrange for ∆x :

∆x =
I ∆t

nAe



Drift Speed

Putting this back into the expression for vd :

vd =
∆x

∆t
=

I ∆t

nAe ∆t

Simplifying,

vd =
I

nAe
=

J

ne

(J = I/A)



Drift velocity

We can also express this as a vector relation:

J = n q vd

where q is the charge of the charge carrier.

686 CHAPTE R 26 CU R R E NT AN D R E S I STANCE

they tend to drift with a drift speed vd in the direction opposite that of the applied
electric field that causes the current. The drift speed is tiny compared with the
speeds in the random motion. For example, in the copper conductors of house-
hold wiring, electron drift speeds are perhaps 10!5 or 10!4 m/s, whereas the
random-motion speeds are around 106 m/s.

We can use Fig. 26-5 to relate the drift speed vd of the conduction electrons
in a current through a wire to the magnitude J of the current density in the
wire. For convenience, Fig. 26-5 shows the equivalent drift of positive charge
carriers in the direction of the applied electric field Let us assume that these
charge carriers all move with the same drift speed vd and that the current den-
sity J is uniform across the wire’s cross-sectional area A. The number of charge
carriers in a length L of the wire is nAL, where n is the number of carriers per
unit volume. The total charge of the carriers in the length L, each with charge
e, is then

q " (nAL)e.

Because the carriers all move along the wire with speed vd, this total charge
moves through any cross section of the wire in the time interval

Equation 26-1 tells us that the current i is the time rate of transfer of charge
across a cross section, so here we have

(26-6)

Solving for vd and recalling Eq. 26-5 (J " i/A), we obtain

or, extended to vector form,

(26-7)

Here the product ne, whose SI unit is the coulomb per cubic meter (C/m3), is the
carrier charge density. For positive carriers, ne is positive and Eq. 26-7 predicts
that and have the same direction. For negative carriers, ne is negative and 
and have opposite directions.v:d

J
:v:dJ

:

 J
:

" (ne)v:d.

vd "
i

nAe
"

J
ne

i "
q
t

"
nALe
L/vd

" nAevd.

t "
L
vd

.

E
:

.

Fig. 26-5 Positive charge carri-
ers drift at speed vd in the direc-
tion of the applied electric field 
By convention, the direction of
the current density and the
sense of the current arrow are
drawn in that same direction.

J
:

E
:
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CHECKPOINT 2

The figure shows conduction electrons moving left-
ward in a wire. Are the following leftward or right-
ward: (a) the current i, (b) the current density (c)
the electric field in the wire?E

:
J
:

,

L 
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+ 
+ 

+ 
+ 

+ 

vd 

E 

J 

Current is said to be due to positive charges that
are propelled by the electric field.
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Drift Speed of an Electron in Copper1

What is the drift speed of the conduction electrons in a copper wire
with radius r = 900 µm when it has a uniform current I = 17 mA?

Assume that each copper atom contributes one conduction
electron to the current and that the current density is uniform
across the wire’s cross section.

1From page 688 in Halliday, Resnick, and Walker, 9th ed.



Drift Speed of an Electron in Copper

How many electrons per unit volume? Same as number of copper
atoms:

n =
NA ρ

M
=

(6.02× 1023 mol−1)(8.96× 103 kg/m3)

63.54× 10−3 kg/mol

NA is Avagadro’s number, M is the molar mass (kgs per mole of
copper), and ρ is copper’s density.

n = 8.49× 1028 m−3

This is the number of free conduction electrons in a cubic meter of
copper. (A lot.)



Drift Speed of an Electron in Copper

vd =
I

nAe

=
(17× 10−3 A)

(8.49× 1028 m−3)(πr2)(1.6× 10−19 C)

vd = 4.9× 10−7 m/s

Very slow!



Drift Speed of an Electron in Copper

vd =
I

nAe

=
(17× 10−3 A)

(8.49× 1028 m−3)(πr2)(1.6× 10−19 C)

vd = 4.9× 10−7 m/s

Very slow!



Resistance

When a potential difference is applied across a conductor, current
begins to flow.

68326-2 E LECTR IC CU R R E NT
PART 3

As Fig. 26-1a reminds us, any isolated conducting loop—regardless of
whether it has an excess charge—is all at the same potential. No electric field can
exist within it or along its surface. Although conduction electrons are available,
no net electric force acts on them and thus there is no current.

If, as in Fig. 26-1b, we insert a battery in the loop, the conducting loop is no
longer at a single potential. Electric fields act inside the material making up
the loop, exerting forces on the conduction electrons, causing them to move
and thus establishing a current. After a very short time, the electron flow
reaches a constant value and the current is in its steady state (it does not vary
with time).

Figure 26-2 shows a section of a conductor, part of a conducting loop in
which current has been established. If charge dq passes through a hypothetical
plane (such as aa!) in time dt, then the current i through that plane is defined as

(definition of current). (26-1)

We can find the charge that passes through the plane in a time interval
extending from 0 to t by integration:

(26-2)

in which the current i may vary with time.

q " ! dq " !t

0
 i dt,

i "
dq
dt

Fig. 26-1 (a) A loop of copper in
electrostatic equilibrium.The entire
loop is at a single potential, and the
electric field is zero at all points in-
side the copper. (b) Adding a battery
imposes an electric potential differ-
ence between the ends of the loop
that are connected to the terminals
of the battery.The battery thus pro-
duces an electric field within the
loop, from terminal to terminal, and
the field causes charges to move
around the loop.This movement of
charges is a current i.

(a)

(b)

Battery

+ – ii

i

i
i

Fig. 26-2 The current i
through the conductor has
the same value at planes
aa!, bb!, and cc!.

i i 

a 

a' 

b 

b' 

c 

c' 

The current is the same in 
any cross section.

Under steady-state conditions, the current is the same for planes aa!, bb!, and
cc! and indeed for all planes that pass completely through the conductor, no
matter what their location or orientation.This follows from the fact that charge is
conserved. Under the steady-state conditions assumed here, an electron must
pass through plane aa! for every electron that passes through plane cc!. In the
same way, if we have a steady flow of water through a garden hose, a drop of
water must leave the nozzle for every drop that enters the hose at the other end.
The amount of water in the hose is a conserved quantity.

The SI unit for current is the coulomb per second, or the ampere (A), which
is an SI base unit:

1 ampere " 1 A " 1 coulomb per second " 1 C/s.

The formal definition of the ampere is discussed in Chapter 29.
Current, as defined by Eq. 26-1, is a scalar because both charge and time in

that equation are scalars. Yet, as in Fig. 26-1b, we often represent a current with
an arrow to indicate that charge is moving. Such arrows are not vectors, however,
and they do not require vector addition. Figure 26-3a shows a conductor with
current i0 splitting at a junction into two branches. Because charge is conserved,
the magnitudes of the currents in the branches must add to yield the magnitude
of the current in the original conductor, so that

i0 " i1 # i2. (26-3)

As Fig. 26-3b suggests, bending or reorienting the wires in space does not change
the validity of Eq. 26-3. Current arrows show only a direction (or sense) of flow
along a conductor, not a direction in space.

Fig. 26-3 The relation i0 " i1 # i2

is true at junction a no matter what the
orientation in space of the three wires.
Currents are scalars, not vectors.

i 0  

a  

i 1  

i 2  

(a) 

(b) 

a  
i 2  

i1  

i 0  

The current into the
junction must equal
the current out
(charge is conserved).
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However, different amounts of current will flow in different
conductors, even when the applied potential difference is the same.
What is the characteristic of the conductor which determines the
amount of current that will flow?

1Figure from Halliday, Resnick, Walker, 9th ed.



Resistance

Resistance

The resistance of a conductor is given by the ratio of the applied
potential to the current that flows through the conductor at that
potential:

R =
V

I

The units of resistance are Ohms, Ω, symbol is the capital Greek
letter “Omega”. 1 Ω = 1 V/A

We can think of a high resistance as resisting, or impeding, the
flow of current.



Resistivity

An individual conductor or circuit component has a resistance.

The resistance is based on

• the material it is made of,

• its geometry, and

• the temperature

The material that a component is made from affects the
resistance, because different materials have different resistivities.



Resistivity

resistivity, ρ

the ratio of the electric field strength in a material to the current
density this field causes in the material:

ρ =
E

J

Resistivity is a property of a material. Its symbol is the Greek letter
ρ, pronounced “rho”.

The units of resistivity are Ω m.

1 Ω m = 1 V
A m = 1 V/m

A/m2

which agrees with the definition of ρ = E/J.



Resistivity

26-4 Resistance and Resistivity
If we apply the same potential difference between the ends of geometrically similar
rods of copper and of glass, very different currents result. The characteristic of the
conductor that enters here is its electrical resistance. We determine the resistance
between any two points of a conductor by applying a potential difference V be-
tween those points and measuring the current i that results.The resistance R is then

(definition of R). (26-8)

The SI unit for resistance that follows from Eq. 26-8 is the volt per ampere.This com-
bination occurs so often that we give it a special name, the ohm (symbol !); that is,

(26-9)

A conductor whose function in a circuit is to provide a specified resistance is
called a resistor (see Fig. 26-7). In a circuit diagram, we represent a resistor and
a resistance with the symbol . If we write Eq. 26-8 as

we see that, for a given V, the greater the resistance, the smaller the current.
The resistance of a conductor depends on the manner in which the potential

difference is applied to it. Figure 26-8, for example, shows a given potential dif-
ference applied in two different ways to the same conductor. As the current
density streamlines suggest, the currents in the two cases—hence the measured
resistances—will be different. Unless otherwise stated, we shall assume that any
given potential difference is applied as in Fig. 26-8b.

i "
V
R

,

 " 1 V/A.
 1 ohm " 1 ! " 1 volt per ampere

R "
V
i

Fig. 26-8 Two ways of applying a potential difference to a conducting rod.The gray
connectors are assumed to have negligible resistance.When they are arranged as in
(a) in a small region at each rod end, the measured resistance is larger than when they
are arranged as in (b) to cover the entire rod end.

(a) (b)

Fig. 26-7 An assortment of resistors.
The circular bands are color-coding marks
that identify the value of the resistance.
(The Image Works)
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Table 26-1

Resistivities of Some Materials at Room
Temperature (20°C)

Resistivity, r Temperature  
Material (! # m) Coefficient

of Resistivity,
a (K$1)

Typical Metals
Silver 1.62 % 10$8 4.1 % 10$3

Copper 1.69 % 10$8 4.3 % 10$3

Gold 2.35 % 10$8 4.0 % 10$3

Aluminum 2.75 % 10$8 4.4 % 10$3

Manganina 4.82 % 10$8 0.002 % 10$3

Tungsten 5.25 % 10$8 4.5 % 10$3

Iron 9.68 % 10$8 6.5 % 10$3

Platinum 10.6 % 10$8 3.9 % 10$3

Typical 
Semiconductors

Silicon,
pure 2.5 % 103 $70 % 10$3

Silicon,
n-typeb 8.7 % 10$4

Silicon,
p-typec 2.8 % 10$3

Typical 
Insulators

Glass 1010 $1014

Fused 
quartz !1016

aAn alloy specifically designed to have a small value
of a.
bPure silicon doped with phosphorus impurities to a
charge carrier density of 1023 m$3.
cPure silicon doped with aluminum impurities to a
charge carrier density of 1023 m$3.

As we have done several times in other connections, we often wish to take a
general view and deal not with particular objects but with materials. Here we do so
by focusing not on the potential difference V across a particular resistor but on the
electric field at a point in a resistive material. Instead of dealing with the current i
through the resistor, we deal with the current density at the point in question.
Instead of the resistance R of an object, we deal with the resistivity r of the material:

(definition of r). (26-10)

(Compare this equation with Eq. 26-8.)
If we combine the SI units of E and J according to Eq. 26-10, we get, for the

unit of r, the ohm-meter (! # m):

(Do not confuse the ohm-meter, the unit of resistivity, with the ohmmeter, which
is an instrument that measures resistance.) Table 26-1 lists the resistivities of
some materials.

unit (E)
unit (J)

"
V/m
A/m2 "

V
A

 m " !#m.

& "
E
J

J
:

E
:
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Resistivity

Together with the geometry of the component made of that
material, we can predict the resistance of the component.

For a wire or cylinder made of material with resistivity ρ:

R =
ρL

A

where A is the cross-sectional area of the wire, and L is the length
of the wire.

690 CHAPTE R 26 CU R R E NT AN D R E S I STANCE

Resistance is a property of an object. Resistivity is a property of a material.

CHECKPOINT 3

The figure here shows three
cylindrical copper conductors
along with their face areas and
lengths. Rank them according to
the current through them, great-
est first, when the same potential difference V is placed across their lengths.

(a) (b)

A

L

(c)

1.5L
A_
2

A_
2

L/2

Fig. 26-9 A potential difference
V is applied between the ends of a
wire of length L and cross section A,
establishing a current i.

L 

i i 

A 
V 

Current is driven by
a potential difference.

We can write Eq. 26-10 in vector form as

(26-11)

Equations 26-10 and 26-11 hold only for isotropic materials—materials whose
electrical properties are the same in all directions.

We often speak of the conductivity s of a material.This is simply the recipro-
cal of its resistivity, so

(definition of s). (26-12)

The SI unit of conductivity is the reciprocal ohm-meter, (! " m)#1. The unit name
mhos per meter is sometimes used (mho is ohm backwards). The definition of s
allows us to write Eq. 26-11 in the alternative form

(26-13)

Calculating Resistance from Resistivity
We have just made an important distinction:

J
:

$ %E
:

.

% $
1
&

E
:

$ &J
:

.

If we know the resistivity of a substance such as copper, we can calculate the
resistance of a length of wire made of that substance. Let A be the cross-sectional
area of the wire, let L be its length, and let a potential difference V exist between
its ends (Fig. 26-9). If the streamlines representing the current density are uniform
throughout the wire, the electric field and the current density will be constant for
all points within the wire and, from Eqs. 24-42 and 26-5, will have the values

E $ V/L and J $ i/A. (26-14)

We can then combine Eqs. 26-10 and 26-14 to write

(26-15)

However, V/i is the resistance R, which allows us to recast Eq. 26-15 as

(26-16)

Equation 26-16 can be applied only to a homogeneous isotropic conductor of
uniform cross section, with the potential difference applied as in Fig. 26-8b.

The macroscopic quantities V, i, and R are of greatest interest when we are
making electrical measurements on specific conductors. They are the quantities
that we read directly on meters. We turn to the microscopic quantities E, J, and r
when we are interested in the fundamental electrical properties of materials.

R $ & 
L
A

.

& $
E
J

$
V/L
i/A

.
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(This follows from the definition of ρ.)



Question

Rank the three cylindrical copper conductors according to the
current through them, greatest first, when the same potential
difference V is placed across their lengths.
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We can write Eq. 26-10 in vector form as

(26-11)

Equations 26-10 and 26-11 hold only for isotropic materials—materials whose
electrical properties are the same in all directions.

We often speak of the conductivity s of a material.This is simply the recipro-
cal of its resistivity, so

(definition of s). (26-12)

The SI unit of conductivity is the reciprocal ohm-meter, (! " m)#1. The unit name
mhos per meter is sometimes used (mho is ohm backwards). The definition of s
allows us to write Eq. 26-11 in the alternative form

(26-13)

Calculating Resistance from Resistivity
We have just made an important distinction:
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E
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.

If we know the resistivity of a substance such as copper, we can calculate the
resistance of a length of wire made of that substance. Let A be the cross-sectional
area of the wire, let L be its length, and let a potential difference V exist between
its ends (Fig. 26-9). If the streamlines representing the current density are uniform
throughout the wire, the electric field and the current density will be constant for
all points within the wire and, from Eqs. 24-42 and 26-5, will have the values

E $ V/L and J $ i/A. (26-14)

We can then combine Eqs. 26-10 and 26-14 to write

(26-15)

However, V/i is the resistance R, which allows us to recast Eq. 26-15 as

(26-16)

Equation 26-16 can be applied only to a homogeneous isotropic conductor of
uniform cross section, with the potential difference applied as in Fig. 26-8b.

The macroscopic quantities V, i, and R are of greatest interest when we are
making electrical measurements on specific conductors. They are the quantities
that we read directly on meters. We turn to the microscopic quantities E, J, and r
when we are interested in the fundamental electrical properties of materials.
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J
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V/L
i/A

.
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(A) a, b, c

(B) c, b, a

(C) b, (a and c)

(D) (a and c), b
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We can write Eq. 26-10 in vector form as

(26-11)

Equations 26-10 and 26-11 hold only for isotropic materials—materials whose
electrical properties are the same in all directions.

We often speak of the conductivity s of a material.This is simply the recipro-
cal of its resistivity, so

(definition of s). (26-12)

The SI unit of conductivity is the reciprocal ohm-meter, (! " m)#1. The unit name
mhos per meter is sometimes used (mho is ohm backwards). The definition of s
allows us to write Eq. 26-11 in the alternative form
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Calculating Resistance from Resistivity
We have just made an important distinction:
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If we know the resistivity of a substance such as copper, we can calculate the
resistance of a length of wire made of that substance. Let A be the cross-sectional
area of the wire, let L be its length, and let a potential difference V exist between
its ends (Fig. 26-9). If the streamlines representing the current density are uniform
throughout the wire, the electric field and the current density will be constant for
all points within the wire and, from Eqs. 24-42 and 26-5, will have the values

E $ V/L and J $ i/A. (26-14)

We can then combine Eqs. 26-10 and 26-14 to write

(26-15)

However, V/i is the resistance R, which allows us to recast Eq. 26-15 as

(26-16)

Equation 26-16 can be applied only to a homogeneous isotropic conductor of
uniform cross section, with the potential difference applied as in Fig. 26-8b.

The macroscopic quantities V, i, and R are of greatest interest when we are
making electrical measurements on specific conductors. They are the quantities
that we read directly on meters. We turn to the microscopic quantities E, J, and r
when we are interested in the fundamental electrical properties of materials.
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(A) a, b, c

(B) c, b, a

(C) b, (a and c)

(D) (a and c), b←



Conductivity

Sometimes it is useful to represent how conductive a material is:
how readily it permits current to flow, as opposed to how much it
resists the flow of current.

conductivity, σ

a measure of what the current density is in a material for a
particular electric field; the inverse of resistivity:

σ =
1

ρ
=

J

E

This is different than surface charge density (also written σ). This
is just an unfortunate coincidence of notation.
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Conductivity

conductivity, σ

a measure of what the current density is in a material for a
particular electric field; the inverse of resistivity:

σ =
1

ρ
=

J

E

The units of conductivity are (Ω m)−1.

We can use conductivity to relate the current density to the
electric field in a material:

J = σE



Resistivity can depend on Temperature
69126-4 R E S I STANCE AN D R E S I STIVITY

PART 3

Variation with Temperature
The values of most physical properties vary with temperature, and resistivity is no
exception. Figure 26-10, for example, shows the variation of this property for
copper over a wide temperature range. The relation between temperature and
resistivity for copper—and for metals in general—is fairly linear over a rather
broad temperature range. For such linear relations we can write an empirical
approximation that is good enough for most engineering purposes:

r ! r0 " r0a(T !T0). (26-17)

Here T0 is a selected reference temperature and r0 is the resistivity at that tem-
perature. Usually T0 " 293 K (room temperature), for which r0 " 1.69 # 10!8

$ % m for copper.
Because temperature enters Eq. 26-17 only as a difference, it does not matter

whether you use the Celsius or Kelvin scale in that equation because the sizes of
degrees on these scales are identical. The quantity a in Eq. 26-17, called the
temperature coefficient of resistivity, is chosen so that the equation gives good
agreement with experiment for temperatures in the chosen range. Some values of
a for metals are listed in Table 26-1.

Fig. 26-10 The re-
sistivity of copper as a
function of tempera-
ture.The dot on the
curve marks a conve-
nient reference point at
temperature T0 " 293
K and resistivity r0 "
1.69 # 10!8 $ % m.
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Resistivity can depend
on temperature.

Sample Problem

Calculations: For arrangement 1, we have L " 15 cm "
0.15 m and

A " (1.2 cm)2 " 1.44 # 10!4 m2.

Substituting into Eq. 26-16 with the resistivity r from Table
26-1, we then find that for arrangement 1,

3

(Answer)

Similarly, for arrangement 2, with distance L " 1.2 cm
and area A " (1.2 cm)(15 cm), we obtain

(Answer) " 6.5 # 10 !7 $ " 0.65 &$.

  R "
'L
A

"
(9.68 # 10 !8 $%m)(1.2 # 10 !2 m)

1.80 # 10 !3 m2

 " 1.0 # 10 !4 $ " 100 &$.

  R "
'L
(

"
(9.68 # 10 !8 $%m)(0.15 m)

1.44 # 10 !4 m2

A material has resistivity, a block of the material has resistance

A rectangular block of iron has dimensions 1.2 cm # 1.2
cm # 15 cm. A potential difference is to be applied to
the block between parallel sides and in such a way that
those sides are equipotential surfaces (as in Fig. 26-8b).
What is the resistance of the block if the two parallel
sides are (1) the square ends (with dimensions 1.2 cm #
1.2 cm) and (2) two rectangular sides (with dimensions
1.2 cm # 15 cm)?

The resistance R of an object depends on how the electric
potential is applied to the object. In particular, it depends
on the ratio L/A, according to Eq. 26-16 (R " rL/A),
where A is the area of the surfaces to which the potential
difference is applied and L is the distance between those
surfaces.

KEY I DEA

Additional examples, video, and practice available at WileyPLUS
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Resistivity can depend on Temperature

The relationship between resistivity and temperature is close to
linear.

For most engineering purposes, a linear model is good enough.

The model:
ρ− ρ0 = ρ0α(T − T0)

The resistivity varies linearly with the difference in temperature
from some reference value T0.

ρ0 is the resistivity at T0.



Resistivity can depend on Temperature

ρ− ρ0 = ρ0α(T − T0)

α is just a constant, however it takes different values for different
materials.

α is called the temperature coefficient of resistivity. It has
units K−1.

For example for copper:

ρ0 = 1.62× 10−8 Ω m

α = 4.3× 10−3 K−1



Ohm’s Law

Ohm’s Law

The current through a device is directly proportional to the
potential difference applied across the device.

Not all devices obey Ohm’s Law!

In fact, for all materials, if ∆V is large enough, Ohm’s law fails.

They only obey Ohm’s law when the resistance of the device is
independent of the applied potential difference and its polarity
(that is, which side is the higher potential).



Ohm’s Law

Obeys Ohm’s law:

Ohm’s law is an assertion that the current through a device is always directly
proportional to the potential difference applied to the device.

A conducting device obeys Ohm’s law when the resistance of the device is indepen-
dent of the magnitude and polarity of the applied potential difference.

CHECKPOINT 4

The following table gives the current i (in
amperes) through two devices for sev-
eral values of potential difference V (in
volts). From these data, determine which
device does not obey Ohm’s law.

Device 1 Device 2

V i V i

2.00 4.50 2.00 1.50
3.00 6.75 3.00 2.20
4.00 9.00 4.00 2.80

+2
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(a)

(b)

(c)

V

?
i

+ –

i

Potential difference (V)

–4

Fig. 26-11 (a) A potential difference V
is applied to the terminals of a device,
establishing a current i. (b) A plot of cur-
rent i versus applied potential difference V
when the device is a 1000 ! resistor. (c) A
plot when the device is a semiconducting
pn junction diode.
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26-5 Ohm’s Law
As we just discussed in Section 26-4, a resistor is a conductor with a specified
resistance. It has that same resistance no matter what the magnitude and direction
(polarity) of the applied potential difference are. Other conducting devices, how-
ever, might have resistances that change with the applied potential difference.

Figure 26-11a shows how to distinguish such devices. A potential difference
V is applied across the device being tested, and the resulting current i through the
device is measured as V is varied in both magnitude and polarity. The polarity of
V is arbitrarily taken to be positive when the left terminal of the device is at a
higher potential than the right terminal. The direction of the resulting current
(from left to right) is arbitrarily assigned a plus sign. The reverse polarity of V
(with the right terminal at a higher potential) is then negative; the current it
causes is assigned a minus sign.

Figure 26-11b is a plot of i versus V for one device. This plot is a straight line
passing through the origin, so the ratio i/V (which is the slope of the straight line)
is the same for all values of V. This means that the resistance R " V/i of the
device is independent of the magnitude and polarity of the applied potential
difference V.

Figure 26-11c is a plot for another conducting device. Current can exist in this
device only when the polarity of V is positive and the applied potential difference
is more than about 1.5 V.When current does exist, the relation between i and V is
not linear; it depends on the value of the applied potential difference V.

We distinguish between the two types of device by saying that one obeys
Ohm’s law and the other does not.

(This assertion is correct only in certain situations; still, for historical reasons, the
term “law” is used.) The device of Fig. 26-11b—which turns out to be a 1000 !
resistor—obeys Ohm’s law. The device of Fig. 26-11c—which is called a pn junc-
tion diode—does not.

All homogeneous materials, whether they are conductors like copper or semicon-
ductors like pure silicon or silicon containing special impurities, obey Ohm’s law
within some range of values of the electric field. If the field is too strong, however,
there are departures from Ohm’s law in all cases.

A conducting material obeys Ohm’s law when the resistivity of the material is
independent of the magnitude and direction of the applied electric field.

It is often contended that V " iR is a statement of Ohm’s law. That is not
true! This equation is the defining equation for resistance, and it applies to all
conducting devices, whether they obey Ohm’s law or not. If we measure the
potential difference V across, and the current i through, any device, even a pn
junction diode, we can find its resistance at that value of V as R " V/i.The essence
of Ohm’s law, however, is that a plot of i versus V is linear; that is, R is inde-
pendent of V.

We can express Ohm’s law in a more general way if we focus on conducting
materials rather than on conducting devices. The relevant relation is then
Eq. 26-11 which corresponds to V " iR.(E

:
" # J

:
),
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Does not obey Ohm’s law:
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is applied to the terminals of a device,
establishing a current i. (b) A plot of cur-
rent i versus applied potential difference V
when the device is a 1000 ! resistor. (c) A
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26-5 Ohm’s Law
As we just discussed in Section 26-4, a resistor is a conductor with a specified
resistance. It has that same resistance no matter what the magnitude and direction
(polarity) of the applied potential difference are. Other conducting devices, how-
ever, might have resistances that change with the applied potential difference.

Figure 26-11a shows how to distinguish such devices. A potential difference
V is applied across the device being tested, and the resulting current i through the
device is measured as V is varied in both magnitude and polarity. The polarity of
V is arbitrarily taken to be positive when the left terminal of the device is at a
higher potential than the right terminal. The direction of the resulting current
(from left to right) is arbitrarily assigned a plus sign. The reverse polarity of V
(with the right terminal at a higher potential) is then negative; the current it
causes is assigned a minus sign.

Figure 26-11b is a plot of i versus V for one device. This plot is a straight line
passing through the origin, so the ratio i/V (which is the slope of the straight line)
is the same for all values of V. This means that the resistance R " V/i of the
device is independent of the magnitude and polarity of the applied potential
difference V.

Figure 26-11c is a plot for another conducting device. Current can exist in this
device only when the polarity of V is positive and the applied potential difference
is more than about 1.5 V.When current does exist, the relation between i and V is
not linear; it depends on the value of the applied potential difference V.

We distinguish between the two types of device by saying that one obeys
Ohm’s law and the other does not.

(This assertion is correct only in certain situations; still, for historical reasons, the
term “law” is used.) The device of Fig. 26-11b—which turns out to be a 1000 !
resistor—obeys Ohm’s law. The device of Fig. 26-11c—which is called a pn junc-
tion diode—does not.

All homogeneous materials, whether they are conductors like copper or semicon-
ductors like pure silicon or silicon containing special impurities, obey Ohm’s law
within some range of values of the electric field. If the field is too strong, however,
there are departures from Ohm’s law in all cases.

A conducting material obeys Ohm’s law when the resistivity of the material is
independent of the magnitude and direction of the applied electric field.

It is often contended that V " iR is a statement of Ohm’s law. That is not
true! This equation is the defining equation for resistance, and it applies to all
conducting devices, whether they obey Ohm’s law or not. If we measure the
potential difference V across, and the current i through, any device, even a pn
junction diode, we can find its resistance at that value of V as R " V/i.The essence
of Ohm’s law, however, is that a plot of i versus V is linear; that is, R is inde-
pendent of V.

We can express Ohm’s law in a more general way if we focus on conducting
materials rather than on conducting devices. The relevant relation is then
Eq. 26-11 which corresponds to V " iR.(E
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We can write this linear relationship as ∆V = IR if and only if R
is constant and independent of ∆V .

However, notice that we can always define R(∆V ) = ∆V
I even

when resistance does depend on ∆V .



Ohm’s Law Question

The following table gives the current i (in amperes) through two
devices for several values of potential difference V (in volts).
Which of the devices obeys Ohm’s law?

Ohm’s law is an assertion that the current through a device is always directly
proportional to the potential difference applied to the device.

A conducting device obeys Ohm’s law when the resistance of the device is indepen-
dent of the magnitude and polarity of the applied potential difference.

CHECKPOINT 4

The following table gives the current i (in
amperes) through two devices for sev-
eral values of potential difference V (in
volts). From these data, determine which
device does not obey Ohm’s law.

Device 1 Device 2

V i V i

2.00 4.50 2.00 1.50
3.00 6.75 3.00 2.20
4.00 9.00 4.00 2.80
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(This assertion is correct only in certain situations; still, for historical reasons, the
term “law” is used.) The device of Fig. 26-11b—which turns out to be a 1000 !
resistor—obeys Ohm’s law. The device of Fig. 26-11c—which is called a pn junc-
tion diode—does not.

All homogeneous materials, whether they are conductors like copper or semicon-
ductors like pure silicon or silicon containing special impurities, obey Ohm’s law
within some range of values of the electric field. If the field is too strong, however,
there are departures from Ohm’s law in all cases.

A conducting material obeys Ohm’s law when the resistivity of the material is
independent of the magnitude and direction of the applied electric field.

It is often contended that V " iR is a statement of Ohm’s law. That is not
true! This equation is the defining equation for resistance, and it applies to all
conducting devices, whether they obey Ohm’s law or not. If we measure the
potential difference V across, and the current i through, any device, even a pn
junction diode, we can find its resistance at that value of V as R " V/i.The essence
of Ohm’s law, however, is that a plot of i versus V is linear; that is, R is inde-
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(A) 1 only

(B) 2 only

(C) both

(D) neither

1Halliday, Resnick, Walker, page 692.
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resistance. It has that same resistance no matter what the magnitude and direction
(polarity) of the applied potential difference are. Other conducting devices, how-
ever, might have resistances that change with the applied potential difference.

Figure 26-11a shows how to distinguish such devices. A potential difference
V is applied across the device being tested, and the resulting current i through the
device is measured as V is varied in both magnitude and polarity. The polarity of
V is arbitrarily taken to be positive when the left terminal of the device is at a
higher potential than the right terminal. The direction of the resulting current
(from left to right) is arbitrarily assigned a plus sign. The reverse polarity of V
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is the same for all values of V. This means that the resistance R " V/i of the
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difference V.
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is more than about 1.5 V.When current does exist, the relation between i and V is
not linear; it depends on the value of the applied potential difference V.

We distinguish between the two types of device by saying that one obeys
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(This assertion is correct only in certain situations; still, for historical reasons, the
term “law” is used.) The device of Fig. 26-11b—which turns out to be a 1000 !
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there are departures from Ohm’s law in all cases.
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A reason for Ohm’s Law?
Electrons in an electric field accelerate.

We supply a constant potential difference across a resistor. Why
do the electrons not move faster and faster?

The mechanism for resistance that the electrons collide with atoms
in the resistive material.

69326-6 A M ICROSCOPIC VI EW OF OH M’S LAW
PART 3

26-6 A Microscopic View of Ohm’s Law
To find out why particular materials obey Ohm’s law, we must look into the
details of the conduction process at the atomic level. Here we consider only con-
duction in metals, such as copper. We base our analysis on the free-electron
model, in which we assume that the conduction electrons in the metal are free to
move throughout the volume of a sample, like the molecules of a gas in a closed
container. We also assume that the electrons collide not with one another but
only with atoms of the metal.

According to classical physics, the electrons should have a Maxwellian speed
distribution somewhat like that of the molecules in a gas (Section 19-7), and thus
the average electron speed should depend on the temperature. The motions of
electrons are, however, governed not by the laws of classical physics but by those
of quantum physics. As it turns out, an assumption that is much closer to the
quantum reality is that conduction electrons in a metal move with a single effec-
tive speed veff, and this speed is essentially independent of the temperature. For
copper, veff ! 1.6 ! 106 m/s.

When we apply an electric field to a metal sample, the electrons modify their
random motions slightly and drift very slowly—in a direction opposite that of
the field—with an average drift speed vd. The drift speed in a typical metallic con-
ductor is about 5 ! 10"7 m/s, less than the effective speed (1.6 ! 106 m/s) by many
orders of magnitude. Figure 26-12 suggests the relation between these two
speeds.The gray lines show a possible random path for an electron in the absence
of an applied field; the electron proceeds from A to B, making six collisions along
the way. The green lines show how the same events might occur when an electric
field is applied. We see that the electron drifts steadily to the right, ending at B#
rather than at B. Figure 26-12 was drawn with the assumption that vd ! 0.02veff.
However, because the actual value is more like vd ! (10"13)veff, the drift displayed in
the figure is greatly exaggerated.

The motion of conduction electrons in an electric field is thus a combina-
tion of the motion due to random collisions and that due to When we consider
all the free electrons, their random motions average to zero and make no con-
tribution to the drift speed. Thus, the drift speed is due only to the effect of the
electric field on the electrons.

If an electron of mass m is placed in an electric field of magnitude E, the elec-
tron will experience an acceleration given by Newton’s second law:

(26-18)

The nature of the collisions experienced by conduction electrons is such that,
after a typical collision, each electron will—so to speak—completely lose its
memory of its previous drift velocity. Each electron will then start off fresh after
every encounter, moving off in a random direction. In the average time t between
collisions, the average electron will acquire a drift speed of vd $ at. Moreover, if
we measure the drift speeds of all the electrons at any instant, we will find that
their average drift speed is also at. Thus, at any instant, on average, the electrons
will have drift speed vd $ at.Then Eq. 26-18 gives us

(26-19)

Combining this result with Eq. 26-7 in magnitude form, yields
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electron moving from A to B, making
six collisions en route.The green lines
show what the electron’s path might
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direction of (Actually, the green
lines should be slightly curved, to rep-
resent the parabolic paths followed by
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The collisions slow the drift of the electrons.
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The collisions slow the drift of the electrons.



A reason for Ohm’s Law?

We could then model resistance as being inversely proportional to
the average time between collisions τ:

ρ ∼
1

τ

So, does the time between collisions depend on the potential
difference across the conductor?

It would, if the electric field cause a large change in the average
electron’s velocity. We would expect faster moving electrons to
collide more frequently (τ would decrease).

(The book has more details on this: it give the Drude model.)



A reason for Ohm’s Law?

ρ ∼
1

τ

However, the average velocity of an electron in room temperature
copper is v ∼ 1.6× 106 m/s.

The drift velocity is perhaps vd ∼ 10−7 m/s : vd
v ≈ 10−13 !

This means that varying the potential difference will have a
negligible affect on τ and therefore also on the resisitivity ρ.

⇒ R is independent of ∆V in many cases.



Power

Power is the rate of energy transfer or the rate at which work is
done:

P =
W

∆t

For an electrical circuit we can ask about the rate at which a
battery or other power supply transfers energy to a device.

This depends on the current and the potential difference:

P = I (∆V )



Power

P = I ∆V

The units for power are Watts, W.

1 W = 1 J/s.

Does this agree with the new equation?

1 A V = (1 C/s) (1 J/C) = 1 J/s . Yes.



Power

P = I ∆V

The units for power are Watts, W.

1 W = 1 J/s.

Does this agree with the new equation?

1 A V = (1 C/s) (1 J/C) = 1 J/s . Yes.



Power Dissipated

P = I ∆V

We can use this expression along with R = ∆V
I to find the power

dissipated as heat in a resistor.

Power dissipated as heat in a resistor:

P = I2R

or equivalently,

P =
(∆V )2

R

where I in the first equation is the current through the resistor
and ∆V in the second equation is the potential difference across
the resistor.



Summary

• current

• current density

• drift speed

• resistance

• Ohm’s Law

• power

Midterm on Nov 3rd.
Homework Halliday, Resnick, Walker:

• Ch 26, onward from page 699. Questions: 3, 5; Problems: 1,
5, 13, 17, 19, 21, 27


