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Last time

• current

• current density

• drift speed

• resistance

• resistivity

• conductance

• Ohm’s Law

• power



Overview

• emf

• internal resistance of batteries

• potential drops

• Kirchhoff loop rule

• resistors in series and parallel



Power

P = I ∆V

The units for power are Watts, W.

1 W = 1 J/s.

Does this agree with the new equation?

1 A V = (1 C/s) (1 J/C) = 1 J/s . Yes.
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Power Dissipated

P = I ∆V

We can use this expression along with R = ∆V
I to find the power

dissipated as heat in a resistor.

Power dissipated as heat in a resistor:

P = I2R

or equivalently,

P =
(∆V )2

R

where I in the first equation is the current in the resistor and ∆V
in the second equation is the potential difference across the
resistor.



Example: Why High Voltage?



Example

A power station supplies current I = 5 A and potential difference
∆V = 1200 kV to a particular installation along the electric grid.
How much power is supplied to the installation?

P = I ∆V = (5 A)(1.2× 106 V) = 6 MW

Suppose the power station is 1000 km from the installation and
delivers the power over copper wires. Assume the resistivity of
copper is 1.69× 10−8 Ω m and the radius of the high tension wire
is 2 cm. What is the resistance of the wire delivering the
electricity?

R =
ρL

A
= 13.4 Ω
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Example

How much power is dissipated as heat in the transmission lines to
the installation (current I = 5 A and potential difference
∆V = 1200 kV are supplied to the station)?

P = I2R = (5 A)2(13.4 Ω) = 336 W

How much power would be dissipated as heat in the transmission
lines to the installation if instead the station supplied 6 MW of
power with current I = 500 A and potential difference
∆V = 12 kV?

P = I2R = (500 A)2(13.4 Ω) = 3.36 MW

Much more loss!
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Example

This is why power stations transmit power at a very high voltage.

The voltage is “stepped down” before being delivered to your
house.

Mains electricity in the US is distributed throughout a house at
120 V. (The “line voltage”.)



Circuits (Ch 27)

Circuits consist of a collection of electrical components connected
by conducting wires through which charge is driven by an energy
source.

Right now we focus on direct-current (DC) circuits.

In a direct-current circuit current flows in one direction only.

This is the only type of situation we have been considering so far.
However, in the coming labs you may look at some situations with
alternating-current (AC), in which the current flows forward,
then backward, through the circuit.



Potential in a Circuit834 Chapter 28 Direct-Current Circuits

Because a real battery is made of matter, there is resistance to the flow of charge 
within the battery. This resistance is called internal resistance r. For an idealized 
battery with zero internal resistance, the potential difference across the battery 
(called its terminal voltage) equals its emf. For a real battery, however, the terminal 
voltage is not equal to the emf for a battery in a circuit in which there is a current. 
To understand why, consider the circuit diagram in Figure 28.1a. We model the bat-
tery as shown in the diagram; it is represented by the dashed rectangle containing 
an ideal, resistance-free emf e in series with an internal resistance r. A resistor of 
resistance R is connected across the terminals of the battery. Now imagine moving 
through the battery from a to d and measuring the electric potential at various 
locations. Passing from the negative terminal to the positive terminal, the potential 
increases by an amount e. As we move through the resistance r, however, the poten-
tial decreases by an amount Ir, where I is the current in the circuit. Therefore, the 
terminal voltage of the battery DV 5 Vd 2 Va is

 DV 5 e 2 Ir  (28.1)

From this expression, notice that e is equivalent to the open-circuit voltage, that 
is, the terminal voltage when the current is zero. The emf is the voltage labeled on 
a battery; for example, the emf of a D cell is 1.5 V. The actual potential difference 
between a battery’s terminals depends on the current in the battery as described by 
Equation 28.1. Figure 28.1b is a graphical representation of the changes in electric 
potential as the circuit is traversed in the clockwise direction.
 Figure 28.1a shows that the terminal voltage DV must equal the potential differ-
ence across the external resistance R, often called the load resistance. The load resis-
tor might be a simple resistive circuit element as in Figure 28.1a, or it could be the 
resistance of some electrical device (such as a toaster, electric heater, or lightbulb) 
connected to the battery (or, in the case of household devices, to the wall outlet). 
The resistor represents a load on the battery because the battery must supply energy 
to operate the device containing the resistance. The potential difference across the 
load resistance is DV 5 IR. Combining this expression with Equation 28.1, we see that

 e 5 IR 1 Ir  (28.2)

Figure 28.1a shows a graphical representation of this equation. Solving for the cur-
rent gives

 I 5
e

R 1 r
 (28.3)

Equation 28.3 shows that the current in this simple circuit depends on both the 
load resistance R external to the battery and the internal resistance r. If R is much 
greater than r, as it is in many real-world circuits, we can neglect r.
 Multiplying Equation 28.2 by the current I in the circuit gives

 Ie = I 2R 1 I 2r (28.4)

Equation 28.4 indicates that because power P 5 I DV (see Eq. 27.21), the total power 
output Ie associated with the emf of the battery is delivered to the external load 
resistance in the amount I 2R and to the internal resistance in the amount I 2r.

Q uick Quiz 28.1  To maximize the percentage of the power from the emf of a bat-
tery that is delivered to a device external to the battery, what should the internal 
resistance of the battery be? (a) It should be as low as possible. (b) It should be as 
high as possible. (c) The percentage does not depend on the internal resistance.
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Figure 28.1 (a) Circuit diagram 
of a source of emf e (in this case, 
a battery), of internal resistance 
r, connected to an external resis-
tor of resistance R. (b) Graphical 
representation showing how the 
electric potential changes as the 
circuit in (a) is traversed clockwise.

Pitfall Prevention 28.1
What Is Constant in a Battery?  
It is a common misconception that 
a battery is a source of constant 
current. Equation 28.3 shows that 
is not true. The current in the cir-
cuit depends on the resistance R 
connected to the battery. It is also 
not true that a battery is a source 
of constant terminal voltage as 
shown by Equation 28.1. A battery 
is a source of constant emf.

Example 28.1   Terminal Voltage of a Battery

A battery has an emf of 12.0 V and an internal resistance of 0.050 0 V. Its terminals are connected to a load resistance 
of 3.00 V.
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Example 28.1   Terminal Voltage of a Battery

A battery has an emf of 12.0 V and an internal resistance of 0.050 0 V. Its terminals are connected to a load resistance 
of 3.00 V.

The potential drops across each resistor in the circuit as each
transforms electrical power to heat.

Equivalently, the potential energy of a charge q decreases as it
moves through a resistor.

Batteries increase the potential energy of a charge / raise the
potential.



A closer look at batteries and power supplies

Batteries and power supplies fill a critical role in circuits.

They supply the energy to drive the charges around the circuit.

They do this by creating a charge imbalance and causing each
charge to experience a force.



Electomotive Force

We say that a battery or power supply contributes an
electromotive force (emf) and we can call batteries and power
supplies emf devices.

These devices act as “charge pumps” in a circuit.

emf device

A device that maintains a potential difference between two points
(terminals) in the circuit.



Electomotive “Force” (emf)

There is a force on each free charge in the system because there is
an electric field.

F = qE

The electric field exists because of the potential difference supplied
to the circuit by the battery.

But this is not what we mean by emf! The emf is not actually a
force.



Electomotive “Force”

We write an emf as E, and label the battery with it:
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homes and workplaces. The emf devices known as solar cells, long familiar as the
wing-like panels on spacecraft, also dot the countryside for domestic applications.
Less familiar emf devices are the fuel cells that power the space shuttles and the
thermopiles that provide onboard electrical power for some spacecraft and for
remote stations in Antarctica and elsewhere. An emf device does not have to be
an instrument—living systems, ranging from electric eels and human beings to
plants, have physiological emf devices.

Although the devices we have listed differ widely in their modes of opera-
tion, they all perform the same basic function—they do work on charge carriers
and thus maintain a potential difference between their terminals.

27-3 Work, Energy, and Emf
Figure 27-1 shows an emf device (consider it to be a battery) that is part of a
simple circuit containing a single resistance R (the symbol for resistance and a
resistor is ). The emf device keeps one of its terminals (called the positive
terminal and often labeled !) at a higher electric potential than the other termi-
nal (called the negative terminal and labeled ").We can represent the emf of the
device with an arrow that points from the negative terminal toward the positive
terminal as in Fig. 27-1. A small circle on the tail of the emf arrow distinguishes it
from the arrows that indicate current direction.

When an emf device is not connected to a circuit, the internal chemistry of
the device does not cause any net flow of charge carriers within it. However,
when it is connected to a circuit as in Fig. 27-1, its internal chemistry causes a net
flow of positive charge carriers from the negative terminal to the positive termi-
nal, in the direction of the emf arrow. This flow is part of the current that is set up
around the circuit in that same direction (clockwise in Fig. 27-1).

Within the emf device, positive charge carriers move from a region of low
electric potential and thus low electric potential energy (at the negative terminal)
to a region of higher electric potential and higher electric potential energy (at
the positive terminal). This motion is just the opposite of what the electric field
between the terminals (which is directed from the positive terminal toward the
negative terminal) would cause the charge carriers to do.

Thus, there must be some source of energy within the device, enabling it to
do work on the charges by forcing them to move as they do. The energy source
may be chemical, as in a battery or a fuel cell. It may involve mechanical forces, as
in an electric generator. Temperature differences may supply the energy, as in a
thermopile; or the Sun may supply it, as in a solar cell.

Let us now analyze the circuit of Fig. 27-1 from the point of view of work and
energy transfers. In any time interval dt, a charge dq passes through any cross sec-
tion of this circuit, such as aa#. This same amount of charge must enter the emf
device at its low-potential end and leave at its high-potential end. The device
must do an amount of work dW on the charge dq to force it to move in this way.
We define the emf of the emf device in terms of this work:

(definition of !). (27-1)

In words, the emf of an emf device is the work per unit charge that the device
does in moving charge from its low-potential terminal to its high-potential termi-
nal. The SI unit for emf is the joule per coulomb; in Chapter 24 we defined that
unit as the volt.

An ideal emf device is one that lacks any internal resistance to the internal
movement of charge from terminal to terminal.The potential difference between
the terminals of an ideal emf device is equal to the emf of the device. For exam-

! $
dW
dq

The world’s largest battery energy storage
plant (dismantled in 1996) connected over
8000 large lead-acid batteries in 8 strings at
1000 V each with a capability of 10 MW of
power for 4 hours. Charged up at night, the
batteries were then put to use during peak
power demands on the electrical system.
(Courtesy Southern California Edison
Company)
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Fig. 27-1 A simple electric circuit, in
which a device of emf ! does work on the
charge carriers and maintains a steady 
current i in a resistor of resistance R.
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Emf is actually a energy supplied per unit charge!
(Measured in volts.)

This makes calling it a “force” a bit misleading.



Electomotive “Force”

To be clear: the electromotive “force” is not a force.

It is an energy supplied per unit charge! It has the units volts.

The name is an unfortunate choice that stuck.



EMF

We can define emf by the following relation:

E =
∆W

∆q

meaning, an emf device does a work ∆W on anamount of charge
∆q:

∆W = E∆q

while moving the infinitesimal charge dq from the negative
terminal to the positive terminal. (Imagining dq to be positive.)

The amount of work that is done “lifting” this charge to the higher
potential terminal depends only on the potential difference, so E is
a potential difference measured in volts.



Power Supplied

This definition for emf gives the power supplied by an emf device.

E =
∆W

∆q

Power is the rate at which the work is done:

P =
∆W

∆t
= E

∆q

∆t

(assuming that the emf supplied by a source is constant.)
Then notice that I = ∆q

∆t , so

P = IE

This is the total power supplied by an emf device!

Compare to P = I (∆V ) as the power delivered to any component.



EMF

Why do we suddenly need to call potential difference ∆V of a
battery emf E?

Usually, we introduce emf when we want to make the battery more
realistic: batteries have some internal resistance, so the
potential the supplied is not the same in all circumstances.

The emf gives the maximum potential a battery can supply.

There is one other important reason, however: we can now start to
encounter circumstances where we cannot define electric potential
- this will only be important when we come onto magnetic fields.
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Internal resistance
How does internal resistance affect the supplied potential
difference?

It is another resistance that is in series!834 Chapter 28 Direct-Current Circuits

Because a real battery is made of matter, there is resistance to the flow of charge 
within the battery. This resistance is called internal resistance r. For an idealized 
battery with zero internal resistance, the potential difference across the battery 
(called its terminal voltage) equals its emf. For a real battery, however, the terminal 
voltage is not equal to the emf for a battery in a circuit in which there is a current. 
To understand why, consider the circuit diagram in Figure 28.1a. We model the bat-
tery as shown in the diagram; it is represented by the dashed rectangle containing 
an ideal, resistance-free emf e in series with an internal resistance r. A resistor of 
resistance R is connected across the terminals of the battery. Now imagine moving 
through the battery from a to d and measuring the electric potential at various 
locations. Passing from the negative terminal to the positive terminal, the potential 
increases by an amount e. As we move through the resistance r, however, the poten-
tial decreases by an amount Ir, where I is the current in the circuit. Therefore, the 
terminal voltage of the battery DV 5 Vd 2 Va is

 DV 5 e 2 Ir  (28.1)

From this expression, notice that e is equivalent to the open-circuit voltage, that 
is, the terminal voltage when the current is zero. The emf is the voltage labeled on 
a battery; for example, the emf of a D cell is 1.5 V. The actual potential difference 
between a battery’s terminals depends on the current in the battery as described by 
Equation 28.1. Figure 28.1b is a graphical representation of the changes in electric 
potential as the circuit is traversed in the clockwise direction.
 Figure 28.1a shows that the terminal voltage DV must equal the potential differ-
ence across the external resistance R, often called the load resistance. The load resis-
tor might be a simple resistive circuit element as in Figure 28.1a, or it could be the 
resistance of some electrical device (such as a toaster, electric heater, or lightbulb) 
connected to the battery (or, in the case of household devices, to the wall outlet). 
The resistor represents a load on the battery because the battery must supply energy 
to operate the device containing the resistance. The potential difference across the 
load resistance is DV 5 IR. Combining this expression with Equation 28.1, we see that

 e 5 IR 1 Ir  (28.2)

Figure 28.1a shows a graphical representation of this equation. Solving for the cur-
rent gives

 I 5
e

R 1 r
 (28.3)

Equation 28.3 shows that the current in this simple circuit depends on both the 
load resistance R external to the battery and the internal resistance r. If R is much 
greater than r, as it is in many real-world circuits, we can neglect r.
 Multiplying Equation 28.2 by the current I in the circuit gives

 Ie = I 2R 1 I 2r (28.4)

Equation 28.4 indicates that because power P 5 I DV (see Eq. 27.21), the total power 
output Ie associated with the emf of the battery is delivered to the external load 
resistance in the amount I 2R and to the internal resistance in the amount I 2r.

Q uick Quiz 28.1  To maximize the percentage of the power from the emf of a bat-
tery that is delivered to a device external to the battery, what should the internal 
resistance of the battery be? (a) It should be as low as possible. (b) It should be as 
high as possible. (c) The percentage does not depend on the internal resistance.

Rra b c d e f
V

IR

0

Ir

a c

f

R

I

b d

r

e

I

e

e

e

a

b

! "

Figure 28.1 (a) Circuit diagram 
of a source of emf e (in this case, 
a battery), of internal resistance 
r, connected to an external resis-
tor of resistance R. (b) Graphical 
representation showing how the 
electric potential changes as the 
circuit in (a) is traversed clockwise.

Pitfall Prevention 28.1
What Is Constant in a Battery?  
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a battery is a source of constant 
current. Equation 28.3 shows that 
is not true. The current in the cir-
cuit depends on the resistance R 
connected to the battery. It is also 
not true that a battery is a source 
of constant terminal voltage as 
shown by Equation 28.1. A battery 
is a source of constant emf.
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of 3.00 V.
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greater than r, as it is in many real-world circuits, we can neglect r.
 Multiplying Equation 28.2 by the current I in the circuit gives

 Ie = I 2R 1 I 2r (28.4)

Equation 28.4 indicates that because power P 5 I DV (see Eq. 27.21), the total power 
output Ie associated with the emf of the battery is delivered to the external load 
resistance in the amount I 2R and to the internal resistance in the amount I 2r.

Q uick Quiz 28.1  To maximize the percentage of the power from the emf of a bat-
tery that is delivered to a device external to the battery, what should the internal 
resistance of the battery be? (a) It should be as low as possible. (b) It should be as 
high as possible. (c) The percentage does not depend on the internal resistance.
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Figure 28.1 (a) Circuit diagram 
of a source of emf e (in this case, 
a battery), of internal resistance 
r, connected to an external resis-
tor of resistance R. (b) Graphical 
representation showing how the 
electric potential changes as the 
circuit in (a) is traversed clockwise.

Pitfall Prevention 28.1
What Is Constant in a Battery?  
It is a common misconception that 
a battery is a source of constant 
current. Equation 28.3 shows that 
is not true. The current in the cir-
cuit depends on the resistance R 
connected to the battery. It is also 
not true that a battery is a source 
of constant terminal voltage as 
shown by Equation 28.1. A battery 
is a source of constant emf.

Example 28.1   Terminal Voltage of a Battery

A battery has an emf of 12.0 V and an internal resistance of 0.050 0 V. Its terminals are connected to a load resistance 
of 3.00 V.

Let r be the internal resistance

Vr = Ir

Vr is the potential drop across the internal resistance.



Internal resistance
How does internal resistance affect the supplied potential
difference?

It is another resistance that is in series!834 Chapter 28 Direct-Current Circuits

Because a real battery is made of matter, there is resistance to the flow of charge 
within the battery. This resistance is called internal resistance r. For an idealized 
battery with zero internal resistance, the potential difference across the battery 
(called its terminal voltage) equals its emf. For a real battery, however, the terminal 
voltage is not equal to the emf for a battery in a circuit in which there is a current. 
To understand why, consider the circuit diagram in Figure 28.1a. We model the bat-
tery as shown in the diagram; it is represented by the dashed rectangle containing 
an ideal, resistance-free emf e in series with an internal resistance r. A resistor of 
resistance R is connected across the terminals of the battery. Now imagine moving 
through the battery from a to d and measuring the electric potential at various 
locations. Passing from the negative terminal to the positive terminal, the potential 
increases by an amount e. As we move through the resistance r, however, the poten-
tial decreases by an amount Ir, where I is the current in the circuit. Therefore, the 
terminal voltage of the battery DV 5 Vd 2 Va is

 DV 5 e 2 Ir  (28.1)

From this expression, notice that e is equivalent to the open-circuit voltage, that 
is, the terminal voltage when the current is zero. The emf is the voltage labeled on 
a battery; for example, the emf of a D cell is 1.5 V. The actual potential difference 
between a battery’s terminals depends on the current in the battery as described by 
Equation 28.1. Figure 28.1b is a graphical representation of the changes in electric 
potential as the circuit is traversed in the clockwise direction.
 Figure 28.1a shows that the terminal voltage DV must equal the potential differ-
ence across the external resistance R, often called the load resistance. The load resis-
tor might be a simple resistive circuit element as in Figure 28.1a, or it could be the 
resistance of some electrical device (such as a toaster, electric heater, or lightbulb) 
connected to the battery (or, in the case of household devices, to the wall outlet). 
The resistor represents a load on the battery because the battery must supply energy 
to operate the device containing the resistance. The potential difference across the 
load resistance is DV 5 IR. Combining this expression with Equation 28.1, we see that

 e 5 IR 1 Ir  (28.2)

Figure 28.1a shows a graphical representation of this equation. Solving for the cur-
rent gives

 I 5
e

R 1 r
 (28.3)

Equation 28.3 shows that the current in this simple circuit depends on both the 
load resistance R external to the battery and the internal resistance r. If R is much 
greater than r, as it is in many real-world circuits, we can neglect r.
 Multiplying Equation 28.2 by the current I in the circuit gives

 Ie = I 2R 1 I 2r (28.4)

Equation 28.4 indicates that because power P 5 I DV (see Eq. 27.21), the total power 
output Ie associated with the emf of the battery is delivered to the external load 
resistance in the amount I 2R and to the internal resistance in the amount I 2r.

Q uick Quiz 28.1  To maximize the percentage of the power from the emf of a bat-
tery that is delivered to a device external to the battery, what should the internal 
resistance of the battery be? (a) It should be as low as possible. (b) It should be as 
high as possible. (c) The percentage does not depend on the internal resistance.
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Figure 28.1 (a) Circuit diagram 
of a source of emf e (in this case, 
a battery), of internal resistance 
r, connected to an external resis-
tor of resistance R. (b) Graphical 
representation showing how the 
electric potential changes as the 
circuit in (a) is traversed clockwise.

Pitfall Prevention 28.1
What Is Constant in a Battery?  
It is a common misconception that 
a battery is a source of constant 
current. Equation 28.3 shows that 
is not true. The current in the cir-
cuit depends on the resistance R 
connected to the battery. It is also 
not true that a battery is a source 
of constant terminal voltage as 
shown by Equation 28.1. A battery 
is a source of constant emf.

Example 28.1   Terminal Voltage of a Battery

A battery has an emf of 12.0 V and an internal resistance of 0.050 0 V. Its terminals are connected to a load resistance 
of 3.00 V.

834 Chapter 28 Direct-Current Circuits

Because a real battery is made of matter, there is resistance to the flow of charge 
within the battery. This resistance is called internal resistance r. For an idealized 
battery with zero internal resistance, the potential difference across the battery 
(called its terminal voltage) equals its emf. For a real battery, however, the terminal 
voltage is not equal to the emf for a battery in a circuit in which there is a current. 
To understand why, consider the circuit diagram in Figure 28.1a. We model the bat-
tery as shown in the diagram; it is represented by the dashed rectangle containing 
an ideal, resistance-free emf e in series with an internal resistance r. A resistor of 
resistance R is connected across the terminals of the battery. Now imagine moving 
through the battery from a to d and measuring the electric potential at various 
locations. Passing from the negative terminal to the positive terminal, the potential 
increases by an amount e. As we move through the resistance r, however, the poten-
tial decreases by an amount Ir, where I is the current in the circuit. Therefore, the 
terminal voltage of the battery DV 5 Vd 2 Va is

 DV 5 e 2 Ir  (28.1)

From this expression, notice that e is equivalent to the open-circuit voltage, that 
is, the terminal voltage when the current is zero. The emf is the voltage labeled on 
a battery; for example, the emf of a D cell is 1.5 V. The actual potential difference 
between a battery’s terminals depends on the current in the battery as described by 
Equation 28.1. Figure 28.1b is a graphical representation of the changes in electric 
potential as the circuit is traversed in the clockwise direction.
 Figure 28.1a shows that the terminal voltage DV must equal the potential differ-
ence across the external resistance R, often called the load resistance. The load resis-
tor might be a simple resistive circuit element as in Figure 28.1a, or it could be the 
resistance of some electrical device (such as a toaster, electric heater, or lightbulb) 
connected to the battery (or, in the case of household devices, to the wall outlet). 
The resistor represents a load on the battery because the battery must supply energy 
to operate the device containing the resistance. The potential difference across the 
load resistance is DV 5 IR. Combining this expression with Equation 28.1, we see that

 e 5 IR 1 Ir  (28.2)

Figure 28.1a shows a graphical representation of this equation. Solving for the cur-
rent gives

 I 5
e

R 1 r
 (28.3)

Equation 28.3 shows that the current in this simple circuit depends on both the 
load resistance R external to the battery and the internal resistance r. If R is much 
greater than r, as it is in many real-world circuits, we can neglect r.
 Multiplying Equation 28.2 by the current I in the circuit gives

 Ie = I 2R 1 I 2r (28.4)

Equation 28.4 indicates that because power P 5 I DV (see Eq. 27.21), the total power 
output Ie associated with the emf of the battery is delivered to the external load 
resistance in the amount I 2R and to the internal resistance in the amount I 2r.

Q uick Quiz 28.1  To maximize the percentage of the power from the emf of a bat-
tery that is delivered to a device external to the battery, what should the internal 
resistance of the battery be? (a) It should be as low as possible. (b) It should be as 
high as possible. (c) The percentage does not depend on the internal resistance.
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Figure 28.1 (a) Circuit diagram 
of a source of emf e (in this case, 
a battery), of internal resistance 
r, connected to an external resis-
tor of resistance R. (b) Graphical 
representation showing how the 
electric potential changes as the 
circuit in (a) is traversed clockwise.

Pitfall Prevention 28.1
What Is Constant in a Battery?  
It is a common misconception that 
a battery is a source of constant 
current. Equation 28.3 shows that 
is not true. The current in the cir-
cuit depends on the resistance R 
connected to the battery. It is also 
not true that a battery is a source 
of constant terminal voltage as 
shown by Equation 28.1. A battery 
is a source of constant emf.

Example 28.1   Terminal Voltage of a Battery

A battery has an emf of 12.0 V and an internal resistance of 0.050 0 V. Its terminals are connected to a load resistance 
of 3.00 V.

Let r be the internal resistance

Vr = Ir

Vr is the potential drop across the internal resistance.



Internal resistance
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Because a real battery is made of matter, there is resistance to the flow of charge 
within the battery. This resistance is called internal resistance r. For an idealized 
battery with zero internal resistance, the potential difference across the battery 
(called its terminal voltage) equals its emf. For a real battery, however, the terminal 
voltage is not equal to the emf for a battery in a circuit in which there is a current. 
To understand why, consider the circuit diagram in Figure 28.1a. We model the bat-
tery as shown in the diagram; it is represented by the dashed rectangle containing 
an ideal, resistance-free emf e in series with an internal resistance r. A resistor of 
resistance R is connected across the terminals of the battery. Now imagine moving 
through the battery from a to d and measuring the electric potential at various 
locations. Passing from the negative terminal to the positive terminal, the potential 
increases by an amount e. As we move through the resistance r, however, the poten-
tial decreases by an amount Ir, where I is the current in the circuit. Therefore, the 
terminal voltage of the battery DV 5 Vd 2 Va is

 DV 5 e 2 Ir  (28.1)

From this expression, notice that e is equivalent to the open-circuit voltage, that 
is, the terminal voltage when the current is zero. The emf is the voltage labeled on 
a battery; for example, the emf of a D cell is 1.5 V. The actual potential difference 
between a battery’s terminals depends on the current in the battery as described by 
Equation 28.1. Figure 28.1b is a graphical representation of the changes in electric 
potential as the circuit is traversed in the clockwise direction.
 Figure 28.1a shows that the terminal voltage DV must equal the potential differ-
ence across the external resistance R, often called the load resistance. The load resis-
tor might be a simple resistive circuit element as in Figure 28.1a, or it could be the 
resistance of some electrical device (such as a toaster, electric heater, or lightbulb) 
connected to the battery (or, in the case of household devices, to the wall outlet). 
The resistor represents a load on the battery because the battery must supply energy 
to operate the device containing the resistance. The potential difference across the 
load resistance is DV 5 IR. Combining this expression with Equation 28.1, we see that

 e 5 IR 1 Ir  (28.2)

Figure 28.1a shows a graphical representation of this equation. Solving for the cur-
rent gives

 I 5
e

R 1 r
 (28.3)

Equation 28.3 shows that the current in this simple circuit depends on both the 
load resistance R external to the battery and the internal resistance r. If R is much 
greater than r, as it is in many real-world circuits, we can neglect r.
 Multiplying Equation 28.2 by the current I in the circuit gives

 Ie = I 2R 1 I 2r (28.4)

Equation 28.4 indicates that because power P 5 I DV (see Eq. 27.21), the total power 
output Ie associated with the emf of the battery is delivered to the external load 
resistance in the amount I 2R and to the internal resistance in the amount I 2r.

Q uick Quiz 28.1  To maximize the percentage of the power from the emf of a bat-
tery that is delivered to a device external to the battery, what should the internal 
resistance of the battery be? (a) It should be as low as possible. (b) It should be as 
high as possible. (c) The percentage does not depend on the internal resistance.
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Figure 28.1 (a) Circuit diagram 
of a source of emf e (in this case, 
a battery), of internal resistance 
r, connected to an external resis-
tor of resistance R. (b) Graphical 
representation showing how the 
electric potential changes as the 
circuit in (a) is traversed clockwise.

Pitfall Prevention 28.1
What Is Constant in a Battery?  
It is a common misconception that 
a battery is a source of constant 
current. Equation 28.3 shows that 
is not true. The current in the cir-
cuit depends on the resistance R 
connected to the battery. It is also 
not true that a battery is a source 
of constant terminal voltage as 
shown by Equation 28.1. A battery 
is a source of constant emf.

Example 28.1   Terminal Voltage of a Battery

A battery has an emf of 12.0 V and an internal resistance of 0.050 0 V. Its terminals are connected to a load resistance 
of 3.00 V.

Let V be the potential difference supplied by the battery to the
rest of the circuit:

V = E− Ir

V is the potential difference between the terminals of the battery
at points a and d in the diagram.

V depends on the current that flows in the circuit!
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Because a real battery is made of matter, there is resistance to the flow of charge 
within the battery. This resistance is called internal resistance r. For an idealized 
battery with zero internal resistance, the potential difference across the battery 
(called its terminal voltage) equals its emf. For a real battery, however, the terminal 
voltage is not equal to the emf for a battery in a circuit in which there is a current. 
To understand why, consider the circuit diagram in Figure 28.1a. We model the bat-
tery as shown in the diagram; it is represented by the dashed rectangle containing 
an ideal, resistance-free emf e in series with an internal resistance r. A resistor of 
resistance R is connected across the terminals of the battery. Now imagine moving 
through the battery from a to d and measuring the electric potential at various 
locations. Passing from the negative terminal to the positive terminal, the potential 
increases by an amount e. As we move through the resistance r, however, the poten-
tial decreases by an amount Ir, where I is the current in the circuit. Therefore, the 
terminal voltage of the battery DV 5 Vd 2 Va is

 DV 5 e 2 Ir  (28.1)

From this expression, notice that e is equivalent to the open-circuit voltage, that 
is, the terminal voltage when the current is zero. The emf is the voltage labeled on 
a battery; for example, the emf of a D cell is 1.5 V. The actual potential difference 
between a battery’s terminals depends on the current in the battery as described by 
Equation 28.1. Figure 28.1b is a graphical representation of the changes in electric 
potential as the circuit is traversed in the clockwise direction.
 Figure 28.1a shows that the terminal voltage DV must equal the potential differ-
ence across the external resistance R, often called the load resistance. The load resis-
tor might be a simple resistive circuit element as in Figure 28.1a, or it could be the 
resistance of some electrical device (such as a toaster, electric heater, or lightbulb) 
connected to the battery (or, in the case of household devices, to the wall outlet). 
The resistor represents a load on the battery because the battery must supply energy 
to operate the device containing the resistance. The potential difference across the 
load resistance is DV 5 IR. Combining this expression with Equation 28.1, we see that

 e 5 IR 1 Ir  (28.2)

Figure 28.1a shows a graphical representation of this equation. Solving for the cur-
rent gives

 I 5
e

R 1 r
 (28.3)

Equation 28.3 shows that the current in this simple circuit depends on both the 
load resistance R external to the battery and the internal resistance r. If R is much 
greater than r, as it is in many real-world circuits, we can neglect r.
 Multiplying Equation 28.2 by the current I in the circuit gives

 Ie = I 2R 1 I 2r (28.4)

Equation 28.4 indicates that because power P 5 I DV (see Eq. 27.21), the total power 
output Ie associated with the emf of the battery is delivered to the external load 
resistance in the amount I 2R and to the internal resistance in the amount I 2r.

Q uick Quiz 28.1  To maximize the percentage of the power from the emf of a bat-
tery that is delivered to a device external to the battery, what should the internal 
resistance of the battery be? (a) It should be as low as possible. (b) It should be as 
high as possible. (c) The percentage does not depend on the internal resistance.
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Figure 28.1 (a) Circuit diagram 
of a source of emf e (in this case, 
a battery), of internal resistance 
r, connected to an external resis-
tor of resistance R. (b) Graphical 
representation showing how the 
electric potential changes as the 
circuit in (a) is traversed clockwise.

Pitfall Prevention 28.1
What Is Constant in a Battery?  
It is a common misconception that 
a battery is a source of constant 
current. Equation 28.3 shows that 
is not true. The current in the cir-
cuit depends on the resistance R 
connected to the battery. It is also 
not true that a battery is a source 
of constant terminal voltage as 
shown by Equation 28.1. A battery 
is a source of constant emf.

Example 28.1   Terminal Voltage of a Battery

A battery has an emf of 12.0 V and an internal resistance of 0.050 0 V. Its terminals are connected to a load resistance 
of 3.00 V.

Let V be the potential difference supplied by the battery to the
rest of the circuit:

V = E− Ir

V is the potential difference between the terminals of the battery
at points a and d in the diagram.

V depends on the current that flows in the circuit!
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Because a real battery is made of matter, there is resistance to the flow of charge 
within the battery. This resistance is called internal resistance r. For an idealized 
battery with zero internal resistance, the potential difference across the battery 
(called its terminal voltage) equals its emf. For a real battery, however, the terminal 
voltage is not equal to the emf for a battery in a circuit in which there is a current. 
To understand why, consider the circuit diagram in Figure 28.1a. We model the bat-
tery as shown in the diagram; it is represented by the dashed rectangle containing 
an ideal, resistance-free emf e in series with an internal resistance r. A resistor of 
resistance R is connected across the terminals of the battery. Now imagine moving 
through the battery from a to d and measuring the electric potential at various 
locations. Passing from the negative terminal to the positive terminal, the potential 
increases by an amount e. As we move through the resistance r, however, the poten-
tial decreases by an amount Ir, where I is the current in the circuit. Therefore, the 
terminal voltage of the battery DV 5 Vd 2 Va is

 DV 5 e 2 Ir  (28.1)

From this expression, notice that e is equivalent to the open-circuit voltage, that 
is, the terminal voltage when the current is zero. The emf is the voltage labeled on 
a battery; for example, the emf of a D cell is 1.5 V. The actual potential difference 
between a battery’s terminals depends on the current in the battery as described by 
Equation 28.1. Figure 28.1b is a graphical representation of the changes in electric 
potential as the circuit is traversed in the clockwise direction.
 Figure 28.1a shows that the terminal voltage DV must equal the potential differ-
ence across the external resistance R, often called the load resistance. The load resis-
tor might be a simple resistive circuit element as in Figure 28.1a, or it could be the 
resistance of some electrical device (such as a toaster, electric heater, or lightbulb) 
connected to the battery (or, in the case of household devices, to the wall outlet). 
The resistor represents a load on the battery because the battery must supply energy 
to operate the device containing the resistance. The potential difference across the 
load resistance is DV 5 IR. Combining this expression with Equation 28.1, we see that

 e 5 IR 1 Ir  (28.2)

Figure 28.1a shows a graphical representation of this equation. Solving for the cur-
rent gives

 I 5
e

R 1 r
 (28.3)

Equation 28.3 shows that the current in this simple circuit depends on both the 
load resistance R external to the battery and the internal resistance r. If R is much 
greater than r, as it is in many real-world circuits, we can neglect r.
 Multiplying Equation 28.2 by the current I in the circuit gives

 Ie = I 2R 1 I 2r (28.4)

Equation 28.4 indicates that because power P 5 I DV (see Eq. 27.21), the total power 
output Ie associated with the emf of the battery is delivered to the external load 
resistance in the amount I 2R and to the internal resistance in the amount I 2r.

Q uick Quiz 28.1  To maximize the percentage of the power from the emf of a bat-
tery that is delivered to a device external to the battery, what should the internal 
resistance of the battery be? (a) It should be as low as possible. (b) It should be as 
high as possible. (c) The percentage does not depend on the internal resistance.
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Figure 28.1 (a) Circuit diagram 
of a source of emf e (in this case, 
a battery), of internal resistance 
r, connected to an external resis-
tor of resistance R. (b) Graphical 
representation showing how the 
electric potential changes as the 
circuit in (a) is traversed clockwise.

Pitfall Prevention 28.1
What Is Constant in a Battery?  
It is a common misconception that 
a battery is a source of constant 
current. Equation 28.3 shows that 
is not true. The current in the cir-
cuit depends on the resistance R 
connected to the battery. It is also 
not true that a battery is a source 
of constant terminal voltage as 
shown by Equation 28.1. A battery 
is a source of constant emf.

Example 28.1   Terminal Voltage of a Battery

A battery has an emf of 12.0 V and an internal resistance of 0.050 0 V. Its terminals are connected to a load resistance 
of 3.00 V.

Ideal battery

An ideal battery has no internal resistance. (r = 0)

Real batteries do have internal resistance.



Internal resistance and current

The current that flows in the circuit, I, will in turn depend on the
load resistance R, ie. the resistance in the rest of the circuit.834 Chapter 28 Direct-Current Circuits

Because a real battery is made of matter, there is resistance to the flow of charge 
within the battery. This resistance is called internal resistance r. For an idealized 
battery with zero internal resistance, the potential difference across the battery 
(called its terminal voltage) equals its emf. For a real battery, however, the terminal 
voltage is not equal to the emf for a battery in a circuit in which there is a current. 
To understand why, consider the circuit diagram in Figure 28.1a. We model the bat-
tery as shown in the diagram; it is represented by the dashed rectangle containing 
an ideal, resistance-free emf e in series with an internal resistance r. A resistor of 
resistance R is connected across the terminals of the battery. Now imagine moving 
through the battery from a to d and measuring the electric potential at various 
locations. Passing from the negative terminal to the positive terminal, the potential 
increases by an amount e. As we move through the resistance r, however, the poten-
tial decreases by an amount Ir, where I is the current in the circuit. Therefore, the 
terminal voltage of the battery DV 5 Vd 2 Va is

 DV 5 e 2 Ir  (28.1)

From this expression, notice that e is equivalent to the open-circuit voltage, that 
is, the terminal voltage when the current is zero. The emf is the voltage labeled on 
a battery; for example, the emf of a D cell is 1.5 V. The actual potential difference 
between a battery’s terminals depends on the current in the battery as described by 
Equation 28.1. Figure 28.1b is a graphical representation of the changes in electric 
potential as the circuit is traversed in the clockwise direction.
 Figure 28.1a shows that the terminal voltage DV must equal the potential differ-
ence across the external resistance R, often called the load resistance. The load resis-
tor might be a simple resistive circuit element as in Figure 28.1a, or it could be the 
resistance of some electrical device (such as a toaster, electric heater, or lightbulb) 
connected to the battery (or, in the case of household devices, to the wall outlet). 
The resistor represents a load on the battery because the battery must supply energy 
to operate the device containing the resistance. The potential difference across the 
load resistance is DV 5 IR. Combining this expression with Equation 28.1, we see that

 e 5 IR 1 Ir  (28.2)

Figure 28.1a shows a graphical representation of this equation. Solving for the cur-
rent gives

 I 5
e

R 1 r
 (28.3)

Equation 28.3 shows that the current in this simple circuit depends on both the 
load resistance R external to the battery and the internal resistance r. If R is much 
greater than r, as it is in many real-world circuits, we can neglect r.
 Multiplying Equation 28.2 by the current I in the circuit gives

 Ie = I 2R 1 I 2r (28.4)

Equation 28.4 indicates that because power P 5 I DV (see Eq. 27.21), the total power 
output Ie associated with the emf of the battery is delivered to the external load 
resistance in the amount I 2R and to the internal resistance in the amount I 2r.

Q uick Quiz 28.1  To maximize the percentage of the power from the emf of a bat-
tery that is delivered to a device external to the battery, what should the internal 
resistance of the battery be? (a) It should be as low as possible. (b) It should be as 
high as possible. (c) The percentage does not depend on the internal resistance.
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Figure 28.1 (a) Circuit diagram 
of a source of emf e (in this case, 
a battery), of internal resistance 
r, connected to an external resis-
tor of resistance R. (b) Graphical 
representation showing how the 
electric potential changes as the 
circuit in (a) is traversed clockwise.

Pitfall Prevention 28.1
What Is Constant in a Battery?  
It is a common misconception that 
a battery is a source of constant 
current. Equation 28.3 shows that 
is not true. The current in the cir-
cuit depends on the resistance R 
connected to the battery. It is also 
not true that a battery is a source 
of constant terminal voltage as 
shown by Equation 28.1. A battery 
is a source of constant emf.

Example 28.1   Terminal Voltage of a Battery

A battery has an emf of 12.0 V and an internal resistance of 0.050 0 V. Its terminals are connected to a load resistance 
of 3.00 V.

∆V = IR
and so, IR = E− Ir and:

I =
E

r + R



Internal resistance, potential difference, and power

I =
E

r + R

The potential difference supplied to the circuit ∆V :

∆V = IR =
ER

r + R

It depends on both the internal and external (“load”) resistances.

Power:

power supplied = total power delivered

IE = I2r + I2R



Question

Quick Quiz 28.1: To maximize the percentage of the power from
the emf of a battery that is delivered to a device external to the
battery, what should the internal resistance of the battery be?

(A) It should be as low as possible.

(B) It should be as high as possible.

(C) The percentage does not depend on the internal resistance.
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Because a real battery is made of matter, there is resistance to the flow of charge 
within the battery. This resistance is called internal resistance r. For an idealized 
battery with zero internal resistance, the potential difference across the battery 
(called its terminal voltage) equals its emf. For a real battery, however, the terminal 
voltage is not equal to the emf for a battery in a circuit in which there is a current. 
To understand why, consider the circuit diagram in Figure 28.1a. We model the bat-
tery as shown in the diagram; it is represented by the dashed rectangle containing 
an ideal, resistance-free emf e in series with an internal resistance r. A resistor of 
resistance R is connected across the terminals of the battery. Now imagine moving 
through the battery from a to d and measuring the electric potential at various 
locations. Passing from the negative terminal to the positive terminal, the potential 
increases by an amount e. As we move through the resistance r, however, the poten-
tial decreases by an amount Ir, where I is the current in the circuit. Therefore, the 
terminal voltage of the battery DV 5 Vd 2 Va is

 DV 5 e 2 Ir  (28.1)

From this expression, notice that e is equivalent to the open-circuit voltage, that 
is, the terminal voltage when the current is zero. The emf is the voltage labeled on 
a battery; for example, the emf of a D cell is 1.5 V. The actual potential difference 
between a battery’s terminals depends on the current in the battery as described by 
Equation 28.1. Figure 28.1b is a graphical representation of the changes in electric 
potential as the circuit is traversed in the clockwise direction.
 Figure 28.1a shows that the terminal voltage DV must equal the potential differ-
ence across the external resistance R, often called the load resistance. The load resis-
tor might be a simple resistive circuit element as in Figure 28.1a, or it could be the 
resistance of some electrical device (such as a toaster, electric heater, or lightbulb) 
connected to the battery (or, in the case of household devices, to the wall outlet). 
The resistor represents a load on the battery because the battery must supply energy 
to operate the device containing the resistance. The potential difference across the 
load resistance is DV 5 IR. Combining this expression with Equation 28.1, we see that

 e 5 IR 1 Ir  (28.2)

Figure 28.1a shows a graphical representation of this equation. Solving for the cur-
rent gives

 I 5
e

R 1 r
 (28.3)

Equation 28.3 shows that the current in this simple circuit depends on both the 
load resistance R external to the battery and the internal resistance r. If R is much 
greater than r, as it is in many real-world circuits, we can neglect r.
 Multiplying Equation 28.2 by the current I in the circuit gives

 Ie = I 2R 1 I 2r (28.4)

Equation 28.4 indicates that because power P 5 I DV (see Eq. 27.21), the total power 
output Ie associated with the emf of the battery is delivered to the external load 
resistance in the amount I 2R and to the internal resistance in the amount I 2r.

Q uick Quiz 28.1  To maximize the percentage of the power from the emf of a bat-
tery that is delivered to a device external to the battery, what should the internal 
resistance of the battery be? (a) It should be as low as possible. (b) It should be as 
high as possible. (c) The percentage does not depend on the internal resistance.
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Figure 28.1 (a) Circuit diagram 
of a source of emf e (in this case, 
a battery), of internal resistance 
r, connected to an external resis-
tor of resistance R. (b) Graphical 
representation showing how the 
electric potential changes as the 
circuit in (a) is traversed clockwise.

Pitfall Prevention 28.1
What Is Constant in a Battery?  
It is a common misconception that 
a battery is a source of constant 
current. Equation 28.3 shows that 
is not true. The current in the cir-
cuit depends on the resistance R 
connected to the battery. It is also 
not true that a battery is a source 
of constant terminal voltage as 
shown by Equation 28.1. A battery 
is a source of constant emf.

Example 28.1   Terminal Voltage of a Battery

A battery has an emf of 12.0 V and an internal resistance of 0.050 0 V. Its terminals are connected to a load resistance 
of 3.00 V.
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Because a real battery is made of matter, there is resistance to the flow of charge 
within the battery. This resistance is called internal resistance r. For an idealized 
battery with zero internal resistance, the potential difference across the battery 
(called its terminal voltage) equals its emf. For a real battery, however, the terminal 
voltage is not equal to the emf for a battery in a circuit in which there is a current. 
To understand why, consider the circuit diagram in Figure 28.1a. We model the bat-
tery as shown in the diagram; it is represented by the dashed rectangle containing 
an ideal, resistance-free emf e in series with an internal resistance r. A resistor of 
resistance R is connected across the terminals of the battery. Now imagine moving 
through the battery from a to d and measuring the electric potential at various 
locations. Passing from the negative terminal to the positive terminal, the potential 
increases by an amount e. As we move through the resistance r, however, the poten-
tial decreases by an amount Ir, where I is the current in the circuit. Therefore, the 
terminal voltage of the battery DV 5 Vd 2 Va is

 DV 5 e 2 Ir  (28.1)

From this expression, notice that e is equivalent to the open-circuit voltage, that 
is, the terminal voltage when the current is zero. The emf is the voltage labeled on 
a battery; for example, the emf of a D cell is 1.5 V. The actual potential difference 
between a battery’s terminals depends on the current in the battery as described by 
Equation 28.1. Figure 28.1b is a graphical representation of the changes in electric 
potential as the circuit is traversed in the clockwise direction.
 Figure 28.1a shows that the terminal voltage DV must equal the potential differ-
ence across the external resistance R, often called the load resistance. The load resis-
tor might be a simple resistive circuit element as in Figure 28.1a, or it could be the 
resistance of some electrical device (such as a toaster, electric heater, or lightbulb) 
connected to the battery (or, in the case of household devices, to the wall outlet). 
The resistor represents a load on the battery because the battery must supply energy 
to operate the device containing the resistance. The potential difference across the 
load resistance is DV 5 IR. Combining this expression with Equation 28.1, we see that

 e 5 IR 1 Ir  (28.2)

Figure 28.1a shows a graphical representation of this equation. Solving for the cur-
rent gives

 I 5
e

R 1 r
 (28.3)

Equation 28.3 shows that the current in this simple circuit depends on both the 
load resistance R external to the battery and the internal resistance r. If R is much 
greater than r, as it is in many real-world circuits, we can neglect r.
 Multiplying Equation 28.2 by the current I in the circuit gives

 Ie = I 2R 1 I 2r (28.4)

Equation 28.4 indicates that because power P 5 I DV (see Eq. 27.21), the total power 
output Ie associated with the emf of the battery is delivered to the external load 
resistance in the amount I 2R and to the internal resistance in the amount I 2r.

Q uick Quiz 28.1  To maximize the percentage of the power from the emf of a bat-
tery that is delivered to a device external to the battery, what should the internal 
resistance of the battery be? (a) It should be as low as possible. (b) It should be as 
high as possible. (c) The percentage does not depend on the internal resistance.

Rra b c d e f
V

IR

0

Ir

a c

f

R

I

b d

r

e

I

e

e

e

a

b

! "

Figure 28.1 (a) Circuit diagram 
of a source of emf e (in this case, 
a battery), of internal resistance 
r, connected to an external resis-
tor of resistance R. (b) Graphical 
representation showing how the 
electric potential changes as the 
circuit in (a) is traversed clockwise.

Pitfall Prevention 28.1
What Is Constant in a Battery?  
It is a common misconception that 
a battery is a source of constant 
current. Equation 28.3 shows that 
is not true. The current in the cir-
cuit depends on the resistance R 
connected to the battery. It is also 
not true that a battery is a source 
of constant terminal voltage as 
shown by Equation 28.1. A battery 
is a source of constant emf.

Example 28.1   Terminal Voltage of a Battery

A battery has an emf of 12.0 V and an internal resistance of 0.050 0 V. Its terminals are connected to a load resistance 
of 3.00 V.

Let ∆V be the potential difference supplied by the battery to the
rest of the circuit:

∆V = E− Ir

∆V is the potential difference between the terminals of the battery
at points a and d in the diagram.



Potential difference between two points
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Because a real battery is made of matter, there is resistance to the flow of charge 
within the battery. This resistance is called internal resistance r. For an idealized 
battery with zero internal resistance, the potential difference across the battery 
(called its terminal voltage) equals its emf. For a real battery, however, the terminal 
voltage is not equal to the emf for a battery in a circuit in which there is a current. 
To understand why, consider the circuit diagram in Figure 28.1a. We model the bat-
tery as shown in the diagram; it is represented by the dashed rectangle containing 
an ideal, resistance-free emf e in series with an internal resistance r. A resistor of 
resistance R is connected across the terminals of the battery. Now imagine moving 
through the battery from a to d and measuring the electric potential at various 
locations. Passing from the negative terminal to the positive terminal, the potential 
increases by an amount e. As we move through the resistance r, however, the poten-
tial decreases by an amount Ir, where I is the current in the circuit. Therefore, the 
terminal voltage of the battery DV 5 Vd 2 Va is

 DV 5 e 2 Ir  (28.1)

From this expression, notice that e is equivalent to the open-circuit voltage, that 
is, the terminal voltage when the current is zero. The emf is the voltage labeled on 
a battery; for example, the emf of a D cell is 1.5 V. The actual potential difference 
between a battery’s terminals depends on the current in the battery as described by 
Equation 28.1. Figure 28.1b is a graphical representation of the changes in electric 
potential as the circuit is traversed in the clockwise direction.
 Figure 28.1a shows that the terminal voltage DV must equal the potential differ-
ence across the external resistance R, often called the load resistance. The load resis-
tor might be a simple resistive circuit element as in Figure 28.1a, or it could be the 
resistance of some electrical device (such as a toaster, electric heater, or lightbulb) 
connected to the battery (or, in the case of household devices, to the wall outlet). 
The resistor represents a load on the battery because the battery must supply energy 
to operate the device containing the resistance. The potential difference across the 
load resistance is DV 5 IR. Combining this expression with Equation 28.1, we see that

 e 5 IR 1 Ir  (28.2)

Figure 28.1a shows a graphical representation of this equation. Solving for the cur-
rent gives

 I 5
e

R 1 r
 (28.3)

Equation 28.3 shows that the current in this simple circuit depends on both the 
load resistance R external to the battery and the internal resistance r. If R is much 
greater than r, as it is in many real-world circuits, we can neglect r.
 Multiplying Equation 28.2 by the current I in the circuit gives

 Ie = I 2R 1 I 2r (28.4)

Equation 28.4 indicates that because power P 5 I DV (see Eq. 27.21), the total power 
output Ie associated with the emf of the battery is delivered to the external load 
resistance in the amount I 2R and to the internal resistance in the amount I 2r.

Q uick Quiz 28.1  To maximize the percentage of the power from the emf of a bat-
tery that is delivered to a device external to the battery, what should the internal 
resistance of the battery be? (a) It should be as low as possible. (b) It should be as 
high as possible. (c) The percentage does not depend on the internal resistance.
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Figure 28.1 (a) Circuit diagram 
of a source of emf e (in this case, 
a battery), of internal resistance 
r, connected to an external resis-
tor of resistance R. (b) Graphical 
representation showing how the 
electric potential changes as the 
circuit in (a) is traversed clockwise.

Pitfall Prevention 28.1
What Is Constant in a Battery?  
It is a common misconception that 
a battery is a source of constant 
current. Equation 28.3 shows that 
is not true. The current in the cir-
cuit depends on the resistance R 
connected to the battery. It is also 
not true that a battery is a source 
of constant terminal voltage as 
shown by Equation 28.1. A battery 
is a source of constant emf.

Example 28.1   Terminal Voltage of a Battery

A battery has an emf of 12.0 V and an internal resistance of 0.050 0 V. Its terminals are connected to a load resistance 
of 3.00 V.

For any circuit we can find the potential difference between points
in the circuit by finding the potential drop or jump across the
elements between those points.

Two rules can help us track this.
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Because a real battery is made of matter, there is resistance to the flow of charge 
within the battery. This resistance is called internal resistance r. For an idealized 
battery with zero internal resistance, the potential difference across the battery 
(called its terminal voltage) equals its emf. For a real battery, however, the terminal 
voltage is not equal to the emf for a battery in a circuit in which there is a current. 
To understand why, consider the circuit diagram in Figure 28.1a. We model the bat-
tery as shown in the diagram; it is represented by the dashed rectangle containing 
an ideal, resistance-free emf e in series with an internal resistance r. A resistor of 
resistance R is connected across the terminals of the battery. Now imagine moving 
through the battery from a to d and measuring the electric potential at various 
locations. Passing from the negative terminal to the positive terminal, the potential 
increases by an amount e. As we move through the resistance r, however, the poten-
tial decreases by an amount Ir, where I is the current in the circuit. Therefore, the 
terminal voltage of the battery DV 5 Vd 2 Va is

 DV 5 e 2 Ir  (28.1)

From this expression, notice that e is equivalent to the open-circuit voltage, that 
is, the terminal voltage when the current is zero. The emf is the voltage labeled on 
a battery; for example, the emf of a D cell is 1.5 V. The actual potential difference 
between a battery’s terminals depends on the current in the battery as described by 
Equation 28.1. Figure 28.1b is a graphical representation of the changes in electric 
potential as the circuit is traversed in the clockwise direction.
 Figure 28.1a shows that the terminal voltage DV must equal the potential differ-
ence across the external resistance R, often called the load resistance. The load resis-
tor might be a simple resistive circuit element as in Figure 28.1a, or it could be the 
resistance of some electrical device (such as a toaster, electric heater, or lightbulb) 
connected to the battery (or, in the case of household devices, to the wall outlet). 
The resistor represents a load on the battery because the battery must supply energy 
to operate the device containing the resistance. The potential difference across the 
load resistance is DV 5 IR. Combining this expression with Equation 28.1, we see that

 e 5 IR 1 Ir  (28.2)

Figure 28.1a shows a graphical representation of this equation. Solving for the cur-
rent gives

 I 5
e

R 1 r
 (28.3)

Equation 28.3 shows that the current in this simple circuit depends on both the 
load resistance R external to the battery and the internal resistance r. If R is much 
greater than r, as it is in many real-world circuits, we can neglect r.
 Multiplying Equation 28.2 by the current I in the circuit gives

 Ie = I 2R 1 I 2r (28.4)

Equation 28.4 indicates that because power P 5 I DV (see Eq. 27.21), the total power 
output Ie associated with the emf of the battery is delivered to the external load 
resistance in the amount I 2R and to the internal resistance in the amount I 2r.

Q uick Quiz 28.1  To maximize the percentage of the power from the emf of a bat-
tery that is delivered to a device external to the battery, what should the internal 
resistance of the battery be? (a) It should be as low as possible. (b) It should be as 
high as possible. (c) The percentage does not depend on the internal resistance.
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Figure 28.1 (a) Circuit diagram 
of a source of emf e (in this case, 
a battery), of internal resistance 
r, connected to an external resis-
tor of resistance R. (b) Graphical 
representation showing how the 
electric potential changes as the 
circuit in (a) is traversed clockwise.

Pitfall Prevention 28.1
What Is Constant in a Battery?  
It is a common misconception that 
a battery is a source of constant 
current. Equation 28.3 shows that 
is not true. The current in the cir-
cuit depends on the resistance R 
connected to the battery. It is also 
not true that a battery is a source 
of constant terminal voltage as 
shown by Equation 28.1. A battery 
is a source of constant emf.

Example 28.1   Terminal Voltage of a Battery

A battery has an emf of 12.0 V and an internal resistance of 0.050 0 V. Its terminals are connected to a load resistance 
of 3.00 V.

“Voltage Drops”:

resistance rule

Going through a resistance R in the direction of the current, the
change in potential is −iR; in the opposite direction it is +iR.

“Voltage jumps”:

emf rule

Going through an ideal emf device in the direction of the emf
arrow, the change in potential is +E; in the opposite direction it is
−E.
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Because a real battery is made of matter, there is resistance to the flow of charge 
within the battery. This resistance is called internal resistance r. For an idealized 
battery with zero internal resistance, the potential difference across the battery 
(called its terminal voltage) equals its emf. For a real battery, however, the terminal 
voltage is not equal to the emf for a battery in a circuit in which there is a current. 
To understand why, consider the circuit diagram in Figure 28.1a. We model the bat-
tery as shown in the diagram; it is represented by the dashed rectangle containing 
an ideal, resistance-free emf e in series with an internal resistance r. A resistor of 
resistance R is connected across the terminals of the battery. Now imagine moving 
through the battery from a to d and measuring the electric potential at various 
locations. Passing from the negative terminal to the positive terminal, the potential 
increases by an amount e. As we move through the resistance r, however, the poten-
tial decreases by an amount Ir, where I is the current in the circuit. Therefore, the 
terminal voltage of the battery DV 5 Vd 2 Va is

 DV 5 e 2 Ir  (28.1)

From this expression, notice that e is equivalent to the open-circuit voltage, that 
is, the terminal voltage when the current is zero. The emf is the voltage labeled on 
a battery; for example, the emf of a D cell is 1.5 V. The actual potential difference 
between a battery’s terminals depends on the current in the battery as described by 
Equation 28.1. Figure 28.1b is a graphical representation of the changes in electric 
potential as the circuit is traversed in the clockwise direction.
 Figure 28.1a shows that the terminal voltage DV must equal the potential differ-
ence across the external resistance R, often called the load resistance. The load resis-
tor might be a simple resistive circuit element as in Figure 28.1a, or it could be the 
resistance of some electrical device (such as a toaster, electric heater, or lightbulb) 
connected to the battery (or, in the case of household devices, to the wall outlet). 
The resistor represents a load on the battery because the battery must supply energy 
to operate the device containing the resistance. The potential difference across the 
load resistance is DV 5 IR. Combining this expression with Equation 28.1, we see that

 e 5 IR 1 Ir  (28.2)

Figure 28.1a shows a graphical representation of this equation. Solving for the cur-
rent gives

 I 5
e

R 1 r
 (28.3)

Equation 28.3 shows that the current in this simple circuit depends on both the 
load resistance R external to the battery and the internal resistance r. If R is much 
greater than r, as it is in many real-world circuits, we can neglect r.
 Multiplying Equation 28.2 by the current I in the circuit gives

 Ie = I 2R 1 I 2r (28.4)

Equation 28.4 indicates that because power P 5 I DV (see Eq. 27.21), the total power 
output Ie associated with the emf of the battery is delivered to the external load 
resistance in the amount I 2R and to the internal resistance in the amount I 2r.

Q uick Quiz 28.1  To maximize the percentage of the power from the emf of a bat-
tery that is delivered to a device external to the battery, what should the internal 
resistance of the battery be? (a) It should be as low as possible. (b) It should be as 
high as possible. (c) The percentage does not depend on the internal resistance.
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Figure 28.1 (a) Circuit diagram 
of a source of emf e (in this case, 
a battery), of internal resistance 
r, connected to an external resis-
tor of resistance R. (b) Graphical 
representation showing how the 
electric potential changes as the 
circuit in (a) is traversed clockwise.

Pitfall Prevention 28.1
What Is Constant in a Battery?  
It is a common misconception that 
a battery is a source of constant 
current. Equation 28.3 shows that 
is not true. The current in the cir-
cuit depends on the resistance R 
connected to the battery. It is also 
not true that a battery is a source 
of constant terminal voltage as 
shown by Equation 28.1. A battery 
is a source of constant emf.

Example 28.1   Terminal Voltage of a Battery

A battery has an emf of 12.0 V and an internal resistance of 0.050 0 V. Its terminals are connected to a load resistance 
of 3.00 V.
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Because a real battery is made of matter, there is resistance to the flow of charge 
within the battery. This resistance is called internal resistance r. For an idealized 
battery with zero internal resistance, the potential difference across the battery 
(called its terminal voltage) equals its emf. For a real battery, however, the terminal 
voltage is not equal to the emf for a battery in a circuit in which there is a current. 
To understand why, consider the circuit diagram in Figure 28.1a. We model the bat-
tery as shown in the diagram; it is represented by the dashed rectangle containing 
an ideal, resistance-free emf e in series with an internal resistance r. A resistor of 
resistance R is connected across the terminals of the battery. Now imagine moving 
through the battery from a to d and measuring the electric potential at various 
locations. Passing from the negative terminal to the positive terminal, the potential 
increases by an amount e. As we move through the resistance r, however, the poten-
tial decreases by an amount Ir, where I is the current in the circuit. Therefore, the 
terminal voltage of the battery DV 5 Vd 2 Va is

 DV 5 e 2 Ir  (28.1)

From this expression, notice that e is equivalent to the open-circuit voltage, that 
is, the terminal voltage when the current is zero. The emf is the voltage labeled on 
a battery; for example, the emf of a D cell is 1.5 V. The actual potential difference 
between a battery’s terminals depends on the current in the battery as described by 
Equation 28.1. Figure 28.1b is a graphical representation of the changes in electric 
potential as the circuit is traversed in the clockwise direction.
 Figure 28.1a shows that the terminal voltage DV must equal the potential differ-
ence across the external resistance R, often called the load resistance. The load resis-
tor might be a simple resistive circuit element as in Figure 28.1a, or it could be the 
resistance of some electrical device (such as a toaster, electric heater, or lightbulb) 
connected to the battery (or, in the case of household devices, to the wall outlet). 
The resistor represents a load on the battery because the battery must supply energy 
to operate the device containing the resistance. The potential difference across the 
load resistance is DV 5 IR. Combining this expression with Equation 28.1, we see that

 e 5 IR 1 Ir  (28.2)

Figure 28.1a shows a graphical representation of this equation. Solving for the cur-
rent gives

 I 5
e

R 1 r
 (28.3)

Equation 28.3 shows that the current in this simple circuit depends on both the 
load resistance R external to the battery and the internal resistance r. If R is much 
greater than r, as it is in many real-world circuits, we can neglect r.
 Multiplying Equation 28.2 by the current I in the circuit gives

 Ie = I 2R 1 I 2r (28.4)

Equation 28.4 indicates that because power P 5 I DV (see Eq. 27.21), the total power 
output Ie associated with the emf of the battery is delivered to the external load 
resistance in the amount I 2R and to the internal resistance in the amount I 2r.

Q uick Quiz 28.1  To maximize the percentage of the power from the emf of a bat-
tery that is delivered to a device external to the battery, what should the internal 
resistance of the battery be? (a) It should be as low as possible. (b) It should be as 
high as possible. (c) The percentage does not depend on the internal resistance.
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Figure 28.1 (a) Circuit diagram 
of a source of emf e (in this case, 
a battery), of internal resistance 
r, connected to an external resis-
tor of resistance R. (b) Graphical 
representation showing how the 
electric potential changes as the 
circuit in (a) is traversed clockwise.

Pitfall Prevention 28.1
What Is Constant in a Battery?  
It is a common misconception that 
a battery is a source of constant 
current. Equation 28.3 shows that 
is not true. The current in the cir-
cuit depends on the resistance R 
connected to the battery. It is also 
not true that a battery is a source 
of constant terminal voltage as 
shown by Equation 28.1. A battery 
is a source of constant emf.

Example 28.1   Terminal Voltage of a Battery

A battery has an emf of 12.0 V and an internal resistance of 0.050 0 V. Its terminals are connected to a load resistance 
of 3.00 V.

Notice in the lower diagram that we we come back at the right end
to the same potential that we started at on the left end.

In fact, it doesn’t matter what point we start at: if we go around a
closed loop, when we return to the starting point, we must return
to the starting potential also.
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Because a real battery is made of matter, there is resistance to the flow of charge 
within the battery. This resistance is called internal resistance r. For an idealized 
battery with zero internal resistance, the potential difference across the battery 
(called its terminal voltage) equals its emf. For a real battery, however, the terminal 
voltage is not equal to the emf for a battery in a circuit in which there is a current. 
To understand why, consider the circuit diagram in Figure 28.1a. We model the bat-
tery as shown in the diagram; it is represented by the dashed rectangle containing 
an ideal, resistance-free emf e in series with an internal resistance r. A resistor of 
resistance R is connected across the terminals of the battery. Now imagine moving 
through the battery from a to d and measuring the electric potential at various 
locations. Passing from the negative terminal to the positive terminal, the potential 
increases by an amount e. As we move through the resistance r, however, the poten-
tial decreases by an amount Ir, where I is the current in the circuit. Therefore, the 
terminal voltage of the battery DV 5 Vd 2 Va is

 DV 5 e 2 Ir  (28.1)

From this expression, notice that e is equivalent to the open-circuit voltage, that 
is, the terminal voltage when the current is zero. The emf is the voltage labeled on 
a battery; for example, the emf of a D cell is 1.5 V. The actual potential difference 
between a battery’s terminals depends on the current in the battery as described by 
Equation 28.1. Figure 28.1b is a graphical representation of the changes in electric 
potential as the circuit is traversed in the clockwise direction.
 Figure 28.1a shows that the terminal voltage DV must equal the potential differ-
ence across the external resistance R, often called the load resistance. The load resis-
tor might be a simple resistive circuit element as in Figure 28.1a, or it could be the 
resistance of some electrical device (such as a toaster, electric heater, or lightbulb) 
connected to the battery (or, in the case of household devices, to the wall outlet). 
The resistor represents a load on the battery because the battery must supply energy 
to operate the device containing the resistance. The potential difference across the 
load resistance is DV 5 IR. Combining this expression with Equation 28.1, we see that

 e 5 IR 1 Ir  (28.2)

Figure 28.1a shows a graphical representation of this equation. Solving for the cur-
rent gives

 I 5
e

R 1 r
 (28.3)

Equation 28.3 shows that the current in this simple circuit depends on both the 
load resistance R external to the battery and the internal resistance r. If R is much 
greater than r, as it is in many real-world circuits, we can neglect r.
 Multiplying Equation 28.2 by the current I in the circuit gives

 Ie = I 2R 1 I 2r (28.4)

Equation 28.4 indicates that because power P 5 I DV (see Eq. 27.21), the total power 
output Ie associated with the emf of the battery is delivered to the external load 
resistance in the amount I 2R and to the internal resistance in the amount I 2r.

Q uick Quiz 28.1  To maximize the percentage of the power from the emf of a bat-
tery that is delivered to a device external to the battery, what should the internal 
resistance of the battery be? (a) It should be as low as possible. (b) It should be as 
high as possible. (c) The percentage does not depend on the internal resistance.
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Figure 28.1 (a) Circuit diagram 
of a source of emf e (in this case, 
a battery), of internal resistance 
r, connected to an external resis-
tor of resistance R. (b) Graphical 
representation showing how the 
electric potential changes as the 
circuit in (a) is traversed clockwise.

Pitfall Prevention 28.1
What Is Constant in a Battery?  
It is a common misconception that 
a battery is a source of constant 
current. Equation 28.3 shows that 
is not true. The current in the cir-
cuit depends on the resistance R 
connected to the battery. It is also 
not true that a battery is a source 
of constant terminal voltage as 
shown by Equation 28.1. A battery 
is a source of constant emf.

Example 28.1   Terminal Voltage of a Battery

A battery has an emf of 12.0 V and an internal resistance of 0.050 0 V. Its terminals are connected to a load resistance 
of 3.00 V.
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Because a real battery is made of matter, there is resistance to the flow of charge 
within the battery. This resistance is called internal resistance r. For an idealized 
battery with zero internal resistance, the potential difference across the battery 
(called its terminal voltage) equals its emf. For a real battery, however, the terminal 
voltage is not equal to the emf for a battery in a circuit in which there is a current. 
To understand why, consider the circuit diagram in Figure 28.1a. We model the bat-
tery as shown in the diagram; it is represented by the dashed rectangle containing 
an ideal, resistance-free emf e in series with an internal resistance r. A resistor of 
resistance R is connected across the terminals of the battery. Now imagine moving 
through the battery from a to d and measuring the electric potential at various 
locations. Passing from the negative terminal to the positive terminal, the potential 
increases by an amount e. As we move through the resistance r, however, the poten-
tial decreases by an amount Ir, where I is the current in the circuit. Therefore, the 
terminal voltage of the battery DV 5 Vd 2 Va is

 DV 5 e 2 Ir  (28.1)

From this expression, notice that e is equivalent to the open-circuit voltage, that 
is, the terminal voltage when the current is zero. The emf is the voltage labeled on 
a battery; for example, the emf of a D cell is 1.5 V. The actual potential difference 
between a battery’s terminals depends on the current in the battery as described by 
Equation 28.1. Figure 28.1b is a graphical representation of the changes in electric 
potential as the circuit is traversed in the clockwise direction.
 Figure 28.1a shows that the terminal voltage DV must equal the potential differ-
ence across the external resistance R, often called the load resistance. The load resis-
tor might be a simple resistive circuit element as in Figure 28.1a, or it could be the 
resistance of some electrical device (such as a toaster, electric heater, or lightbulb) 
connected to the battery (or, in the case of household devices, to the wall outlet). 
The resistor represents a load on the battery because the battery must supply energy 
to operate the device containing the resistance. The potential difference across the 
load resistance is DV 5 IR. Combining this expression with Equation 28.1, we see that

 e 5 IR 1 Ir  (28.2)

Figure 28.1a shows a graphical representation of this equation. Solving for the cur-
rent gives

 I 5
e

R 1 r
 (28.3)

Equation 28.3 shows that the current in this simple circuit depends on both the 
load resistance R external to the battery and the internal resistance r. If R is much 
greater than r, as it is in many real-world circuits, we can neglect r.
 Multiplying Equation 28.2 by the current I in the circuit gives

 Ie = I 2R 1 I 2r (28.4)

Equation 28.4 indicates that because power P 5 I DV (see Eq. 27.21), the total power 
output Ie associated with the emf of the battery is delivered to the external load 
resistance in the amount I 2R and to the internal resistance in the amount I 2r.

Q uick Quiz 28.1  To maximize the percentage of the power from the emf of a bat-
tery that is delivered to a device external to the battery, what should the internal 
resistance of the battery be? (a) It should be as low as possible. (b) It should be as 
high as possible. (c) The percentage does not depend on the internal resistance.
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Figure 28.1 (a) Circuit diagram 
of a source of emf e (in this case, 
a battery), of internal resistance 
r, connected to an external resis-
tor of resistance R. (b) Graphical 
representation showing how the 
electric potential changes as the 
circuit in (a) is traversed clockwise.

Pitfall Prevention 28.1
What Is Constant in a Battery?  
It is a common misconception that 
a battery is a source of constant 
current. Equation 28.3 shows that 
is not true. The current in the cir-
cuit depends on the resistance R 
connected to the battery. It is also 
not true that a battery is a source 
of constant terminal voltage as 
shown by Equation 28.1. A battery 
is a source of constant emf.

Example 28.1   Terminal Voltage of a Battery

A battery has an emf of 12.0 V and an internal resistance of 0.050 0 V. Its terminals are connected to a load resistance 
of 3.00 V.

Kirchhoff’s loop rule:

Loop Rule

The sum of the changes in potential encountered in a complete
traversal of any loop of a circuit must be zero.



Multiloop Circuits

Single loop

V

R1

R2

Multiloop

R1 R2

V



Series and Parallel

Series
When components are
connected one after the other
along a single path, they are
connected in series.

V

R1

R2

Parallel
When components are
connected side-by-side on
different paths, they are
connected in parallel.

R1 R2

V



Resistors in Series

The current though resistors in series in a loop is the same.

Let the total potential difference across two resistors be ∆V , then

∆V = IR1 + IR2 = I(R1 + R2)

Then the effective equivalent resistance of both together is just the
sum

Req = R1 + R2

For n resistors in series:

Req = R1 + R2 + ... + Rn =

n∑
i=1

Ri



Resistors in Parallel
The potential difference across two resistors in parallel is the same.
(Loop rule.)

Let i be the total current that flows through both resistors:
I = I1 + I2. (Junction rule.)

I =
∆V

Req
=

∆V

R1
+

∆V

R2

Dividing the equation by V :

1

Req
=

1

R1
+

1

R2

For n of resistors in parallel:

1

Req
=

1

R1
+

1

R2
+ ... +

1

Rn
=

n∑
i=1

1

Ri



Resistors vs. Capacitors

Table of equivalent capacitances and resistances for series and
parallel.

resistors capacitors

series Req =
∑

Ri
1
Ceq

=
∑

1
Ci

parallel
1
Req

=
∑

1
Ri

Ceq =
∑

Ci



Example

Consider the circuit pictured with E = 12 V, and the following
resistor values: R1 = 20 Ω, R2 = 20 Ω, R3 = 30 Ω, and
R4 = 8.0 Ω.
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Fig. 27-11 (a) A circuit with an ideal battery. (b) Label the currents. (c) Replacing the parallel resistors with their
equivalent. (d) – (g) Working backward to find the currents through the parallel resistors.

R 2

(a)

a

+
–

R 4

R 1

c

b

R 3

R 2

a

+
–

R 4

R 1

c

b

R 3

 i 2

 i 1

 i 1  i 3

(b)

a c

+
–

R 4 = 8.0 Ω

R 1 = 20 Ω

b

 i 1
R 23 = 12 Ω

 i 1

 i 1

(c)

The equivalent of parallel
resistors is smaller.

a

+
–

R 4 = 8.0 Ω

R 1 = 20 Ω

b
 i 1  = 0.30 A

 i 1  = 0.30 A

 i 1  = 0.30 A

(d)

R 23 = 12 Ω = 12 V

a cc

c c

+
–

R 4 = 8.0 Ω

R 1 = 20 Ω

b
 i 1  = 0.30 A

 i 1  = 0.30 A

 i 1  = 0.30 A

(e)

R 23 = 12 ΩV 23 = 3.6 V = 12 V

Applying the loop rule
yields the current.

Applying V = iR yields
the potential difference.

+
–

R 4 = 8.0 Ω

R 1 = 20 Ω

 i 1  = 0.30 A

 i 1  = 0.30 A

 i 2

 i 3

( f )

R 2 = 20 ΩV 2 = 3.6 V

V 3 = 3.6 V

 = 12 V

R 3 = 30 Ω

+
–

R 4 = 8.0 Ω

R 1 = 20 Ω

 i 1  = 0.30 A

 i 1  = 0.30 A
(g)

R 2 = 20 Ω
i 2 = 0.18 A

i 3 = 0.12 A

V 2 = 3.6 V

V 3 = 3.6 V

 = 12 V

R 3 = 30 Ω

Parallel resistors and
their equivalent have
the same V (“par-V”).

Applying i = V/R 
yields the current.

b b

A
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What is the current through the battery?
answer: I = 0.30 A

What is the current through resistor R2?
answer: I2 = 0.18 A



Kirchhoff’s Laws

The loop rule for potential difference and the junction rule for
current together are called Kirchhoff’s laws.

Loop Rule

The sum of the changes in potential encountered in a complete
traversal of any loop of a circuit must be zero.

Junction Rule

The sum of the currents entering any junction must be equal to
the sum of the currents leaving that junction.

Using both it is possible to discover many things about how a
circuit operates, for example how much power will be dissipated in
a particular component.



Potential difference between two points

834 Chapter 28 Direct-Current Circuits

Because a real battery is made of matter, there is resistance to the flow of charge 
within the battery. This resistance is called internal resistance r. For an idealized 
battery with zero internal resistance, the potential difference across the battery 
(called its terminal voltage) equals its emf. For a real battery, however, the terminal 
voltage is not equal to the emf for a battery in a circuit in which there is a current. 
To understand why, consider the circuit diagram in Figure 28.1a. We model the bat-
tery as shown in the diagram; it is represented by the dashed rectangle containing 
an ideal, resistance-free emf e in series with an internal resistance r. A resistor of 
resistance R is connected across the terminals of the battery. Now imagine moving 
through the battery from a to d and measuring the electric potential at various 
locations. Passing from the negative terminal to the positive terminal, the potential 
increases by an amount e. As we move through the resistance r, however, the poten-
tial decreases by an amount Ir, where I is the current in the circuit. Therefore, the 
terminal voltage of the battery DV 5 Vd 2 Va is

 DV 5 e 2 Ir  (28.1)

From this expression, notice that e is equivalent to the open-circuit voltage, that 
is, the terminal voltage when the current is zero. The emf is the voltage labeled on 
a battery; for example, the emf of a D cell is 1.5 V. The actual potential difference 
between a battery’s terminals depends on the current in the battery as described by 
Equation 28.1. Figure 28.1b is a graphical representation of the changes in electric 
potential as the circuit is traversed in the clockwise direction.
 Figure 28.1a shows that the terminal voltage DV must equal the potential differ-
ence across the external resistance R, often called the load resistance. The load resis-
tor might be a simple resistive circuit element as in Figure 28.1a, or it could be the 
resistance of some electrical device (such as a toaster, electric heater, or lightbulb) 
connected to the battery (or, in the case of household devices, to the wall outlet). 
The resistor represents a load on the battery because the battery must supply energy 
to operate the device containing the resistance. The potential difference across the 
load resistance is DV 5 IR. Combining this expression with Equation 28.1, we see that

 e 5 IR 1 Ir  (28.2)

Figure 28.1a shows a graphical representation of this equation. Solving for the cur-
rent gives

 I 5
e

R 1 r
 (28.3)

Equation 28.3 shows that the current in this simple circuit depends on both the 
load resistance R external to the battery and the internal resistance r. If R is much 
greater than r, as it is in many real-world circuits, we can neglect r.
 Multiplying Equation 28.2 by the current I in the circuit gives

 Ie = I 2R 1 I 2r (28.4)

Equation 28.4 indicates that because power P 5 I DV (see Eq. 27.21), the total power 
output Ie associated with the emf of the battery is delivered to the external load 
resistance in the amount I 2R and to the internal resistance in the amount I 2r.

Q uick Quiz 28.1  To maximize the percentage of the power from the emf of a bat-
tery that is delivered to a device external to the battery, what should the internal 
resistance of the battery be? (a) It should be as low as possible. (b) It should be as 
high as possible. (c) The percentage does not depend on the internal resistance.
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Figure 28.1 (a) Circuit diagram 
of a source of emf e (in this case, 
a battery), of internal resistance 
r, connected to an external resis-
tor of resistance R. (b) Graphical 
representation showing how the 
electric potential changes as the 
circuit in (a) is traversed clockwise.

Pitfall Prevention 28.1
What Is Constant in a Battery?  
It is a common misconception that 
a battery is a source of constant 
current. Equation 28.3 shows that 
is not true. The current in the cir-
cuit depends on the resistance R 
connected to the battery. It is also 
not true that a battery is a source 
of constant terminal voltage as 
shown by Equation 28.1. A battery 
is a source of constant emf.

Example 28.1   Terminal Voltage of a Battery

A battery has an emf of 12.0 V and an internal resistance of 0.050 0 V. Its terminals are connected to a load resistance 
of 3.00 V.

“Voltage Drops”:

resistance rule

Going through a resistance R in the direction of the current, the
change in potential is −iR; in the opposite direction it is +iR.

“Voltage jumps”:

emf rule

Going through an ideal emf device in the direction of the emf
arrow, the change in potential is +E; in the opposite direction it is
−E.



Example with Two Batteries

Find the current in the circuit.

 28.3 Kirchhoff’s Rules 845

Example 28.6   A Single-Loop Circuit

A single-loop circuit contains two resistors and two batteries as shown in Figure 28.14. 
(Neglect the internal resistances of the batteries.) Find the current in the circuit.

Conceptualize  Figure 28.14 shows the polarities of the batteries and a guess at the 
direction of the current. The 12-V battery is the stronger of the two, so the current 
should be counterclockwise. Therefore, we expect our guess for the direction of the 
current to be wrong, but we will continue and see how this incorrect guess is repre-
sented by our final answer.

Categorize  We do not need Kirchhoff’s rules to analyze this simple circuit, but let’s 
use them anyway simply to see how they are applied. There are no junctions in this 
single-loop circuit; therefore, the current is the same in all elements.

Analyze  Let’s assume the current is clockwise as shown in Figure 28.14. Traversing the circuit in the clockwise direc-
tion, starting at a, we see that a S b represents a potential difference of 1e1, b S c represents a potential difference of 
2IR1, c S d represents a potential difference of 2e2, and d S a represents a potential difference of 2IR 2.

S O L U T I O N

I

c

a b

d
! "

! "
e1 # 6.0 V

R1 # 8.0 $R2 # 10 $

e2 # 12 V

Figure 28.14 (Example 28.6) 
A series circuit containing two 
batteries and two resistors, 
where the polarities of the bat-
teries are in opposition.

Solve for I and use the values given in Figure 28.14: (1)   I 5
e1 2 e2

R 1 1 R 2
5

6.0 V 2 12 V
8.0 V 1 10 V

5 20.33 A

Apply Kirchhoff’s loop rule to the single loop in the 
circuit:

o DV 5 0   S   e1 2 IR1 2 e2 2 IR 2 5 0

Finalize  The negative sign for I indicates that the direction of the current is opposite the assumed direction. The 
emfs in the numerator subtract because the batteries in Figure 28.14 have opposite polarities. The resistances in the 
denominator add because the two resistors are in series.

What if the polarity of the 12.0-V battery were reversed? How would that affect the circuit?

Answer  Although we could repeat the Kirchhoff’s rules calculation, let’s instead examine Equation (1) and modify it 
accordingly. Because the polarities of the two batteries are now in the same direction, the signs of e1 and e2 are the 
same and Equation (1) becomes

I 5
e1 1 e2

R 1 1 R 2
5

6.0 V 1 12 V
8.0 V 1 10 V

5 1.0 A

WHAT IF ?

Example 28.7   A Multiloop Circuit

Find the currents I 1, I 2, and I 3 in the circuit shown in Figure 28.15 on page 846.

the circuit as are needed to obtain, in combination with the equations from the junc-
tion rule, as many equations as there are unknowns. To apply this rule, you must 
choose a direction in which to travel around the loop (either clockwise or counter-
clockwise) and correctly identify the change in potential as you cross each element. 
Be careful with signs!
 Solve the equations simultaneously for the unknown quantities.

4. Finalize. Check your numerical answers for consistency. Do not be alarmed if any 
of the resulting currents have a negative value. That only means you have guessed the 
direction of that current incorrectly, but its magnitude will be correct.

 

continued

▸ Problem-Solving Strategy c o n t i n u e d

Suppose the current flows in the direction shown.
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Example 28.6   A Single-Loop Circuit

A single-loop circuit contains two resistors and two batteries as shown in Figure 28.14. 
(Neglect the internal resistances of the batteries.) Find the current in the circuit.

Conceptualize  Figure 28.14 shows the polarities of the batteries and a guess at the 
direction of the current. The 12-V battery is the stronger of the two, so the current 
should be counterclockwise. Therefore, we expect our guess for the direction of the 
current to be wrong, but we will continue and see how this incorrect guess is repre-
sented by our final answer.

Categorize  We do not need Kirchhoff’s rules to analyze this simple circuit, but let’s 
use them anyway simply to see how they are applied. There are no junctions in this 
single-loop circuit; therefore, the current is the same in all elements.

Analyze  Let’s assume the current is clockwise as shown in Figure 28.14. Traversing the circuit in the clockwise direc-
tion, starting at a, we see that a S b represents a potential difference of 1e1, b S c represents a potential difference of 
2IR1, c S d represents a potential difference of 2e2, and d S a represents a potential difference of 2IR 2.
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Figure 28.14 (Example 28.6) 
A series circuit containing two 
batteries and two resistors, 
where the polarities of the bat-
teries are in opposition.

Solve for I and use the values given in Figure 28.14: (1)   I 5
e1 2 e2

R 1 1 R 2
5

6.0 V 2 12 V
8.0 V 1 10 V

5 20.33 A

Apply Kirchhoff’s loop rule to the single loop in the 
circuit:

o DV 5 0   S   e1 2 IR1 2 e2 2 IR 2 5 0

Finalize  The negative sign for I indicates that the direction of the current is opposite the assumed direction. The 
emfs in the numerator subtract because the batteries in Figure 28.14 have opposite polarities. The resistances in the 
denominator add because the two resistors are in series.

What if the polarity of the 12.0-V battery were reversed? How would that affect the circuit?

Answer  Although we could repeat the Kirchhoff’s rules calculation, let’s instead examine Equation (1) and modify it 
accordingly. Because the polarities of the two batteries are now in the same direction, the signs of e1 and e2 are the 
same and Equation (1) becomes
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Example 28.7   A Multiloop Circuit

Find the currents I 1, I 2, and I 3 in the circuit shown in Figure 28.15 on page 846.

the circuit as are needed to obtain, in combination with the equations from the junc-
tion rule, as many equations as there are unknowns. To apply this rule, you must 
choose a direction in which to travel around the loop (either clockwise or counter-
clockwise) and correctly identify the change in potential as you cross each element. 
Be careful with signs!
 Solve the equations simultaneously for the unknown quantities.

4. Finalize. Check your numerical answers for consistency. Do not be alarmed if any 
of the resulting currents have a negative value. That only means you have guessed the 
direction of that current incorrectly, but its magnitude will be correct.

 

continued

▸ Problem-Solving Strategy c o n t i n u e d

∑
∆V = E1 − IR1 − E2 − IR2 = 0

⇒ I =
E1 − E2

R1 + R2
= −0.33 A

Minus sign means that the current flows opposite to the direction
shown in the diagram.
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Example 28.6   A Single-Loop Circuit

A single-loop circuit contains two resistors and two batteries as shown in Figure 28.14. 
(Neglect the internal resistances of the batteries.) Find the current in the circuit.

Conceptualize  Figure 28.14 shows the polarities of the batteries and a guess at the 
direction of the current. The 12-V battery is the stronger of the two, so the current 
should be counterclockwise. Therefore, we expect our guess for the direction of the 
current to be wrong, but we will continue and see how this incorrect guess is repre-
sented by our final answer.

Categorize  We do not need Kirchhoff’s rules to analyze this simple circuit, but let’s 
use them anyway simply to see how they are applied. There are no junctions in this 
single-loop circuit; therefore, the current is the same in all elements.

Analyze  Let’s assume the current is clockwise as shown in Figure 28.14. Traversing the circuit in the clockwise direc-
tion, starting at a, we see that a S b represents a potential difference of 1e1, b S c represents a potential difference of 
2IR1, c S d represents a potential difference of 2e2, and d S a represents a potential difference of 2IR 2.
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A series circuit containing two 
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5 20.33 A

Apply Kirchhoff’s loop rule to the single loop in the 
circuit:

o DV 5 0   S   e1 2 IR1 2 e2 2 IR 2 5 0

Finalize  The negative sign for I indicates that the direction of the current is opposite the assumed direction. The 
emfs in the numerator subtract because the batteries in Figure 28.14 have opposite polarities. The resistances in the 
denominator add because the two resistors are in series.

What if the polarity of the 12.0-V battery were reversed? How would that affect the circuit?

Answer  Although we could repeat the Kirchhoff’s rules calculation, let’s instead examine Equation (1) and modify it 
accordingly. Because the polarities of the two batteries are now in the same direction, the signs of e1 and e2 are the 
same and Equation (1) becomes
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Find the currents I 1, I 2, and I 3 in the circuit shown in Figure 28.15 on page 846.

the circuit as are needed to obtain, in combination with the equations from the junc-
tion rule, as many equations as there are unknowns. To apply this rule, you must 
choose a direction in which to travel around the loop (either clockwise or counter-
clockwise) and correctly identify the change in potential as you cross each element. 
Be careful with signs!
 Solve the equations simultaneously for the unknown quantities.

4. Finalize. Check your numerical answers for consistency. Do not be alarmed if any 
of the resulting currents have a negative value. That only means you have guessed the 
direction of that current incorrectly, but its magnitude will be correct.
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▸ Problem-Solving Strategy c o n t i n u e d

∑
∆V = E1 − IR1 − E2 − IR2 = 0

⇒ I =
E1 − E2

R1 + R2
= −0.33 A

Minus sign means that the current flows opposite to the direction
shown in the diagram.



Using Kirchhoff’s Laws examples
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•4 Figure 27-27 shows a circuit of four resistors that are con-
nected to a larger circuit.The graph below the circuit shows the elec-
tric potential V(x) as a function of position x along the lower branch
of the circuit, through resistor 4; the potential VA is 12.0 V. The graph

Fig. 27-24 Question 11.

(1) (2) (3)

sec. 27-6 Potential Difference Between Two Points
•1 In Fig. 27-25, the ideal
batteries have emfs !1 ! 12 V and !2 !
6.0 V. What are (a) the current, the dissi-
pation rate in (b) resistor 1 (4.0 ") and (c)
resistor 2 (8.0 "), and the energy transfer
rate in (d) battery 1 and (e) battery 2? Is
energy being supplied or absorbed by (f)
battery 1 and (g) battery 2?

•2 In Fig. 27-26, the ideal batteries 
have emfs !1 ! 150 V and !2 ! 50 V
and the resistances are R1 ! 3.0 "
and R2 ! 2.0 ". If the potential at P is
100 V, what is it at Q?

•3 A car battery with a 12 V
emf and an internal resistance of 0.040
" is being charged with a current of 50
A. What are (a) the potential differ-
ence V across the terminals, (b) the
rate Pr of energy dissipation inside the battery, and (c) the rate Pemf

of energy conversion to chemical form? When the battery is used to
supply 50 A to the starter motor, what are (d) V and (e) Pr?
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Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

R2 more than, less than, or equal to R1? (d) Is the total current
through R1 and R2 together more than, less than, or equal to the
current through R1 previously?

10 After the switch in Fig. 27-15 is
closed on point a, there is current i
through resistance R. Figure 27-23
gives that current for four sets of
values of R and capacitance C: (1) R0

and C0, (2) 2R0 and C0, (3) R0 and
2C0, (4) 2R0 and 2C0. Which set goes
with which curve?

11 Figure 27-24 shows three sec-
tions of circuit that are to be con-
nected in turn to the same battery
via a switch as in Fig. 27-15.The resistors are all identical, as are the
capacitors. Rank the sections according to (a) the final (equilib-
rium) charge on the capacitor and (b) the time required for the
capacitor to reach 50% of its final charge, greatest first.

rent i1 through R1 now more than, less than, or the same as previ-
ously? (c) Is the equivalent resistance R12 of R1 and R2 more than,
less than, or equal to R1?

8 Cap-monster maze. In Fig. 27-22, all the capacitors have a
capacitance of 6.0 mF, and all the batteries have an emf of 10 V.
What is the charge on capacitor C? (If you can find the proper loop
through this maze, you can answer the question with a few seconds
of mental calculation.)

9 Initially, a single resistor R1 is wired to a battery. Then resistor
R2 is added in parallel. Are (a) the potential difference across R1

and (b) the current i1 through R1 now more than, less than, or the
same as previously? (c) Is the equivalent resistance R12 of R1 and

C

Fig. 27-22 Question 8.

i

dc

a

b

t

Fig. 27-23 Question 10.

Fig. 27-25
Problem 1.
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•4 Figure 27-27 shows a circuit of four resistors that are con-
nected to a larger circuit.The graph below the circuit shows the elec-
tric potential V(x) as a function of position x along the lower branch
of the circuit, through resistor 4; the potential VA is 12.0 V. The graph

Fig. 27-24 Question 11.

(1) (2) (3)

sec. 27-6 Potential Difference Between Two Points
•1 In Fig. 27-25, the ideal
batteries have emfs !1 ! 12 V and !2 !
6.0 V. What are (a) the current, the dissi-
pation rate in (b) resistor 1 (4.0 ") and (c)
resistor 2 (8.0 "), and the energy transfer
rate in (d) battery 1 and (e) battery 2? Is
energy being supplied or absorbed by (f)
battery 1 and (g) battery 2?

•2 In Fig. 27-26, the ideal batteries 
have emfs !1 ! 150 V and !2 ! 50 V
and the resistances are R1 ! 3.0 "
and R2 ! 2.0 ". If the potential at P is
100 V, what is it at Q?

•3 A car battery with a 12 V
emf and an internal resistance of 0.040
" is being charged with a current of 50
A. What are (a) the potential differ-
ence V across the terminals, (b) the
rate Pr of energy dissipation inside the battery, and (c) the rate Pemf

of energy conversion to chemical form? When the battery is used to
supply 50 A to the starter motor, what are (d) V and (e) Pr?
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R2 more than, less than, or equal to R1? (d) Is the total current
through R1 and R2 together more than, less than, or equal to the
current through R1 previously?

10 After the switch in Fig. 27-15 is
closed on point a, there is current i
through resistance R. Figure 27-23
gives that current for four sets of
values of R and capacitance C: (1) R0

and C0, (2) 2R0 and C0, (3) R0 and
2C0, (4) 2R0 and 2C0. Which set goes
with which curve?

11 Figure 27-24 shows three sec-
tions of circuit that are to be con-
nected in turn to the same battery
via a switch as in Fig. 27-15.The resistors are all identical, as are the
capacitors. Rank the sections according to (a) the final (equilib-
rium) charge on the capacitor and (b) the time required for the
capacitor to reach 50% of its final charge, greatest first.

rent i1 through R1 now more than, less than, or the same as previ-
ously? (c) Is the equivalent resistance R12 of R1 and R2 more than,
less than, or equal to R1?

8 Cap-monster maze. In Fig. 27-22, all the capacitors have a
capacitance of 6.0 mF, and all the batteries have an emf of 10 V.
What is the charge on capacitor C? (If you can find the proper loop
through this maze, you can answer the question with a few seconds
of mental calculation.)

9 Initially, a single resistor R1 is wired to a battery. Then resistor
R2 is added in parallel. Are (a) the potential difference across R1

and (b) the current i1 through R1 now more than, less than, or the
same as previously? (c) Is the equivalent resistance R12 of R1 and

C

Fig. 27-22 Question 8.
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Fig. 27-23 Question 10.

Fig. 27-25
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Loop rule: −E2 − IR2 + E1 − IR1 = 0, I = 20 A.

Potential at Q = −10 V.
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•4 Figure 27-27 shows a circuit of four resistors that are con-
nected to a larger circuit.The graph below the circuit shows the elec-
tric potential V(x) as a function of position x along the lower branch
of the circuit, through resistor 4; the potential VA is 12.0 V. The graph

Fig. 27-24 Question 11.

(1) (2) (3)

sec. 27-6 Potential Difference Between Two Points
•1 In Fig. 27-25, the ideal
batteries have emfs !1 ! 12 V and !2 !
6.0 V. What are (a) the current, the dissi-
pation rate in (b) resistor 1 (4.0 ") and (c)
resistor 2 (8.0 "), and the energy transfer
rate in (d) battery 1 and (e) battery 2? Is
energy being supplied or absorbed by (f)
battery 1 and (g) battery 2?

•2 In Fig. 27-26, the ideal batteries 
have emfs !1 ! 150 V and !2 ! 50 V
and the resistances are R1 ! 3.0 "
and R2 ! 2.0 ". If the potential at P is
100 V, what is it at Q?

•3 A car battery with a 12 V
emf and an internal resistance of 0.040
" is being charged with a current of 50
A. What are (a) the potential differ-
ence V across the terminals, (b) the
rate Pr of energy dissipation inside the battery, and (c) the rate Pemf

of energy conversion to chemical form? When the battery is used to
supply 50 A to the starter motor, what are (d) V and (e) Pr?
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R2 more than, less than, or equal to R1? (d) Is the total current
through R1 and R2 together more than, less than, or equal to the
current through R1 previously?

10 After the switch in Fig. 27-15 is
closed on point a, there is current i
through resistance R. Figure 27-23
gives that current for four sets of
values of R and capacitance C: (1) R0

and C0, (2) 2R0 and C0, (3) R0 and
2C0, (4) 2R0 and 2C0. Which set goes
with which curve?

11 Figure 27-24 shows three sec-
tions of circuit that are to be con-
nected in turn to the same battery
via a switch as in Fig. 27-15.The resistors are all identical, as are the
capacitors. Rank the sections according to (a) the final (equilib-
rium) charge on the capacitor and (b) the time required for the
capacitor to reach 50% of its final charge, greatest first.

rent i1 through R1 now more than, less than, or the same as previ-
ously? (c) Is the equivalent resistance R12 of R1 and R2 more than,
less than, or equal to R1?

8 Cap-monster maze. In Fig. 27-22, all the capacitors have a
capacitance of 6.0 mF, and all the batteries have an emf of 10 V.
What is the charge on capacitor C? (If you can find the proper loop
through this maze, you can answer the question with a few seconds
of mental calculation.)

9 Initially, a single resistor R1 is wired to a battery. Then resistor
R2 is added in parallel. Are (a) the potential difference across R1

and (b) the current i1 through R1 now more than, less than, or the
same as previously? (c) Is the equivalent resistance R12 of R1 and

C

Fig. 27-22 Question 8.
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Fig. 27-23 Question 10.
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•4 Figure 27-27 shows a circuit of four resistors that are con-
nected to a larger circuit.The graph below the circuit shows the elec-
tric potential V(x) as a function of position x along the lower branch
of the circuit, through resistor 4; the potential VA is 12.0 V. The graph

Fig. 27-24 Question 11.
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sec. 27-6 Potential Difference Between Two Points
•1 In Fig. 27-25, the ideal
batteries have emfs !1 ! 12 V and !2 !
6.0 V. What are (a) the current, the dissi-
pation rate in (b) resistor 1 (4.0 ") and (c)
resistor 2 (8.0 "), and the energy transfer
rate in (d) battery 1 and (e) battery 2? Is
energy being supplied or absorbed by (f)
battery 1 and (g) battery 2?

•2 In Fig. 27-26, the ideal batteries 
have emfs !1 ! 150 V and !2 ! 50 V
and the resistances are R1 ! 3.0 "
and R2 ! 2.0 ". If the potential at P is
100 V, what is it at Q?

•3 A car battery with a 12 V
emf and an internal resistance of 0.040
" is being charged with a current of 50
A. What are (a) the potential differ-
ence V across the terminals, (b) the
rate Pr of energy dissipation inside the battery, and (c) the rate Pemf

of energy conversion to chemical form? When the battery is used to
supply 50 A to the starter motor, what are (d) V and (e) Pr?
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R2 more than, less than, or equal to R1? (d) Is the total current
through R1 and R2 together more than, less than, or equal to the
current through R1 previously?

10 After the switch in Fig. 27-15 is
closed on point a, there is current i
through resistance R. Figure 27-23
gives that current for four sets of
values of R and capacitance C: (1) R0

and C0, (2) 2R0 and C0, (3) R0 and
2C0, (4) 2R0 and 2C0. Which set goes
with which curve?

11 Figure 27-24 shows three sec-
tions of circuit that are to be con-
nected in turn to the same battery
via a switch as in Fig. 27-15.The resistors are all identical, as are the
capacitors. Rank the sections according to (a) the final (equilib-
rium) charge on the capacitor and (b) the time required for the
capacitor to reach 50% of its final charge, greatest first.

rent i1 through R1 now more than, less than, or the same as previ-
ously? (c) Is the equivalent resistance R12 of R1 and R2 more than,
less than, or equal to R1?

8 Cap-monster maze. In Fig. 27-22, all the capacitors have a
capacitance of 6.0 mF, and all the batteries have an emf of 10 V.
What is the charge on capacitor C? (If you can find the proper loop
through this maze, you can answer the question with a few seconds
of mental calculation.)

9 Initially, a single resistor R1 is wired to a battery. Then resistor
R2 is added in parallel. Are (a) the potential difference across R1

and (b) the current i1 through R1 now more than, less than, or the
same as previously? (c) Is the equivalent resistance R12 of R1 and
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Loop rule: −E2 − IR2 + E1 − IR1 = 0, I = 20 A.

Potential at Q = −10 V.



Example with a Multiloop Circuit
Find the currents I1, I2, and I3 in the circuit.

846 Chapter 28 Direct-Current Circuits

Conceptualize  Imagine physically rearranging the circuit 
while keeping it electrically the same. Can you rearrange it 
so that it consists of simple series or parallel combinations 
of resistors? You should find that you cannot. (If the 10.0-V 
battery were removed and replaced by a wire from b to the 
6.0-V resistor, the circuit would consist of only series and 
parallel combinations.)

Categorize  We cannot simplify the circuit by the rules 
associated with combining resistances in series and in par-
allel. Therefore, this problem is one in which we must use 
Kirchhoff’s rules.

Analyze  We arbitrarily choose the directions of the currents as labeled in Figure 28.15.

S O L U T I O N

Figure 28.15 (Example 
28.7) A circuit containing 
different branches.

14.0 V

e

b

4.0 !

10.0 V
6.0 !

f

I2

c

I3

I1

2.0 !
da

" #

# "

Use Equation (1) to find I3: I3 5 I1 1 I2 5 2.0 A 2 3.0 A 5 21.0 A

Apply Kirchhoff’s junction rule to junction c : (1)   I1 1 I2 2 I3 5 0

We now have one equation with three unknowns: I1, I 2, 
and I3. There are three loops in the circuit: abcda, befcb, 
and aefda. We need only two loop equations to deter-
mine the unknown currents. (The third equation would 
give no new information.) Let’s choose to traverse these 
loops in the clockwise direction. Apply Kirchhoff’s loop 
rule to loops abcda and befcb:

abcda: (2)   10.0 V 2 (6.0 V)I1 2 (2.0 V)I3 5 0

befcb: 2(4.0 V)I2 2 14.0 V 1 (6.0 V)I1 2 10.0 V 5 0

(3)   224.0 V 1 (6.0 V)I1 2 (4.0 V)I2 5 0

Solve Equation (1) for I3 and substitute into Equation (2): 10.0 V 2 (6.0 V)I1 2 (2.0 V)(I1 1 I2) 5 0

(4)   10.0 V 2 (8.0 V)I1 2 (2.0 V)I2 5 0

Multiply each term in Equation (3) by 4 and each term 
in Equation (4) by 3:

(5)   296.0 V 1 (24.0 V)I1 2 (16.0 V)I2 5 0

(6)   30.0 V 2 (24.0 V)I1 2 (6.0 V)I2 5 0

Add Equation (6) to Equation (5) to eliminate I1 and 
find I2:

266.0 V 2 (22.0 V)I2 5 0

I2 5 23.0 A

Use this value of I2 in Equation (3) to find I1: 224.0 V 1 (6.0 V)I1 2 (4.0 V)(23.0 A) 5 0

224.0 V 1 (6.0 V)I1 1 12.0 V 5 0

I1 5 2.0 A

Finalize  Because our values for I2 and I3 are negative, the directions of these currents are opposite those indicated in 
Figure 28.15. The numerical values for the currents are correct. Despite the incorrect direction, we must continue to 
use these negative values in subsequent calculations because our equations were established with our original choice 
of direction. What would have happened had we left the current directions as labeled in Figure 28.15 but traversed the 
loops in the opposite direction?

28.4 RC Circuits
So far, we have analyzed direct-current circuits in which the current is constant. In 
DC circuits containing capacitors, the current is always in the same direction but 
may vary in magnitude at different times. A circuit containing a series combination 
of a resistor and a capacitor is called an RC circuit.

 

▸ 28.7 c o n t i n u e d

Suppose the currents flow in the direction shown.



Example with a Multiloop Circuit

Junction rule:
I1 + I2 = I3 (1)

Loops:
10V − (6Ω)I1 + (2Ω)I3 = 0 (2)

−14V + (6Ω)I1 − 10V − (4Ω)I2 = 0 (3)

−14V − (2Ω)I3 − (4Ω)I2 = 0 (4)
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846 Chapter 28 Direct-Current Circuits

Conceptualize  Imagine physically rearranging the circuit 
while keeping it electrically the same. Can you rearrange it 
so that it consists of simple series or parallel combinations 
of resistors? You should find that you cannot. (If the 10.0-V 
battery were removed and replaced by a wire from b to the 
6.0-V resistor, the circuit would consist of only series and 
parallel combinations.)

Categorize  We cannot simplify the circuit by the rules 
associated with combining resistances in series and in par-
allel. Therefore, this problem is one in which we must use 
Kirchhoff’s rules.

Analyze  We arbitrarily choose the directions of the currents as labeled in Figure 28.15.
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Use Equation (1) to find I3: I3 5 I1 1 I2 5 2.0 A 2 3.0 A 5 21.0 A

Apply Kirchhoff’s junction rule to junction c : (1)   I1 1 I2 2 I3 5 0

We now have one equation with three unknowns: I1, I 2, 
and I3. There are three loops in the circuit: abcda, befcb, 
and aefda. We need only two loop equations to deter-
mine the unknown currents. (The third equation would 
give no new information.) Let’s choose to traverse these 
loops in the clockwise direction. Apply Kirchhoff’s loop 
rule to loops abcda and befcb:

abcda: (2)   10.0 V 2 (6.0 V)I1 2 (2.0 V)I3 5 0

befcb: 2(4.0 V)I2 2 14.0 V 1 (6.0 V)I1 2 10.0 V 5 0

(3)   224.0 V 1 (6.0 V)I1 2 (4.0 V)I2 5 0

Solve Equation (1) for I3 and substitute into Equation (2): 10.0 V 2 (6.0 V)I1 2 (2.0 V)(I1 1 I2) 5 0

(4)   10.0 V 2 (8.0 V)I1 2 (2.0 V)I2 5 0

Multiply each term in Equation (3) by 4 and each term 
in Equation (4) by 3:

(5)   296.0 V 1 (24.0 V)I1 2 (16.0 V)I2 5 0

(6)   30.0 V 2 (24.0 V)I1 2 (6.0 V)I2 5 0

Add Equation (6) to Equation (5) to eliminate I1 and 
find I2:

266.0 V 2 (22.0 V)I2 5 0

I2 5 23.0 A

Use this value of I2 in Equation (3) to find I1: 224.0 V 1 (6.0 V)I1 2 (4.0 V)(23.0 A) 5 0

224.0 V 1 (6.0 V)I1 1 12.0 V 5 0

I1 5 2.0 A

Finalize  Because our values for I2 and I3 are negative, the directions of these currents are opposite those indicated in 
Figure 28.15. The numerical values for the currents are correct. Despite the incorrect direction, we must continue to 
use these negative values in subsequent calculations because our equations were established with our original choice 
of direction. What would have happened had we left the current directions as labeled in Figure 28.15 but traversed the 
loops in the opposite direction?

28.4 RC Circuits
So far, we have analyzed direct-current circuits in which the current is constant. In 
DC circuits containing capacitors, the current is always in the same direction but 
may vary in magnitude at different times. A circuit containing a series combination 
of a resistor and a capacitor is called an RC circuit.

 

▸ 28.7 c o n t i n u e d

I1 = +2.0 A I2 = −3.0 A I3 = −1.0 A
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Pr at which energy is dissipated as thermal energy in the battery is

Pr ! i2r. (27-16)

The rate Pemf at which the chemical energy in the battery changes is

Pemf ! i!. (27-17)

Series Resistances When resistances are in series, they have
the same current. The equivalent resistance that can replace a se-
ries combination of resistances is

(n resistances in series). (27-7)

Parallel Resistances When resistances are in parallel,
they have the same potential difference. The equivalent resistance
that can replace a parallel combination of resistances is given by

(n resistances in parallel). (27-24)
1

Req
 ! !

n

j!1
 

1
Rj

Req ! !
n

j!1
 Rj

RC Circuits When an emf ! is applied to a resistance R and ca-
pacitance C in series, as in Fig. 27-15 with the switch at a, the charge
on the capacitor increases according to

q ! C !(1 " e"t/RC) (charging a capacitor), (27-33)

in which C ! ! q0 is the equilibrium (final) charge and RC ! t is
the capacitive time constant of the circuit. During the charging, the
current is

(charging a capacitor). (27-34)

When a capacitor discharges through a resistance R, the charge on
the capacitor decays according to

q ! q0e"t/RC (discharging a capacitor). (27-39)

During the discharging, the current is

(discharging a capacitor). (27-40) i !
dq
dt

! "" q0

RC #e"t/RC

i !
dq
dt

! " !

R
 #e"t/RC

1 (a) In Fig. 27-18a, with R1 # R2, is the potential difference
across R2 more than, less than, or equal to that across R1? (b) Is the
current through resistor R2 more than, less than, or equal to that
through resistor R1?

Fig. 27-18 Questions 1 and 2.

(a)

+
–

R1 R2

R3

(b)

+
–

R3

R1R2

(d)(c)

R2R1
+
–

R3

R3

+
–

R1

R2

R

Fig. 27-21 Question 6.

2 (a) In Fig. 27-18a, are resistors R1 and R3 in series? (b) Are 
resistors R1 and R2 in parallel? (c) Rank the equivalent resistances
of the four circuits shown in Fig. 27-18, greatest first.

3 You are to connect resistors R1 and R2, with R1 # R2, to a bat-
tery, first individually, then in series, and then in parallel. Rank
those arrangements according to the amount of current through
the battery, greatest first.

4 In Fig. 27-19, a circuit consists of
a battery and two uniform resistors,
and the section lying along an x axis
is divided into five segments of
equal lengths. (a) Assume that R1 !
R2 and rank the segments according
to the magnitude of the average
electric field in them, greatest first. (b) Now assume that R1 # R2

and then again rank the segments. (c) What is the direction of the
electric field along the x axis?

5 For each circuit in Fig. 27-20, are the resistors connected in 
series, in parallel, or neither?

6 Res-monster maze. In Fig. 27-21, all the resistors have a
resistance of 4.0 $ and all the (ideal) batteries have an emf of 4.0
V. What is the current through resistor R? (If you can find the
proper loop through this maze, you can answer the question with a
few seconds of mental calculation.)

Fig. 27-19 Question 4.

+ –

R1 R2

a b c d e

x

+–

+– +
–

(a) (b) (c)

Fig. 27-20 Question 5.

7 A resistor R1 is wired to a battery, then resistor R2 is added in
series. Are (a) the potential difference across R1 and (b) the cur-
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Using Kirchhoff’s Laws examples

726 CHAPTE R 27 CI RCU ITS

HALLIDAY REVISED

•4 Figure 27-27 shows a circuit of four resistors that are con-
nected to a larger circuit.The graph below the circuit shows the elec-
tric potential V(x) as a function of position x along the lower branch
of the circuit, through resistor 4; the potential VA is 12.0 V. The graph

Fig. 27-24 Question 11.

(1) (2) (3)

sec. 27-6 Potential Difference Between Two Points
•1 In Fig. 27-25, the ideal
batteries have emfs !1 ! 12 V and !2 !
6.0 V. What are (a) the current, the dissi-
pation rate in (b) resistor 1 (4.0 ") and (c)
resistor 2 (8.0 "), and the energy transfer
rate in (d) battery 1 and (e) battery 2? Is
energy being supplied or absorbed by (f)
battery 1 and (g) battery 2?

•2 In Fig. 27-26, the ideal batteries 
have emfs !1 ! 150 V and !2 ! 50 V
and the resistances are R1 ! 3.0 "
and R2 ! 2.0 ". If the potential at P is
100 V, what is it at Q?

•3 A car battery with a 12 V
emf and an internal resistance of 0.040
" is being charged with a current of 50
A. What are (a) the potential differ-
ence V across the terminals, (b) the
rate Pr of energy dissipation inside the battery, and (c) the rate Pemf

of energy conversion to chemical form? When the battery is used to
supply 50 A to the starter motor, what are (d) V and (e) Pr?

ILW

WWWSSM

–
+

– +

  1
2

R1

R2

–
+

–
+

Q

P

R1

R2

  1   2

Fig. 27-26 Problem 2.

Fig. 27-27 Problem 4.

VA

0

0

x

x

4

1 2 3

∆VB ∆VC

V

V 
(V

)
Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

R2 more than, less than, or equal to R1? (d) Is the total current
through R1 and R2 together more than, less than, or equal to the
current through R1 previously?

10 After the switch in Fig. 27-15 is
closed on point a, there is current i
through resistance R. Figure 27-23
gives that current for four sets of
values of R and capacitance C: (1) R0

and C0, (2) 2R0 and C0, (3) R0 and
2C0, (4) 2R0 and 2C0. Which set goes
with which curve?

11 Figure 27-24 shows three sec-
tions of circuit that are to be con-
nected in turn to the same battery
via a switch as in Fig. 27-15.The resistors are all identical, as are the
capacitors. Rank the sections according to (a) the final (equilib-
rium) charge on the capacitor and (b) the time required for the
capacitor to reach 50% of its final charge, greatest first.

rent i1 through R1 now more than, less than, or the same as previ-
ously? (c) Is the equivalent resistance R12 of R1 and R2 more than,
less than, or equal to R1?

8 Cap-monster maze. In Fig. 27-22, all the capacitors have a
capacitance of 6.0 mF, and all the batteries have an emf of 10 V.
What is the charge on capacitor C? (If you can find the proper loop
through this maze, you can answer the question with a few seconds
of mental calculation.)

9 Initially, a single resistor R1 is wired to a battery. Then resistor
R2 is added in parallel. Are (a) the potential difference across R1

and (b) the current i1 through R1 now more than, less than, or the
same as previously? (c) Is the equivalent resistance R12 of R1 and

C

Fig. 27-22 Question 8.

i

dc

a

b

t

Fig. 27-23 Question 10.

Fig. 27-25
Problem 1.
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Summary

• Kirchhoff’s laws

• resistors in series and parallel

Midterm on Thursday May 14.

Homework Halliday, Resnick, Walker:

• Ch 26, onward from page 699. Problems: 41, 43, 45, 47, 55,
71

• Ch 27, onward from page 725. Questions: 1, 3; Problems: 1,
5, 7, 33


