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Fig. 27-14 A single-loop circuit, show-
ing how to connect an ammeter (A) and a
voltmeter (V).

Fig. 27-15 When switch S is closed on
a, the capacitor is charged through the re-
sistor.When the switch is afterward closed
on b, the capacitor discharges through the
resistor.
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Additional examples, video, and practice available at WileyPLUS

With Eq. 27-26 we then find that

i3 ! i1 " i2 ! #0.50 A " 0.25 A
! #0.25 A.

The positive answer we obtained for i2 signals that our
choice of direction for that current is correct. However, the
negative answers for i1 and i3 indicate that our choices for

those currents are wrong.Thus, as a last step here, we correct
the answers by reversing the arrows for i1 and i3 in Fig. 27-13
and then writing

i1 = 0.50 A and i3 = 0.25 A. (Answer)

Caution: Always make any such correction as the last step
and not before calculating all the currents.

27-8 The Ammeter and the Voltmeter
An instrument used to measure currents is called an ammeter. To measure the
current in a wire, you usually have to break or cut the wire and insert the amme-
ter so that the current to be measured passes through the meter. (In Fig. 27-14,
ammeter A is set up to measure current i.)

It is essential that the resistance RA of the ammeter be very much smaller
than other resistances in the circuit. Otherwise, the very presence of the meter
will change the current to be measured.

A meter used to measure potential differences is called a voltmeter. To find
the potential difference between any two points in the circuit, the voltmeter ter-
minals are connected between those points without breaking or cutting the wire.
(In Fig. 27-14, voltmeter V is set up to measure the voltage across R1.)

It is essential that the resistance RV of a voltmeter be very much larger than
the resistance of any circuit element across which the voltmeter is connected.
Otherwise, the meter itself becomes an important circuit element and alters the
potential difference that is to be measured.

Often a single meter is packaged so that, by means of a switch, it can be made
to serve as either an ammeter or a voltmeter—and usually also as an ohmmeter,
designed to measure the resistance of any element connected between its termi-
nals. Such a versatile unit is called a multimeter.

27-9 RC Circuits
In preceding sections we dealt only with circuits in which the currents did not
vary with time. Here we begin a discussion of time-varying currents.

Charging a Capacitor
The capacitor of capacitance C in Fig. 27-15 is initially uncharged.To charge it, we
close switch S on point a. This completes an RC series circuit consisting of the
capacitor, an ideal battery of emf !, and a resistance R.

From Section 25-2, we already know that as soon as the circuit is complete,
charge begins to flow (current exists) between a capacitor plate and a battery
terminal on each side of the capacitor. This current increases the charge q on the
plates and the potential difference VC (! q/C) across the capacitor. When that
potential difference equals the potential difference across the battery (which
here is equal to the emf !), the current is zero. From Eq. 25-1 (q ! CV), the equi-
librium (final) charge on the then fully charged capacitor is equal to C !.

Here we want to examine the charging process. In particular we want to
know how the charge q(t) on the capacitor plates, the potential difference VC(t)
across the capacitor, and the current i(t) in the circuit vary with time during the
charging process. We begin by applying the loop rule to the circuit, traversing it
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Ammeter

A device for measuring current in a circuit.

Voltmeter

A device for measuring potential difference across a component
of a circuit.

ammeter → ← voltmeter



Ammeter
For an ammeter to work, the same current that you want to
measure must go through the ammeter.

Therefore, it must be connected in series in the part of the circuit
where you want to test the current.

Any resistance from the ammeter (rA) will decrease the current in
that part of the circuit.

I =
∆V

R + rA

If rA = 0 the current through that part of the circuit is unchanged.

The current cannot actually be zero, but it needs to be as small as
possible for an accurate measurement:

rA << R
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Voltmeter
For an voltmeter to work, the same potential difference must be
across the voltmeter as the part of the circuit to be measured.

This means he voltmeter must be connected in parallel across the
component where you wish to measure the potential drop.

Because this creates another path for the current, the resistance of
the voltmeter effects the effective resistance of that part of the
circuit:

∆V = IReq = I

(
R

R/rV + 1

)
If rV is infinite, the potential difference in that part of the circuit is
unchanged.

It cannot actually be infinite, but we need

rV >> R
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Meters

Some meters can be used either as ammeters or voltmeters with
different settings.

These are called multimeters.

You have used three different ones already in lab:

• Hewlitt Packard digital multimeter (HP-DMM)

• Extech digital multimeter (hand-held DMM)

• Simpson Volt-Ohm meter (Simpson VOM)

Since the internal resistance must be very much less for an
ammeter than a voltmeter it is important to use the meters in the
correct mode.

If a meter is in ammeter mode and put in parallel as if it is a
voltmeter a very large current may flow through it. This can
damage the device. Usually meters are fused in ammeter mode.
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•4 Figure 27-27 shows a circuit of four resistors that are con-
nected to a larger circuit.The graph below the circuit shows the elec-
tric potential V(x) as a function of position x along the lower branch
of the circuit, through resistor 4; the potential VA is 12.0 V. The graph

Fig. 27-24 Question 11.

(1) (2) (3)

sec. 27-6 Potential Difference Between Two Points
•1 In Fig. 27-25, the ideal
batteries have emfs !1 ! 12 V and !2 !
6.0 V. What are (a) the current, the dissi-
pation rate in (b) resistor 1 (4.0 ") and (c)
resistor 2 (8.0 "), and the energy transfer
rate in (d) battery 1 and (e) battery 2? Is
energy being supplied or absorbed by (f)
battery 1 and (g) battery 2?

•2 In Fig. 27-26, the ideal batteries 
have emfs !1 ! 150 V and !2 ! 50 V
and the resistances are R1 ! 3.0 "
and R2 ! 2.0 ". If the potential at P is
100 V, what is it at Q?

•3 A car battery with a 12 V
emf and an internal resistance of 0.040
" is being charged with a current of 50
A. What are (a) the potential differ-
ence V across the terminals, (b) the
rate Pr of energy dissipation inside the battery, and (c) the rate Pemf

of energy conversion to chemical form? When the battery is used to
supply 50 A to the starter motor, what are (d) V and (e) Pr?
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Fig. 27-26 Problem 2.

Fig. 27-27 Problem 4.
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Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

R2 more than, less than, or equal to R1? (d) Is the total current
through R1 and R2 together more than, less than, or equal to the
current through R1 previously?

10 After the switch in Fig. 27-15 is
closed on point a, there is current i
through resistance R. Figure 27-23
gives that current for four sets of
values of R and capacitance C: (1) R0

and C0, (2) 2R0 and C0, (3) R0 and
2C0, (4) 2R0 and 2C0. Which set goes
with which curve?

11 Figure 27-24 shows three sec-
tions of circuit that are to be con-
nected in turn to the same battery
via a switch as in Fig. 27-15.The resistors are all identical, as are the
capacitors. Rank the sections according to (a) the final (equilib-
rium) charge on the capacitor and (b) the time required for the
capacitor to reach 50% of its final charge, greatest first.

rent i1 through R1 now more than, less than, or the same as previ-
ously? (c) Is the equivalent resistance R12 of R1 and R2 more than,
less than, or equal to R1?

8 Cap-monster maze. In Fig. 27-22, all the capacitors have a
capacitance of 6.0 mF, and all the batteries have an emf of 10 V.
What is the charge on capacitor C? (If you can find the proper loop
through this maze, you can answer the question with a few seconds
of mental calculation.)

9 Initially, a single resistor R1 is wired to a battery. Then resistor
R2 is added in parallel. Are (a) the potential difference across R1

and (b) the current i1 through R1 now more than, less than, or the
same as previously? (c) Is the equivalent resistance R12 of R1 and

C

Fig. 27-22 Question 8.

i

dc
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b

t

Fig. 27-23 Question 10.

Fig. 27-25
Problem 1.
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Loop rule: −E2 − IR2 + E1 − IR1 = 0, I = 20 A.

Potential at Q = −10 V.
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halliday_c27_705-734v2.qxd  23-11-2009  14:35  Page 726

** View All 
Solutions Here **

** View All 
Solutions Here **

726 CHAPTE R 27 CI RCU ITS

HALLIDAY REVISED

•4 Figure 27-27 shows a circuit of four resistors that are con-
nected to a larger circuit.The graph below the circuit shows the elec-
tric potential V(x) as a function of position x along the lower branch
of the circuit, through resistor 4; the potential VA is 12.0 V. The graph

Fig. 27-24 Question 11.

(1) (2) (3)

sec. 27-6 Potential Difference Between Two Points
•1 In Fig. 27-25, the ideal
batteries have emfs !1 ! 12 V and !2 !
6.0 V. What are (a) the current, the dissi-
pation rate in (b) resistor 1 (4.0 ") and (c)
resistor 2 (8.0 "), and the energy transfer
rate in (d) battery 1 and (e) battery 2? Is
energy being supplied or absorbed by (f)
battery 1 and (g) battery 2?

•2 In Fig. 27-26, the ideal batteries 
have emfs !1 ! 150 V and !2 ! 50 V
and the resistances are R1 ! 3.0 "
and R2 ! 2.0 ". If the potential at P is
100 V, what is it at Q?

•3 A car battery with a 12 V
emf and an internal resistance of 0.040
" is being charged with a current of 50
A. What are (a) the potential differ-
ence V across the terminals, (b) the
rate Pr of energy dissipation inside the battery, and (c) the rate Pemf

of energy conversion to chemical form? When the battery is used to
supply 50 A to the starter motor, what are (d) V and (e) Pr?

ILW

WWWSSM

–
+

– +

  1
2

R1

R2

–
+

–
+

Q

P

R1

R2

  1   2

Fig. 27-26 Problem 2.

Fig. 27-27 Problem 4.

VA

0

0

x

x

4

1 2 3

∆VB ∆VC

V

V 
(V

)

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

R2 more than, less than, or equal to R1? (d) Is the total current
through R1 and R2 together more than, less than, or equal to the
current through R1 previously?

10 After the switch in Fig. 27-15 is
closed on point a, there is current i
through resistance R. Figure 27-23
gives that current for four sets of
values of R and capacitance C: (1) R0

and C0, (2) 2R0 and C0, (3) R0 and
2C0, (4) 2R0 and 2C0. Which set goes
with which curve?

11 Figure 27-24 shows three sec-
tions of circuit that are to be con-
nected in turn to the same battery
via a switch as in Fig. 27-15.The resistors are all identical, as are the
capacitors. Rank the sections according to (a) the final (equilib-
rium) charge on the capacitor and (b) the time required for the
capacitor to reach 50% of its final charge, greatest first.

rent i1 through R1 now more than, less than, or the same as previ-
ously? (c) Is the equivalent resistance R12 of R1 and R2 more than,
less than, or equal to R1?

8 Cap-monster maze. In Fig. 27-22, all the capacitors have a
capacitance of 6.0 mF, and all the batteries have an emf of 10 V.
What is the charge on capacitor C? (If you can find the proper loop
through this maze, you can answer the question with a few seconds
of mental calculation.)

9 Initially, a single resistor R1 is wired to a battery. Then resistor
R2 is added in parallel. Are (a) the potential difference across R1

and (b) the current i1 through R1 now more than, less than, or the
same as previously? (c) Is the equivalent resistance R12 of R1 and

C

Fig. 27-22 Question 8.

i

dc

a

b

t

Fig. 27-23 Question 10.

Fig. 27-25
Problem 1.

halliday_c27_705-734v2.qxd  23-11-2009  14:35  Page 726

** View All 
Solutions Here **

** View All 
Solutions Here **

Loop rule: −E2 − IR2 + E1 − IR1 = 0, I = 20 A.

Potential at Q = −10 V.



Example with a Multiloop Circuit
Find the currents I1, I2, and I3 in the circuit.

846 Chapter 28 Direct-Current Circuits

Conceptualize  Imagine physically rearranging the circuit 
while keeping it electrically the same. Can you rearrange it 
so that it consists of simple series or parallel combinations 
of resistors? You should find that you cannot. (If the 10.0-V 
battery were removed and replaced by a wire from b to the 
6.0-V resistor, the circuit would consist of only series and 
parallel combinations.)

Categorize  We cannot simplify the circuit by the rules 
associated with combining resistances in series and in par-
allel. Therefore, this problem is one in which we must use 
Kirchhoff’s rules.

Analyze  We arbitrarily choose the directions of the currents as labeled in Figure 28.15.

S O L U T I O N

Figure 28.15 (Example 
28.7) A circuit containing 
different branches.

14.0 V

e

b

4.0 !

10.0 V
6.0 !

f

I2

c

I3

I1

2.0 !
da

" #

# "

Use Equation (1) to find I3: I3 5 I1 1 I2 5 2.0 A 2 3.0 A 5 21.0 A

Apply Kirchhoff’s junction rule to junction c : (1)   I1 1 I2 2 I3 5 0

We now have one equation with three unknowns: I1, I 2, 
and I3. There are three loops in the circuit: abcda, befcb, 
and aefda. We need only two loop equations to deter-
mine the unknown currents. (The third equation would 
give no new information.) Let’s choose to traverse these 
loops in the clockwise direction. Apply Kirchhoff’s loop 
rule to loops abcda and befcb:

abcda: (2)   10.0 V 2 (6.0 V)I1 2 (2.0 V)I3 5 0

befcb: 2(4.0 V)I2 2 14.0 V 1 (6.0 V)I1 2 10.0 V 5 0

(3)   224.0 V 1 (6.0 V)I1 2 (4.0 V)I2 5 0

Solve Equation (1) for I3 and substitute into Equation (2): 10.0 V 2 (6.0 V)I1 2 (2.0 V)(I1 1 I2) 5 0

(4)   10.0 V 2 (8.0 V)I1 2 (2.0 V)I2 5 0

Multiply each term in Equation (3) by 4 and each term 
in Equation (4) by 3:

(5)   296.0 V 1 (24.0 V)I1 2 (16.0 V)I2 5 0

(6)   30.0 V 2 (24.0 V)I1 2 (6.0 V)I2 5 0

Add Equation (6) to Equation (5) to eliminate I1 and 
find I2:

266.0 V 2 (22.0 V)I2 5 0

I2 5 23.0 A

Use this value of I2 in Equation (3) to find I1: 224.0 V 1 (6.0 V)I1 2 (4.0 V)(23.0 A) 5 0

224.0 V 1 (6.0 V)I1 1 12.0 V 5 0

I1 5 2.0 A

Finalize  Because our values for I2 and I3 are negative, the directions of these currents are opposite those indicated in 
Figure 28.15. The numerical values for the currents are correct. Despite the incorrect direction, we must continue to 
use these negative values in subsequent calculations because our equations were established with our original choice 
of direction. What would have happened had we left the current directions as labeled in Figure 28.15 but traversed the 
loops in the opposite direction?

28.4 RC Circuits
So far, we have analyzed direct-current circuits in which the current is constant. In 
DC circuits containing capacitors, the current is always in the same direction but 
may vary in magnitude at different times. A circuit containing a series combination 
of a resistor and a capacitor is called an RC circuit.

 

▸ 28.7 c o n t i n u e d

Suppose the currents flow in the direction shown.



Example with a Multiloop Circuit

Junction rule:
I1 + I2 = I3 (1)

Loops:
10V − (6Ω)I1 + (2Ω)I3 = 0 (2)

−14V + (6Ω)I1 − 10V − (4Ω)I2 = 0 (3)

−14V − (2Ω)I3 − (4Ω)I2 = 0 (4)



Example with a Multiloop Circuit

846 Chapter 28 Direct-Current Circuits

Conceptualize  Imagine physically rearranging the circuit 
while keeping it electrically the same. Can you rearrange it 
so that it consists of simple series or parallel combinations 
of resistors? You should find that you cannot. (If the 10.0-V 
battery were removed and replaced by a wire from b to the 
6.0-V resistor, the circuit would consist of only series and 
parallel combinations.)

Categorize  We cannot simplify the circuit by the rules 
associated with combining resistances in series and in par-
allel. Therefore, this problem is one in which we must use 
Kirchhoff’s rules.

Analyze  We arbitrarily choose the directions of the currents as labeled in Figure 28.15.

S O L U T I O N

Figure 28.15 (Example 
28.7) A circuit containing 
different branches.

14.0 V

e

b

4.0 !

10.0 V
6.0 !

f
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I1

2.0 !
da

" #

# "

Use Equation (1) to find I3: I3 5 I1 1 I2 5 2.0 A 2 3.0 A 5 21.0 A

Apply Kirchhoff’s junction rule to junction c : (1)   I1 1 I2 2 I3 5 0

We now have one equation with three unknowns: I1, I 2, 
and I3. There are three loops in the circuit: abcda, befcb, 
and aefda. We need only two loop equations to deter-
mine the unknown currents. (The third equation would 
give no new information.) Let’s choose to traverse these 
loops in the clockwise direction. Apply Kirchhoff’s loop 
rule to loops abcda and befcb:

abcda: (2)   10.0 V 2 (6.0 V)I1 2 (2.0 V)I3 5 0

befcb: 2(4.0 V)I2 2 14.0 V 1 (6.0 V)I1 2 10.0 V 5 0

(3)   224.0 V 1 (6.0 V)I1 2 (4.0 V)I2 5 0

Solve Equation (1) for I3 and substitute into Equation (2): 10.0 V 2 (6.0 V)I1 2 (2.0 V)(I1 1 I2) 5 0

(4)   10.0 V 2 (8.0 V)I1 2 (2.0 V)I2 5 0

Multiply each term in Equation (3) by 4 and each term 
in Equation (4) by 3:

(5)   296.0 V 1 (24.0 V)I1 2 (16.0 V)I2 5 0

(6)   30.0 V 2 (24.0 V)I1 2 (6.0 V)I2 5 0

Add Equation (6) to Equation (5) to eliminate I1 and 
find I2:

266.0 V 2 (22.0 V)I2 5 0

I2 5 23.0 A

Use this value of I2 in Equation (3) to find I1: 224.0 V 1 (6.0 V)I1 2 (4.0 V)(23.0 A) 5 0

224.0 V 1 (6.0 V)I1 1 12.0 V 5 0

I1 5 2.0 A

Finalize  Because our values for I2 and I3 are negative, the directions of these currents are opposite those indicated in 
Figure 28.15. The numerical values for the currents are correct. Despite the incorrect direction, we must continue to 
use these negative values in subsequent calculations because our equations were established with our original choice 
of direction. What would have happened had we left the current directions as labeled in Figure 28.15 but traversed the 
loops in the opposite direction?

28.4 RC Circuits
So far, we have analyzed direct-current circuits in which the current is constant. In 
DC circuits containing capacitors, the current is always in the same direction but 
may vary in magnitude at different times. A circuit containing a series combination 
of a resistor and a capacitor is called an RC circuit.

 

▸ 28.7 c o n t i n u e d

I1 = +2.0 A I2 = −3.0 A I3 = −1.0 A



Time Varying Circuits

In circuits charge is not static, but moving.

Current does not necessarily have to remain constant in time.

Capacitors take some time to charge and discharge, as you saw in
the lab.

Other components also cause current to behave differently at
different times, but for now, we will concentrate on circuits with
resistors and capacitors.



RC Circuits

Circuits with resistors and capacitors are called “RC circuits.”
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Fig. 27-14 A single-loop circuit, show-
ing how to connect an ammeter (A) and a
voltmeter (V).

Fig. 27-15 When switch S is closed on
a, the capacitor is charged through the re-
sistor.When the switch is afterward closed
on b, the capacitor discharges through the
resistor.
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Additional examples, video, and practice available at WileyPLUS

With Eq. 27-26 we then find that

i3 ! i1 " i2 ! #0.50 A " 0.25 A
! #0.25 A.

The positive answer we obtained for i2 signals that our
choice of direction for that current is correct. However, the
negative answers for i1 and i3 indicate that our choices for

those currents are wrong.Thus, as a last step here, we correct
the answers by reversing the arrows for i1 and i3 in Fig. 27-13
and then writing

i1 = 0.50 A and i3 = 0.25 A. (Answer)

Caution: Always make any such correction as the last step
and not before calculating all the currents.

27-8 The Ammeter and the Voltmeter
An instrument used to measure currents is called an ammeter. To measure the
current in a wire, you usually have to break or cut the wire and insert the amme-
ter so that the current to be measured passes through the meter. (In Fig. 27-14,
ammeter A is set up to measure current i.)

It is essential that the resistance RA of the ammeter be very much smaller
than other resistances in the circuit. Otherwise, the very presence of the meter
will change the current to be measured.

A meter used to measure potential differences is called a voltmeter. To find
the potential difference between any two points in the circuit, the voltmeter ter-
minals are connected between those points without breaking or cutting the wire.
(In Fig. 27-14, voltmeter V is set up to measure the voltage across R1.)

It is essential that the resistance RV of a voltmeter be very much larger than
the resistance of any circuit element across which the voltmeter is connected.
Otherwise, the meter itself becomes an important circuit element and alters the
potential difference that is to be measured.

Often a single meter is packaged so that, by means of a switch, it can be made
to serve as either an ammeter or a voltmeter—and usually also as an ohmmeter,
designed to measure the resistance of any element connected between its termi-
nals. Such a versatile unit is called a multimeter.

27-9 RC Circuits
In preceding sections we dealt only with circuits in which the currents did not
vary with time. Here we begin a discussion of time-varying currents.

Charging a Capacitor
The capacitor of capacitance C in Fig. 27-15 is initially uncharged.To charge it, we
close switch S on point a. This completes an RC series circuit consisting of the
capacitor, an ideal battery of emf !, and a resistance R.

From Section 25-2, we already know that as soon as the circuit is complete,
charge begins to flow (current exists) between a capacitor plate and a battery
terminal on each side of the capacitor. This current increases the charge q on the
plates and the potential difference VC (! q/C) across the capacitor. When that
potential difference equals the potential difference across the battery (which
here is equal to the emf !), the current is zero. From Eq. 25-1 (q ! CV), the equi-
librium (final) charge on the then fully charged capacitor is equal to C !.

Here we want to examine the charging process. In particular we want to
know how the charge q(t) on the capacitor plates, the potential difference VC(t)
across the capacitor, and the current i(t) in the circuit vary with time during the
charging process. We begin by applying the loop rule to the circuit, traversing it
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Charging a Capacitor

When an uncharged capacitor is first connected to an electrical
potential difference, a current will flow.

Once the capacitor is fully charged however, q = C (∆V ), current
has no where to flow and stops.

The capacitor gently “switches off” the current.



Charge varies with time
The charge on the capacitor changes with time.
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clockwise from the negative terminal of the battery.We find

(27-30)

The last term on the left side represents the potential difference across the capac-
itor. The term is negative because the capacitor’s top plate, which is connected to
the battery’s positive terminal, is at a higher potential than the lower plate. Thus,
there is a drop in potential as we move down through the capacitor.

We cannot immediately solve Eq. 27-30 because it contains two variables,
i and q. However, those variables are not independent but are related by

(27-31)

Substituting this for i in Eq. 27-30 and rearranging, we find

(charging equation). (27-32)

This differential equation describes the time variation of the charge q on the
capacitor in Fig. 27-15. To solve it, we need to find the function q(t) that satisfies
this equation and also satisfies the condition that the capacitor be initially
uncharged; that is, q ! 0 at t ! 0.

We shall soon show that the solution to Eq. 27-32 is

q ! C !(1 " e"t/RC) (charging a capacitor). (27-33)

(Here e is the exponential base, 2.718 . . . , and not the elementary charge.) Note
that Eq. 27-33 does indeed satisfy our required initial condition, because at t ! 0
the term e"t/RC is unity; so the equation gives q ! 0. Note also that as t goes to
infinity (that is, a long time later), the term e"t/RC goes to zero; so the equation
gives the proper value for the full (equilibrium) charge on the capacitor—
namely, q ! C !.A plot of q(t) for the charging process is given in Fig. 27-16a.

The derivative of q(t) is the current i(t) charging the capacitor:

(charging a capacitor). (27-34)

A plot of i(t) for the charging process is given in Fig. 27-16b. Note that the current
has the initial value !/R and that it decreases to zero as the capacitor becomes
fully charged.

i !
dq
dt

! ! !

R "e"t/RC

R 
dq
dt

#
q
C

! !

i !
dq
dt

.

! " iR "
q
C

! 0.

A capacitor that is being charged initially acts like ordinary connecting wire relative
to the charging current.A long time later, it acts like a broken wire.

By combining Eq. 25-1 (q ! CV ) and Eq. 27-33, we find that the potential
difference VC(t) across the capacitor during the charging process is

(charging a capacitor). (27-35)

This tells us that VC ! 0 at t ! 0 and that VC ! ! when the capacitor becomes
fully charged as t : $.

The Time Constant
The product RC that appears in Eqs. 27-33, 27-34, and 27-35 has the dimensions
of time (both because the argument of an exponential must be dimensionless and

VC !
q
C

! !(1 " e"t/RC)
Fig. 27-16 (a) A plot of Eq. 27-33,
which shows the buildup of charge on the
capacitor of Fig. 27-15. (b) A plot of Eq.
27-34, which shows the decline of the
charging current in the circuit of Fig. 27-
15.The curves are plotted for R ! 2000 %,
C ! 1 mF, and ! ! 10 V; the small trian-
gles represent successive intervals of one
time constant t.
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It is possible to determine how if changes by considering the loop
rule for a resistor in series with a capacitor:

E− IR −
q

C
= 0

Current is the rate of charge flow with time: I = ∆q
∆t .

Formally, this is actually the derivative I = dq
dt .



RC Circuits: Charging Capacitor

If we replace I in our equation with the derivative:

E− R
dq

dt
−
q

C
= 0

This is a differential equation. There is a way to solve such
equations to find solutions for how q depends on time. (You do
not need to know them.)

The solution is:

q = CE(1 − e−t/RC )



RC Circuits: Charging Capacitor

Using the equation for q, an equation for current can also be
found:

I =

(
E

R

)
e−t/RC

Using ∆VC = q/C , we can also get the potential difference across
the capacitor:

|∆VC | = E(1 − e−t/RC )



RC Circuits: Charging Capacitor

How the solutions appear with time:

Charge:

q = q0 (1 − e−t/RC )
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clockwise from the negative terminal of the battery.We find

(27-30)

The last term on the left side represents the potential difference across the capac-
itor. The term is negative because the capacitor’s top plate, which is connected to
the battery’s positive terminal, is at a higher potential than the lower plate. Thus,
there is a drop in potential as we move down through the capacitor.

We cannot immediately solve Eq. 27-30 because it contains two variables,
i and q. However, those variables are not independent but are related by

(27-31)

Substituting this for i in Eq. 27-30 and rearranging, we find

(charging equation). (27-32)

This differential equation describes the time variation of the charge q on the
capacitor in Fig. 27-15. To solve it, we need to find the function q(t) that satisfies
this equation and also satisfies the condition that the capacitor be initially
uncharged; that is, q ! 0 at t ! 0.

We shall soon show that the solution to Eq. 27-32 is

q ! C !(1 " e"t/RC) (charging a capacitor). (27-33)

(Here e is the exponential base, 2.718 . . . , and not the elementary charge.) Note
that Eq. 27-33 does indeed satisfy our required initial condition, because at t ! 0
the term e"t/RC is unity; so the equation gives q ! 0. Note also that as t goes to
infinity (that is, a long time later), the term e"t/RC goes to zero; so the equation
gives the proper value for the full (equilibrium) charge on the capacitor—
namely, q ! C !.A plot of q(t) for the charging process is given in Fig. 27-16a.

The derivative of q(t) is the current i(t) charging the capacitor:

(charging a capacitor). (27-34)

A plot of i(t) for the charging process is given in Fig. 27-16b. Note that the current
has the initial value !/R and that it decreases to zero as the capacitor becomes
fully charged.
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R "e"t/RC

R 
dq
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A capacitor that is being charged initially acts like ordinary connecting wire relative
to the charging current.A long time later, it acts like a broken wire.

By combining Eq. 25-1 (q ! CV ) and Eq. 27-33, we find that the potential
difference VC(t) across the capacitor during the charging process is

(charging a capacitor). (27-35)

This tells us that VC ! 0 at t ! 0 and that VC ! ! when the capacitor becomes
fully charged as t : $.

The Time Constant
The product RC that appears in Eqs. 27-33, 27-34, and 27-35 has the dimensions
of time (both because the argument of an exponential must be dimensionless and

VC !
q
C

! !(1 " e"t/RC)
Fig. 27-16 (a) A plot of Eq. 27-33,
which shows the buildup of charge on the
capacitor of Fig. 27-15. (b) A plot of Eq.
27-34, which shows the decline of the
charging current in the circuit of Fig. 27-
15.The curves are plotted for R ! 2000 %,
C ! 1 mF, and ! ! 10 V; the small trian-
gles represent successive intervals of one
time constant t.
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where for this circuit q0 = CE

Current:

I = I0 e
−t/RC
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clockwise from the negative terminal of the battery.We find

(27-30)

The last term on the left side represents the potential difference across the capac-
itor. The term is negative because the capacitor’s top plate, which is connected to
the battery’s positive terminal, is at a higher potential than the lower plate. Thus,
there is a drop in potential as we move down through the capacitor.

We cannot immediately solve Eq. 27-30 because it contains two variables,
i and q. However, those variables are not independent but are related by

(27-31)

Substituting this for i in Eq. 27-30 and rearranging, we find

(charging equation). (27-32)

This differential equation describes the time variation of the charge q on the
capacitor in Fig. 27-15. To solve it, we need to find the function q(t) that satisfies
this equation and also satisfies the condition that the capacitor be initially
uncharged; that is, q ! 0 at t ! 0.

We shall soon show that the solution to Eq. 27-32 is

q ! C !(1 " e"t/RC) (charging a capacitor). (27-33)

(Here e is the exponential base, 2.718 . . . , and not the elementary charge.) Note
that Eq. 27-33 does indeed satisfy our required initial condition, because at t ! 0
the term e"t/RC is unity; so the equation gives q ! 0. Note also that as t goes to
infinity (that is, a long time later), the term e"t/RC goes to zero; so the equation
gives the proper value for the full (equilibrium) charge on the capacitor—
namely, q ! C !.A plot of q(t) for the charging process is given in Fig. 27-16a.

The derivative of q(t) is the current i(t) charging the capacitor:

(charging a capacitor). (27-34)

A plot of i(t) for the charging process is given in Fig. 27-16b. Note that the current
has the initial value !/R and that it decreases to zero as the capacitor becomes
fully charged.
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dq
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A capacitor that is being charged initially acts like ordinary connecting wire relative
to the charging current.A long time later, it acts like a broken wire.

By combining Eq. 25-1 (q ! CV ) and Eq. 27-33, we find that the potential
difference VC(t) across the capacitor during the charging process is

(charging a capacitor). (27-35)

This tells us that VC ! 0 at t ! 0 and that VC ! ! when the capacitor becomes
fully charged as t : $.

The Time Constant
The product RC that appears in Eqs. 27-33, 27-34, and 27-35 has the dimensions
of time (both because the argument of an exponential must be dimensionless and

VC !
q
C

! !(1 " e"t/RC)
Fig. 27-16 (a) A plot of Eq. 27-33,
which shows the buildup of charge on the
capacitor of Fig. 27-15. (b) A plot of Eq.
27-34, which shows the decline of the
charging current in the circuit of Fig. 27-
15.The curves are plotted for R ! 2000 %,
C ! 1 mF, and ! ! 10 V; the small trian-
gles represent successive intervals of one
time constant t.
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where for this circuit I0 =
E
R



RC Circuits: Time Constant

τ = RC

τ is called the time constant of the circuit.

This gives the time for the current in the circuit to fall to 1/e of
its initial value.

It is useful for comparing the “relaxation time” of different
RC-circuits.



RC Circuits: Discharging Capacitor

Imagine that we have charged up the capacitor, so that the charge
on it is q0.

Now we flip the switch, the battery is disconnected, but charge
flows off the capacitor, creating a current:
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Fig. 27-14 A single-loop circuit, show-
ing how to connect an ammeter (A) and a
voltmeter (V).

Fig. 27-15 When switch S is closed on
a, the capacitor is charged through the re-
sistor.When the switch is afterward closed
on b, the capacitor discharges through the
resistor.
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Additional examples, video, and practice available at WileyPLUS

With Eq. 27-26 we then find that

i3 ! i1 " i2 ! #0.50 A " 0.25 A
! #0.25 A.

The positive answer we obtained for i2 signals that our
choice of direction for that current is correct. However, the
negative answers for i1 and i3 indicate that our choices for

those currents are wrong.Thus, as a last step here, we correct
the answers by reversing the arrows for i1 and i3 in Fig. 27-13
and then writing

i1 = 0.50 A and i3 = 0.25 A. (Answer)

Caution: Always make any such correction as the last step
and not before calculating all the currents.

27-8 The Ammeter and the Voltmeter
An instrument used to measure currents is called an ammeter. To measure the
current in a wire, you usually have to break or cut the wire and insert the amme-
ter so that the current to be measured passes through the meter. (In Fig. 27-14,
ammeter A is set up to measure current i.)

It is essential that the resistance RA of the ammeter be very much smaller
than other resistances in the circuit. Otherwise, the very presence of the meter
will change the current to be measured.

A meter used to measure potential differences is called a voltmeter. To find
the potential difference between any two points in the circuit, the voltmeter ter-
minals are connected between those points without breaking or cutting the wire.
(In Fig. 27-14, voltmeter V is set up to measure the voltage across R1.)

It is essential that the resistance RV of a voltmeter be very much larger than
the resistance of any circuit element across which the voltmeter is connected.
Otherwise, the meter itself becomes an important circuit element and alters the
potential difference that is to be measured.

Often a single meter is packaged so that, by means of a switch, it can be made
to serve as either an ammeter or a voltmeter—and usually also as an ohmmeter,
designed to measure the resistance of any element connected between its termi-
nals. Such a versatile unit is called a multimeter.

27-9 RC Circuits
In preceding sections we dealt only with circuits in which the currents did not
vary with time. Here we begin a discussion of time-varying currents.

Charging a Capacitor
The capacitor of capacitance C in Fig. 27-15 is initially uncharged.To charge it, we
close switch S on point a. This completes an RC series circuit consisting of the
capacitor, an ideal battery of emf !, and a resistance R.

From Section 25-2, we already know that as soon as the circuit is complete,
charge begins to flow (current exists) between a capacitor plate and a battery
terminal on each side of the capacitor. This current increases the charge q on the
plates and the potential difference VC (! q/C) across the capacitor. When that
potential difference equals the potential difference across the battery (which
here is equal to the emf !), the current is zero. From Eq. 25-1 (q ! CV), the equi-
librium (final) charge on the then fully charged capacitor is equal to C !.

Here we want to examine the charging process. In particular we want to
know how the charge q(t) on the capacitor plates, the potential difference VC(t)
across the capacitor, and the current i(t) in the circuit vary with time during the
charging process. We begin by applying the loop rule to the circuit, traversing it
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RC Circuits: Discharging Capacitor

What happens to the charge on the capacitor?

q = q0 e
−t/RC

It decreases exponentially with time: you will see this in a lab!



RC Circuits: Discharging Capacitor
What happens to the current?

I = I0 e
−t/RC

where I0 =
q0
RC .
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clockwise from the negative terminal of the battery.We find

(27-30)

The last term on the left side represents the potential difference across the capac-
itor. The term is negative because the capacitor’s top plate, which is connected to
the battery’s positive terminal, is at a higher potential than the lower plate. Thus,
there is a drop in potential as we move down through the capacitor.

We cannot immediately solve Eq. 27-30 because it contains two variables,
i and q. However, those variables are not independent but are related by

(27-31)

Substituting this for i in Eq. 27-30 and rearranging, we find

(charging equation). (27-32)

This differential equation describes the time variation of the charge q on the
capacitor in Fig. 27-15. To solve it, we need to find the function q(t) that satisfies
this equation and also satisfies the condition that the capacitor be initially
uncharged; that is, q ! 0 at t ! 0.

We shall soon show that the solution to Eq. 27-32 is

q ! C !(1 " e"t/RC) (charging a capacitor). (27-33)

(Here e is the exponential base, 2.718 . . . , and not the elementary charge.) Note
that Eq. 27-33 does indeed satisfy our required initial condition, because at t ! 0
the term e"t/RC is unity; so the equation gives q ! 0. Note also that as t goes to
infinity (that is, a long time later), the term e"t/RC goes to zero; so the equation
gives the proper value for the full (equilibrium) charge on the capacitor—
namely, q ! C !.A plot of q(t) for the charging process is given in Fig. 27-16a.

The derivative of q(t) is the current i(t) charging the capacitor:

(charging a capacitor). (27-34)

A plot of i(t) for the charging process is given in Fig. 27-16b. Note that the current
has the initial value !/R and that it decreases to zero as the capacitor becomes
fully charged.

i !
dq
dt

! ! !

R "e"t/RC

R 
dq
dt

#
q
C

! !

i !
dq
dt

.

! " iR "
q
C

! 0.

A capacitor that is being charged initially acts like ordinary connecting wire relative
to the charging current.A long time later, it acts like a broken wire.

By combining Eq. 25-1 (q ! CV ) and Eq. 27-33, we find that the potential
difference VC(t) across the capacitor during the charging process is

(charging a capacitor). (27-35)

This tells us that VC ! 0 at t ! 0 and that VC ! ! when the capacitor becomes
fully charged as t : $.

The Time Constant
The product RC that appears in Eqs. 27-33, 27-34, and 27-35 has the dimensions
of time (both because the argument of an exponential must be dimensionless and

VC !
q
C

! !(1 " e"t/RC)
Fig. 27-16 (a) A plot of Eq. 27-33,
which shows the buildup of charge on the
capacitor of Fig. 27-15. (b) A plot of Eq.
27-34, which shows the decline of the
charging current in the circuit of Fig. 27-
15.The curves are plotted for R ! 2000 %,
C ! 1 mF, and ! ! 10 V; the small trian-
gles represent successive intervals of one
time constant t.
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RC Circuits: Discharging Capacitor

Multiplying the current by the resistance R gives the potential
difference across the resistor:

|∆VR(t)| = (∆V )i e
−t/RC

The same expression describes the potential difference across the
capacitor!

|∆VC (t)| = (∆V )i e
−t/RC

where (∆V )0 = I0R = q0
C .



Grounding a circuit
A circuit can be “grounded”, that is connected to the Earth. This
should drain any built-up charge off of that part of the circuit.

By convention, we label the potential at this point V = 0. This
gives us an absolute scale for potential, rather that simply speaking
of potential differences.712 CHAPTE R 27 CI RCU ITS
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Grounding a Circuit
Figure 27-7a shows the same circuit as Fig. 27-6 except that here point a is directly
connected to ground, as indicated by the common symbol . Grounding a cir-
cuit usually means connecting the circuit to a conducting path to Earth’s surface
(actually to the electrically conducting moist dirt and rock below ground). Here,
such a connection means only that the potential is defined to be zero at the
grounding point in the circuit. Thus in Fig. 27-7a, the potential at a is defined to
be Va ! 0. Equation 27-11 then tells us that the potential at b is Vb ! 8.0 V.

Figure 27-7b is the same circuit except that point b is now directly connected
to ground. Thus, the potential there is defined to be Vb ! 0. Equation 27-11 now
tells us that the potential at a is Va ! "8.0 V.

Power, Potential, and Emf
When a battery or some other type of emf device does work on the charge carri-
ers to establish a current i, the device transfers energy from its source of energy
(such as the chemical source in a battery) to the charge carriers. Because a real
emf device has an internal resistance r, it also transfers energy to internal thermal
energy via resistive dissipation (Section 26-7). Let us relate these transfers.

The net rate P of energy transfer from the emf device to the charge carriers is
given by Eq. 26-26:

P ! iV, (27-14)

where V is the potential across the terminals of the emf device. From Eq. 27-13,
we can substitute V ! ! " ir into Eq. 27-14 to find

P ! i(! " ir) ! i! " i2r. (27-15)

From Eq. 26-27, we recognize the term i2r in Eq. 27-15 as the rate Pr of energy
transfer to thermal energy within the emf device:

Pr ! i2r (internal dissipation rate). (27-16)

Then the term i! in Eq. 27-15 must be the rate Pemf at which the emf device
transfers energy both to the charge carriers and to internal thermal energy. Thus,

Pemf ! i! (power of emf device). (27-17)

If a battery is being recharged, with a “wrong way” current through it, the
energy transfer is then from the charge carriers to the battery—both to the
battery’s chemical energy and to the energy dissipated in the internal resistance r.
The rate of change of the chemical energy is given by Eq. 27-17, the rate of dissi-
pation is given by Eq. 27-16, and the rate at which the carriers supply energy is
given by Eq. 27-14.

Fig. 27-7 (a) Point a is directly con-
nected to ground. (b) Point b is directly
connected to ground.

CHECKPOINT 3

A battery has an emf of 12 V and an in-
ternal resistance of 2 #. Is the terminal-
to-terminal potential difference greater
than, less than, or equal to 12 V if the
current in the battery is (a) from the
negative to the positive terminal, (b)
from the positive to the negative termi-
nal, and (c) zero?

R = 4.0 Ω 

i 

r = 2.0 Ω 

 = 12 V 

i a 

b + 

–  

(a) 

R = 4.0 Ω

i

r = 2.0 Ω

 = 12 V

ia

b +

– 

(b)Ground is taken
to be zero potential.
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Grounding a circuit is represented with a three-line symbol.



Grounding a circuit and changes in potential

What is happening to charges in the circuit?



Grounding a circuit
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In (a), the potential at a, Va = 0 V and at b, Vb = 8 V.

In (b), the potential at b, Vb = 0 V and at a, Va = −8 V.



Household Wiring
Electricity is delivered to your house in two line or “live” wires,
each at 120V (rms), but with different polarities.

These wires are then split and power runs to sockets with one line
wire and one neutral wire.

The neutral wire is supposed to be at 0V, but in practice charge
can build up.

It is best to treat is as also “live”.



Household Wiring
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lel to these wires. One wire is called the live wire4 as illustrated in Figure 28.19, and 
the other is called the neutral wire. The neutral wire is grounded; that is, its electric 
potential is taken to be zero. The potential difference between the live and neutral 
wires is approximately 120 V. This voltage alternates in time, and the potential of 
the live wire oscillates relative to ground. Much of what we have learned so far for 
the constant-emf situation (direct current) can also be applied to the alternating 
current that power companies supply to businesses and households. (Alternating 
voltage and current are discussed in Chapter 33.)
 To record a household’s energy consumption, a meter is connected in series with 
the live wire entering the house. After the meter, the wire splits so that there are 
several separate circuits in parallel distributed throughout the house. Each circuit 
contains a circuit breaker (or, in older installations, a fuse). A circuit breaker is a 
special switch that opens if the current exceeds the rated value for the circuit breaker. 
The wire and circuit breaker for each circuit are carefully selected to meet the cur-
rent requirements for that circuit. If a circuit is to carry currents as large as 30 A, a 
heavy wire and an appropriate circuit breaker must be selected to handle this cur-
rent. A circuit used to power only lamps and small appliances often requires only 
20 A. Each circuit has its own circuit breaker to provide protection for that part of 
the entire electrical system of the house.
 As an example, consider a circuit in which a toaster oven, a microwave oven, 
and a coffee maker are connected (corresponding to R1, R 2, and R3 in Fig. 28.19). 
We can calculate the current in each appliance by using the expression P 5 I DV. 
The toaster oven, rated at 1 000 W, draws a current of 1 000 W/120 V 5 8.33 A. 
The microwave oven, rated at 1 300 W, draws 10.8 A, and the coffee maker, rated 
at 800 W, draws 6.67 A. When the three appliances are operated simultaneously, 
they draw a total current of 25.8 A. Therefore, the circuit must be wired to handle 
at least this much current. If the rating of the circuit breaker protecting the circuit 
is too small—say, 20 A—the breaker will be tripped when the third appliance is 
turned on, preventing all three appliances from operating. To avoid this situation, 
the toaster oven and coffee maker can be operated on one 20-A circuit and the 
microwave oven on a separate 20-A circuit.
 Many heavy-duty appliances such as electric ranges and clothes dryers require 
240 V for their operation. The power company supplies this voltage by provid-
ing a third wire that is 120 V below ground potential (Fig. 28.20). The poten-
tial difference between this live wire and the other live wire (which is 120 V 
above ground potential) is 240 V. An appliance that operates from a 240-V line 
requires half as much current compared with operating it at 120 V; therefore, 
smaller wires can be used in the higher-voltage circuit without overheating.

Electrical Safety
When the live wire of an electrical outlet is connected directly to ground, the circuit 
is completed and a short-circuit condition exists. A short circuit occurs when almost 
zero resistance exists between two points at different potentials, and the result is 
a very large current. When that happens accidentally, a properly operating circuit 
breaker opens the circuit and no damage is done. A person in contact with ground, 
however, can be electrocuted by touching the live wire of a frayed cord or other 
exposed conductor. An exceptionally effective (and dangerous!) ground contact is 
made when the person either touches a water pipe (normally at ground potential) or 
stands on the ground with wet feet. The latter situation represents effective ground 
contact because normal, nondistilled water is a conductor due to the large number 
of ions associated with impurities. This situation should be avoided at all cost.
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Neutral

0 V

R2

Circuit
breaker

Electrical
meter

R3

W

The electrical meter measures 
the power in watts.

Figure 28.19 Wiring diagram 
for a household circuit. The 
resistances represent appliances 
or other electrical devices that 
operate with an applied voltage 
of 120 V.
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Figure 28.20 (a) An outlet for 
connection to a 240-V supply.  
(b) The connections for each of 
the openings in a 240-V outlet.
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4Live wire is a common expression for a conductor whose electric potential is above or below ground potential.
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 Electric shock can result in fatal burns or can cause the muscles of vital organs 
such as the heart to malfunction. The degree of damage to the body depends 
on the magnitude of the current, the length of time it acts, the part of the body 
touched by the live wire, and the part of the body in which the current exists. Cur-
rents of 5 mA or less cause a sensation of shock, but ordinarily do little or no dam-
age. If the current is larger than about 10 mA, the muscles contract and the person 
may be unable to release the live wire. If the body carries a current of about 100 
mA for only a few seconds, the result can be fatal. Such a large current paralyzes 
the respiratory muscles and prevents breathing. In some cases, currents of approxi-
mately 1 A can produce serious (and sometimes fatal) burns. In practice, no con-
tact with live wires is regarded as safe whenever the voltage is greater than 24 V.
 Many 120-V outlets are designed to accept a three-pronged power cord. (This 
feature is required in all new electrical installations.) One of these prongs is the 
live wire at a nominal potential of 120 V. The second is the neutral wire, nominally 
at 0 V, which carries current to ground. Figure 28.21a shows a connection to an 
electric drill with only these two wires. If the live wire accidentally makes contact 
with the casing of the electric drill (which can occur if the wire insulation wears 
off), current can be carried to ground by way of the person, resulting in an electric 
shock. The third wire in a three-pronged power cord, the round prong, is a safety 
ground wire that normally carries no current. It is both grounded and connected 
directly to the casing of the appliance. If the live wire is accidentally shorted to the 
casing in this situation, most of the current takes the low-resistance path through 
the appliance to ground as shown in Figure 28.21b.
 Special power outlets called ground-fault circuit interrupters, or GFCIs, are used 
in kitchens, bathrooms, basements, exterior outlets, and other hazardous areas of 
homes. These devices are designed to protect persons from electric shock by sens-
ing small currents (, 5 mA) leaking to ground. (The principle of their operation 

In the situation shown, the live wire has come into contact 
with the drill case. As a result, the person holding the drill acts 
as a current path to ground and receives an electric shock.

In this situation, the drill case remains at ground 
potential and no current exists in the person.

“Ouch!”
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Figure 28.21 (a) A diagram 
of the circuit for an electric drill 
with only two connecting wires. 
The normal current path is  
from the live wire through the 
motor connections and back to 
ground through the neutral wire. 
(b) This shock can be avoided 
by connecting the drill case to 
ground through a third ground 
wire. The wire colors represent 
electrical standards in the United 
States: the “hot” wire is black,  
the ground wire is green, and the 
neutral wire is white (shown as 
gray in the figure).
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More exotic conducting materials

So far, we have talked about conductors and insulators.

However, there are materials that behave in ways quite different
from the conductors and insulators we have investigated so far.
They are:

• semiconductors

• superconductors



Semiconductors

Semiconductors have resistivities between those of conductors and
insulators.

However, their resistivities can be controlled by several different
means (depending on the type of semiconductor):

• by adding impurities during manufacture

• by electric fields

• by light

This allows for many new kinds of components in circuits: ones
that amplify currents, emit light, are light sensitive, implement
switching, etc.



Semiconductors

LED (light emitting diodes) are one application of semiconductors.

Transistors are another. Transistors can act as an amplifier or a
switch in a circuit.

1Figure by FDominec, on Wikipedia.



Semiconductors

Silicon is perhaps the most famous semiconductor.

Recall that we had a model relating resistivity to temperature:

ρ− ρ0 = ρ0α(T − T0)

For silicon α is negative! The resistivity decreases as temperature
increases.

This is because at higher temperatures more electrons have enough
energy to become freely-moving conducting electrons.



Superconductors
Superconducting materials are elements, alloys, or compounds that
exhibit a remarkable property: below some characteristic
temperature the resistivity of the material is effectively zero.

69726-9 S U PE RCON DUCTORS
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as can an electric field applied across the conductor.The field would not only free
these loosely held electrons but would also propel them along the wire; thus, the
field would drive a current through the conductor.

In an insulator, significantly greater energy is required to free electrons so
they can move through the material. Thermal energy cannot supply enough en-
ergy, and neither can any reasonable electric field applied to the insulator. Thus,
no electrons are available to move through the insulator, and hence no current
occurs even with an applied electric field.

A semiconductor is like an insulator except that the energy required to free
some electrons is not quite so great. More important, doping can supply electrons
or positive charge carriers that are very loosely held within the material and thus
are easy to get moving. Moreover, by controlling the doping of a semiconductor,
we can control the density of charge carriers that can participate in a current and
thereby can control some of its electrical properties. Most semiconducting
devices, such as transistors and junction diodes, are fabricated by the selective
doping of different regions of the silicon with impurity atoms of different kinds.

Let us now look again at Eq. 26-25 for the resistivity of a conductor:

(26-29)

where n is the number of charge carriers per unit volume and t is the mean time
between collisions of the charge carriers. (We derived this equation for conduc-
tors, but it also applies to semiconductors.) Let us consider how the variables n
and t change as the temperature is increased.

In a conductor, n is large but very nearly constant with any change in temper-
ature. The increase of resistivity with temperature for metals (Fig. 26-10) is due
to an increase in the collision rate of the charge carriers, which shows up in
Eq. 26-29 as a decrease in t, the mean time between collisions.

In a semiconductor, n is small but increases very rapidly with temperature as
the increased thermal agitation makes more charge carriers available.This causes
a decrease of resistivity with increasing temperature, as indicated by the negative
temperature coefficient of resistivity for silicon in Table 26-2. The same increase
in collision rate that we noted for metals also occurs for semiconductors, but its
effect is swamped by the rapid increase in the number of charge carriers.

26-9 Superconductors
In 1911, Dutch physicist Kamerlingh Onnes discovered that the resistivity of mercury
absolutely disappears at temperatures below about 4 K (Fig. 26-14). This phenome-
non of superconductivity is of vast potential importance in technology because it
means that charge can flow through a superconducting conductor without losing its
energy to thermal energy. Currents created in a superconducting ring, for example,
have persisted for several years without loss; the electrons making up the current re-
quire a force and a source of energy at start-up time but not thereafter.

Prior to 1986, the technological development of superconductivity was throttled
by the cost of producing the extremely low temperatures required to achieve the ef-
fect. In 1986, however, new ceramic materials were discovered that become super-
conducting at considerably higher (and thus cheaper to produce) temperatures.
Practical application of superconducting devices at room temperature may eventu-
ally become commonplace.

Superconductivity is a phenomenon much different from conductivity. In
fact, the best of the normal conductors, such as silver and copper, cannot become
superconducting at any temperature, and the new ceramic superconductors are
actually good insulators when they are not at low enough temperatures to be in
a superconducting state.
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Fig. 26-14 The resistance of mercury
drops to zero at a temperature of about 4 K.

A disk-shaped magnet is levitated above
a superconducting material that has been
cooled by liquid nitrogen.The goldfish is
along for the ride.(Courtesy Shoji
Tonaka/International Superconductivity
Technology Center,Tokyo, Japan)
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Examples of these materials are mercury and lead. Not all
materials do this! Copper does not.

Mercury is superconducting below 4 K. (−269◦ C)



Superconductors

Before 1986, it seemed we had a good idea about how this
happened and why.

Then “high temperature” superconductors were found.

These are ceramics. One is yttrium barium copper oxide (YBCO).

The highest critical temperature found so far is ∼ 138 K.

We do not really understand why these ceramics are
superconductors.
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happened and why.

Then “high temperature” superconductors were found.

These are ceramics. One is yttrium barium copper oxide (YBCO).
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Superconductors
Superconductors must be cooled to their critical temperature to
reveal their superconducting properties.

They expel magnetic field lines when cooled below their critical
temperature as surface currents cancel out external magnetic fields.

1Magnet photo by Mai-Linh Doan, Wikipedia.



Superconductors
Superconductors are used as electromagents in MRI scanners, mass
spectrometers, and particle accelerators.

1Taken at MPI fuer Biophysikalische Chemie Goettingen, by Daniel Schwen.



Superconductors

Superconductors can also be used very, very sensitive light
detectors and for quantum logic circuits.

If a material was found to have a critical temperature above or
close to room temperature there would be a huge number of
applications for it.



Summary

• meters

• grounding and safety

• RC circuits

• semiconductors

• superconductors

Homework Halliday, Resnick, Walker:

• Look over Chapters 21-27.

• Understand example prob on page 719.

• Ch 27, onward from page 731. Problems: 57, 59


