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Last time

• the Hall effect

• particle accelerators



Overview

• force on a wire with a current in a B-field

• torque on a wire loop in a B-field

• motors

• relating a current loop to a magnet

• magnetic dipole moment

• torque and potential energy of magnetic dipole

• magnetism of matter



Magnetic Force on a Current Carrying Wire

Charged particles moving in a magnetic field experience a force.
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28-8 Magnetic Force on a Current-Carrying Wire
We have already seen (in connection with the Hall effect) that a magnetic field
exerts a sideways force on electrons moving in a wire. This force must then be
transmitted to the wire itself, because the conduction electrons cannot escape
sideways out of the wire.

In Fig. 28-14a, a vertical wire, carrying no current and fixed in place at both
ends, extends through the gap between the vertical pole faces of a magnet.
The magnetic field between the faces is directed outward from the page. In Fig.
28-14b, a current is sent upward through the wire; the wire deflects to the right.
In Fig. 28-14c, we reverse the direction of the current and the wire deflects to
the left.

Figure 28-15 shows what happens inside the wire of Fig. 28-14b. We see one
of the conduction electrons, drifting downward with an assumed drift speed vd.
Equation 28-3, in which we must put f ! 90°, tells us that a force of magni-
tude evdB must act on each such electron. From Eq. 28-2 we see that this force
must be directed to the right. We expect then that the wire as a whole will experi-
ence a force to the right, in agreement with Fig. 28-14b.

If, in Fig. 28-15, we were to reverse either the direction of the magnetic field
or the direction of the current, the force on the wire would reverse, being directed
now to the left. Note too that it does not matter whether we consider negative
charges drifting downward in the wire (the actual case) or positive charges drift-
ing upward. The direction of the deflecting force on the wire is the same. We are
safe then in dealing with a current of positive charge, as we usually do in dealing
with circuits.

Consider a length L of the wire in Fig. 28-15. All the conduction electrons in
this section of wire will drift past plane xx in Fig. 28-15 in a time t ! L/vd. Thus, in
that time a charge given by

will pass through that plane. Substituting this into Eq. 28-3 yields

or FB ! iLB. (28-25)

Note that this equation gives the magnetic force that acts on a length L of straight wire
carrying a current i and immersed in a uniform magnetic field that is perpendicular
to the wire.

If the magnetic field is not perpendicular to the wire, as in Fig. 28-16, the
magnetic force is given by a generalization of Eq. 28-25:

(force on a current). (28-26)

Here is a length vector that has magnitude L and is directed along the wire
segment in the direction of the (conventional) current. The force magnitude FB is

FB ! iLB sin f, (28-27)

where f is the angle between the directions of and . The direction of is
that of the cross product because we take current i to be a positive quan-
tity. Equation 28-26 tells us that is always perpendicular to the plane defined
by vectors and , as indicated in Fig. 28-16.

Equation 28-26 is equivalent to Eq. 28-2 in that either can be taken as the
defining equation for . In practice, we define from Eq. 28-26 because it is
much easier to measure the magnetic force acting on a wire than that on a single
moving charge.

B
:

B
:

B
:

L
:

F
:

B

L
:

! B
:

F
:

BB
:

L
:

L
:

F
:

B ! iL
:

! B
:

B
:

FB ! qvdB sin " !
iL
vd

 vd# sin 90$

q ! it ! i 
L
vd

F
:

B

L

x

i

x

FB

B

vd

Fig. 28-15 A close-up view of a section
of the wire of Fig. 28-14b.The current direc-
tion is upward, which means that electrons
drift downward.A magnetic field that
emerges from the plane of the page causes
the electrons and the wire to be deflected
to the right.

Fig. 28-14 A flexible wire passes be-
tween the pole faces of a magnet (only the
farther pole face is shown). (a) Without cur-
rent in the wire, the wire is straight. (b) With
upward current, the wire is deflected right-
ward. (c) With downward current, the de-
flection is leftward.The connections for get-
ting the current into the wire at one end and
out of it at the other end are not shown.
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A wire carrying a current also experiences a force, since there is a
force on each moving charge confined to the wire.
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The direction of the force depends on the direction of the current.



Magnetic Force on a Current Carrying Wire

The force on the wire in a uniform magnetic field is given by:

F = I L× B

where L is a distance vector that points along the length of the
wire in the direction of the conventional current I and is as long as
the part of the wire inside the field is.

By considering the force on an individual charge, we can motivate
this equation.



Magnetic Force on a Current Carrying Wire

The force on an individual conduction electron is
FB = (−e) vd × B.

The total force will be the sum of the force on all the moving
charges together.

How much conduction charge is in the wire?

q = −enV

where n is the volume density of charge carriers, and V is the
volume of the wire.

Also, this charge is negative, since the flowing charges are
electrons.
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Magnetic Force on a Current Carrying Wire

FB = −enV vd × B

vd =
I

neA
→ IL = enVvd

since V = AL where L is the length of the wire.

If the wire is straight and in a uniform field and we define L to be
a vector of length L pointed in the direction of the conventional
current, then:

FB = I L× B



Magnetic Force on a Current Carrying Wire
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If a wire is not straight or the field is not uniform, we can imagine the wire
broken up into small straight segments and apply Eq. 28-26 to each segment. The
force on the wire as a whole is then the vector sum of all the forces on the
segments that make it up. In the differential limit, we can write

(28-28)

and we can find the resultant force on any given arrangement of currents by
integrating Eq. 28-28 over that arrangement.

In using Eq. 28-28, bear in mind that there is no such thing as an isolated
current-carrying wire segment of length dL.There must always be a way to intro-
duce the current into the segment at one end and take it out at the other end.
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:

! B
:

,

Fig. 28-16 A wire carrying current i
makes an angle f with magnetic field .
The wire has length L in the field and
length vector (in the direction of the cur-
rent).A magnetic force acts
on the wire.
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CHECKPOINT 4

The figure shows a current i through a wire in a uniform magnetic field , as well as
the magnetic force acting on the wire.The field is oriented so that the force is maxi-
mum. In what direction is the field?
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Sample Problem

We also want the minimal field magnitude B for to balance
.Thus, we need to maximize sin f in Eq. 28-29.To do so, we

set f ! 90°, thereby arranging for to be perpendicular to
the wire.We then have sin f ! 1, so Eq. 28-29 yields

(28-30)

We write the result this way because we know m/L, the linear
density of the wire. Substituting known data then gives us

(Answer)
This is about 160 times the strength of Earth’s magnetic field.
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Additional examples, video, and practice available at WileyPLUS

Magnetic force on a wire carrying current

A straight, horizontal length of copper wire has a current 
i ! 28 A through it. What are the magnitude and direction
of the minimum magnetic field needed to suspend the
wire—that is, to balance the gravitational force on it? The
linear density (mass per unit length) of the wire is 46.6 g/m.

(1) Because the wire carries a current, a magnetic force 
can act on the wire if we place it in a magnetic field . To
balance the downward gravitational force on the wire, we
want to be directed upward (Fig. 28-17). (2) The directionF

:
B

F
:

g

B
:

F
:

B

B
:

KEY I DEAS

Fig. 28-17 A wire (shown in cross section) carrying current out
of the page.
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Calculations: Because is directed horizontally (and the
current is taken to be positive), Eq. 28-26 and the right-hand
rule for cross products tell us that must be horizontal and
rightward (in Fig. 28-17) to give the required upward .F

:
B

B
:

L
:

(F
:

B ! iL
:

! B
:

).L
:

The magnitude of is FB ! iLB sin f (Eq. 28-27).
Because we want to balance , we want

iLB sin f ! mg, (28-29)

where mg is the magnitude of and m is the mass of the wire.F
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F = I L× B



Torque on a Loop of Wire with a Current

Or, how to turn electricity into motion.

Consider two wires in a magnetic field with currents flowing in
opposite directions.
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If a wire is not straight or the field is not uniform,we can imagine the wire
broken up into small straight segments and apply Eq.28-26 to each segment.The
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current-carrying wire segment of length dL.There must always be a way to intro-
duce the current into the segment at one end and take it out at the other end.

dF
:

B!i dL
:

!B
:

,

Fig. 28-16A wire carrying current i
makes an angle fwith magnetic field .
The wire has length Lin the field and
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CHECKPOINT 4

The figure shows a current ithrough a wire in a uniform magnetic field ,as well as
the magnetic force acting on the wire.The field is oriented so that the force is maxi-
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We also want the minimal field magnitude Bfor to balance
.Thus,we need to maximize sin fin Eq.28-29.To do so,we

set f!90°,thereby arranging for to be perpendicular to
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Magnetic force on a wire carrying current

A straight,horizontal length of copper wire has a current 
i!28A through it.What are the magnitude and direction
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They will experience forces in opposite directions.
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Torque on a Loop of Wire with a Current

This is the situation that occurs when a loop of wire is placed in a
B-field.
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28-9 Torque on a Current Loop
Much of the world’s work is done by electric motors. The forces behind this work
are the magnetic forces that we studied in the preceding section—that is, the
forces that a magnetic field exerts on a wire that carries a current.

Figure 28-18 shows a simple motor, consisting of a single current-carrying
loop immersed in a magnetic field . The two magnetic forces and pro-
duce a torque on the loop, tending to rotate it about its central axis. Although
many essential details have been omitted, the figure does suggest how the action
of a magnetic field on a current loop produces rotary motion. Let us analyze that
action.

Figure 28-19a shows a rectangular loop of sides a and b, carrying current
i through uniform magnetic field . We place the loop in the field so that
its long sides, labeled 1 and 3, are perpendicular to the field direction (which is
into the page), but its short sides, labeled 2 and 4, are not. Wires to lead the cur-
rent into and out of the loop are needed but, for simplicity, are not shown.

To define the orientation of the loop in the magnetic field, we use a normal
vector that is perpendicular to the plane of the loop. Figure 28-19b shows
a right-hand rule for finding the direction of . Point or curl the fingers of your
right hand in the direction of the current at any point on the loop. Your extended
thumb then points in the direction of the normal vector .

In Fig. 28-19c, the normal vector of the loop is shown at an arbitrary angle
u to the direction of the magnetic field . We wish to find the net force and net
torque acting on the loop in this orientation.

The net force on the loop is the vector sum of the forces acting on its 
four sides. For side 2 the vector in Eq. 28-26 points in the direction of the cur-
rent and has magnitude b. The angle between and for side 2 (see Fig. 28-19c)
is 90° ! u.Thus, the magnitude of the force acting on this side is

F2 " ibB sin(90° ! u) " ibB cos u. (28-31)
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Fig. 28-18 The elements of an electric
motor.A rectangular loop of wire, carrying a
current and free to rotate about a fixed axis,
is placed in a magnetic field. Magnetic
forces on the wire produce a torque that ro-
tates it.A commutator (not shown) reverses
the direction of the current every half-revo-
lution so that the torque always acts in the
same direction.
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Fig. 28-19 A rectangular loop, of
length a and width b and carrying a cur-
rent i, is located in a uniform magnetic
field.A torque t acts to align the normal
vector with the direction of the field. (a)
The loop as seen by looking in the direc-
tion of the magnetic field. (b) A perspec-
tive of the loop showing how the right-
hand rule gives the direction of , which is
perpendicular to the plane of the loop. (c)
A side view of the loop, from side 2.
The loop rotates as indicated.
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These opposing forces on opposite sides of the loop creates a
torque on the loop.
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The current on the two sides away from the axle gives an upward
force on the left and downward on the right.
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28-9 Torque on a Current Loop
Much of the world’s work is done by electric motors. The forces behind this work
are the magnetic forces that we studied in the preceding section—that is, the
forces that a magnetic field exerts on a wire that carries a current.

Figure 28-18 shows a simple motor, consisting of a single current-carrying
loop immersed in a magnetic field . The two magnetic forces and pro-
duce a torque on the loop, tending to rotate it about its central axis. Although
many essential details have been omitted, the figure does suggest how the action
of a magnetic field on a current loop produces rotary motion. Let us analyze that
action.

Figure 28-19a shows a rectangular loop of sides a and b, carrying current
i through uniform magnetic field . We place the loop in the field so that
its long sides, labeled 1 and 3, are perpendicular to the field direction (which is
into the page), but its short sides, labeled 2 and 4, are not. Wires to lead the cur-
rent into and out of the loop are needed but, for simplicity, are not shown.

To define the orientation of the loop in the magnetic field, we use a normal
vector that is perpendicular to the plane of the loop. Figure 28-19b shows
a right-hand rule for finding the direction of . Point or curl the fingers of your
right hand in the direction of the current at any point on the loop. Your extended
thumb then points in the direction of the normal vector .

In Fig. 28-19c, the normal vector of the loop is shown at an arbitrary angle
u to the direction of the magnetic field . We wish to find the net force and net
torque acting on the loop in this orientation.

The net force on the loop is the vector sum of the forces acting on its 
four sides. For side 2 the vector in Eq. 28-26 points in the direction of the cur-
rent and has magnitude b. The angle between and for side 2 (see Fig. 28-19c)
is 90° ! u.Thus, the magnitude of the force acting on this side is

F2 " ibB sin(90° ! u) " ibB cos u. (28-31)
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Fig. 28-18 The elements of an electric
motor.A rectangular loop of wire, carrying a
current and free to rotate about a fixed axis,
is placed in a magnetic field. Magnetic
forces on the wire produce a torque that ro-
tates it.A commutator (not shown) reverses
the direction of the current every half-revo-
lution so that the torque always acts in the
same direction.
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Fig. 28-19 A rectangular loop, of
length a and width b and carrying a cur-
rent i, is located in a uniform magnetic
field.A torque t acts to align the normal
vector with the direction of the field. (a)
The loop as seen by looking in the direc-
tion of the magnetic field. (b) A perspec-
tive of the loop showing how the right-
hand rule gives the direction of , which is
perpendicular to the plane of the loop. (c)
A side view of the loop, from side 2.
The loop rotates as indicated.
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On the two ends that connect to the axle, the force is zero when
the loop lays flat parallel to the B-field.

When the loop rotates, the forces on those two ends are equal and
opposite.
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28-9 Torque on a Current Loop
Much of the world’s work is done by electric motors. The forces behind this work
are the magnetic forces that we studied in the preceding section—that is, the
forces that a magnetic field exerts on a wire that carries a current.

Figure 28-18 shows a simple motor, consisting of a single current-carrying
loop immersed in a magnetic field . The two magnetic forces and pro-
duce a torque on the loop, tending to rotate it about its central axis. Although
many essential details have been omitted, the figure does suggest how the action
of a magnetic field on a current loop produces rotary motion. Let us analyze that
action.

Figure 28-19a shows a rectangular loop of sides a and b, carrying current
i through uniform magnetic field . We place the loop in the field so that
its long sides, labeled 1 and 3, are perpendicular to the field direction (which is
into the page), but its short sides, labeled 2 and 4, are not. Wires to lead the cur-
rent into and out of the loop are needed but, for simplicity, are not shown.

To define the orientation of the loop in the magnetic field, we use a normal
vector that is perpendicular to the plane of the loop. Figure 28-19b shows
a right-hand rule for finding the direction of . Point or curl the fingers of your
right hand in the direction of the current at any point on the loop. Your extended
thumb then points in the direction of the normal vector .

In Fig. 28-19c, the normal vector of the loop is shown at an arbitrary angle
u to the direction of the magnetic field . We wish to find the net force and net
torque acting on the loop in this orientation.

The net force on the loop is the vector sum of the forces acting on its 
four sides. For side 2 the vector in Eq. 28-26 points in the direction of the cur-
rent and has magnitude b. The angle between and for side 2 (see Fig. 28-19c)
is 90° ! u.Thus, the magnitude of the force acting on this side is

F2 " ibB sin(90° ! u) " ibB cos u. (28-31)
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Fig. 28-18 The elements of an electric
motor.A rectangular loop of wire, carrying a
current and free to rotate about a fixed axis,
is placed in a magnetic field. Magnetic
forces on the wire produce a torque that ro-
tates it.A commutator (not shown) reverses
the direction of the current every half-revo-
lution so that the torque always acts in the
same direction.
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Fig. 28-19 A rectangular loop, of
length a and width b and carrying a cur-
rent i, is located in a uniform magnetic
field.A torque t acts to align the normal
vector with the direction of the field. (a)
The loop as seen by looking in the direc-
tion of the magnetic field. (b) A perspec-
tive of the loop showing how the right-
hand rule gives the direction of , which is
perpendicular to the plane of the loop. (c)
A side view of the loop, from side 2.
The loop rotates as indicated.
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τF = r × F ; τnet =
∑
i

τi

τnet = r1 × F1 + r2 × F2
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F1 = Ia× B = iaB j = −F3
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28-9 Torque on a Current Loop
Much of the world’s work is done by electric motors. The forces behind this work
are the magnetic forces that we studied in the preceding section—that is, the
forces that a magnetic field exerts on a wire that carries a current.

Figure 28-18 shows a simple motor, consisting of a single current-carrying
loop immersed in a magnetic field . The two magnetic forces and pro-
duce a torque on the loop, tending to rotate it about its central axis. Although
many essential details have been omitted, the figure does suggest how the action
of a magnetic field on a current loop produces rotary motion. Let us analyze that
action.

Figure 28-19a shows a rectangular loop of sides a and b, carrying current
i through uniform magnetic field . We place the loop in the field so that
its long sides, labeled 1 and 3, are perpendicular to the field direction (which is
into the page), but its short sides, labeled 2 and 4, are not. Wires to lead the cur-
rent into and out of the loop are needed but, for simplicity, are not shown.

To define the orientation of the loop in the magnetic field, we use a normal
vector that is perpendicular to the plane of the loop. Figure 28-19b shows
a right-hand rule for finding the direction of . Point or curl the fingers of your
right hand in the direction of the current at any point on the loop. Your extended
thumb then points in the direction of the normal vector .

In Fig. 28-19c, the normal vector of the loop is shown at an arbitrary angle
u to the direction of the magnetic field . We wish to find the net force and net
torque acting on the loop in this orientation.

The net force on the loop is the vector sum of the forces acting on its 
four sides. For side 2 the vector in Eq. 28-26 points in the direction of the cur-
rent and has magnitude b. The angle between and for side 2 (see Fig. 28-19c)
is 90° ! u.Thus, the magnitude of the force acting on this side is

F2 " ibB sin(90° ! u) " ibB cos u. (28-31)
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Fig. 28-18 The elements of an electric
motor.A rectangular loop of wire, carrying a
current and free to rotate about a fixed axis,
is placed in a magnetic field. Magnetic
forces on the wire produce a torque that ro-
tates it.A commutator (not shown) reverses
the direction of the current every half-revo-
lution so that the torque always acts in the
same direction.
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Fig. 28-19 A rectangular loop, of
length a and width b and carrying a cur-
rent i, is located in a uniform magnetic
field.A torque t acts to align the normal
vector with the direction of the field. (a)
The loop as seen by looking in the direc-
tion of the magnetic field. (b) A perspec-
tive of the loop showing how the right-
hand rule gives the direction of , which is
perpendicular to the plane of the loop. (c)
A side view of the loop, from side 2.
The loop rotates as indicated.
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τnet = r1 × F1 + r3 × F3
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28-9 Torque on a Current Loop
Much of the world’s work is done by electric motors. The forces behind this work
are the magnetic forces that we studied in the preceding section—that is, the
forces that a magnetic field exerts on a wire that carries a current.

Figure 28-18 shows a simple motor, consisting of a single current-carrying
loop immersed in a magnetic field . The two magnetic forces and pro-
duce a torque on the loop, tending to rotate it about its central axis. Although
many essential details have been omitted, the figure does suggest how the action
of a magnetic field on a current loop produces rotary motion. Let us analyze that
action.

Figure 28-19a shows a rectangular loop of sides a and b, carrying current
i through uniform magnetic field . We place the loop in the field so that
its long sides, labeled 1 and 3, are perpendicular to the field direction (which is
into the page), but its short sides, labeled 2 and 4, are not. Wires to lead the cur-
rent into and out of the loop are needed but, for simplicity, are not shown.

To define the orientation of the loop in the magnetic field, we use a normal
vector that is perpendicular to the plane of the loop. Figure 28-19b shows
a right-hand rule for finding the direction of . Point or curl the fingers of your
right hand in the direction of the current at any point on the loop. Your extended
thumb then points in the direction of the normal vector .

In Fig. 28-19c, the normal vector of the loop is shown at an arbitrary angle
u to the direction of the magnetic field . We wish to find the net force and net
torque acting on the loop in this orientation.

The net force on the loop is the vector sum of the forces acting on its 
four sides. For side 2 the vector in Eq. 28-26 points in the direction of the cur-
rent and has magnitude b. The angle between and for side 2 (see Fig. 28-19c)
is 90° ! u.Thus, the magnitude of the force acting on this side is

F2 " ibB sin(90° ! u) " ibB cos u. (28-31)
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Fig. 28-18 The elements of an electric
motor.A rectangular loop of wire, carrying a
current and free to rotate about a fixed axis,
is placed in a magnetic field. Magnetic
forces on the wire produce a torque that ro-
tates it.A commutator (not shown) reverses
the direction of the current every half-revo-
lution so that the torque always acts in the
same direction.
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Fig. 28-19 A rectangular loop, of
length a and width b and carrying a cur-
rent i, is located in a uniform magnetic
field.A torque t acts to align the normal
vector with the direction of the field. (a)
The loop as seen by looking in the direc-
tion of the magnetic field. (b) A perspec-
tive of the loop showing how the right-
hand rule gives the direction of , which is
perpendicular to the plane of the loop. (c)
A side view of the loop, from side 2.
The loop rotates as indicated.
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τnet = r1 × F1 + r2 × F2

=

(
b

2

)
(IaB) sin θ+

(
b

2

)
(IaB) sin θ [cw in diag.]

Noting that the area of the loop A = ab:

τ = IAB sin θ
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886 Chapter 29 Magnetic Fields

The direction of F
S

2, the magnetic force exerted on wire !, is out of the page in the 
view shown in Figure 29.20a and that of F

S
4, the magnetic force exerted on wire ", 

is into the page in the same view. If we view the loop from side # and sight along 
sides ! and ", we see the view shown in Figure 29.21b, and the two magnetic forces 
F
S

2 and F
S

4 are directed as shown. Notice that the two forces point in opposite direc-
tions but are not directed along the same line of action. If the loop is pivoted so that 
it can rotate about point O, these two forces produce about O a torque that rotates 
the loop clockwise. The magnitude of this torque tmax is

 tmax 5 F2 
b
2

1 F4 
b
2

5 1IaB 2 b
2

1 1IaB 2  b
2

5 IabB  

where the moment arm about O is b/2 for each force. Because the area enclosed by 
the loop is A 5 ab, we can express the maximum torque as

 tmax 5 IAB  (29.13)

This maximum-torque result is valid only when the magnetic field is parallel to 
the plane of the loop. The sense of the rotation is clockwise when viewed from 
side # as indicated in Figure 29.21b. If the current direction were reversed, 
the force directions would also reverse and the rotational tendency would be 
counterclockwise.
 Now suppose the uniform magnetic field makes an angle u , 908 with a line 
perpendicular to the plane of the loop as in Figure 29.22. For convenience, let’s 
assume B

S
 is perpendicular to sides ! and ". In this case, the magnetic forces F

S
1 

and F
S

3 exerted on sides $ and # cancel each other and produce no torque because 
they act along the same line. The magnetic forces F

S
2 and F

S
4 acting on sides ! and 

", however, produce a torque about any point. Referring to the edge view shown  
in Figure 29.22, we see that the moment arm of F

S
2 about the point O is equal to 

(b/2) sin u. Likewise, the moment arm of F
S

4 about O is also equal to (b/2) sin u. 
Because F2 5 F4 5 IaB, the magnitude of the net torque about O is

t 5 F2 
b
2

 sin u 1 F4 
b
2

 sin u 

 5 IaB a b
2

 sin ub 1 IaB a b
2

 sin ub 5 IabB sin u

5 IAB sin u

where A 5 ab is the area of the loop. This result shows that the torque has its maxi-
mum value IAB when the field is perpendicular to the normal to the plane of the 
loop (u 5 908) as discussed with regard to Figure 29.21 and is zero when the field is 
parallel to the normal to the plane of the loop (u 5 0).

Ob
2
– sin 
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u u
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F4
S

B
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When the normal to the loop 
makes an angle u with the 
magnetic field, the moment arm 
for the torque is (b/2) sin u.

Figure 29.22 An edge view 
of the loop in Figure 29.21 
with the normal to the loop 
at an angle u with respect to 
the magnetic field.

τ = IAB sin θ

We can make this expression more compact by defining A = An̂
where n̂ is normal to the loop plane.

τ = IA× B



Torque on a Loop of Wire Question
Which of the rectangular loops has the largest magnitude of the
net force acting on it?

888 Chapter 29 Magnetic Fields

This expression shows that the system has its lowest energy Umin 5 2mB when  
mS points in the same direction as B

S
. The system has its highest energy Umax 5 1mB 

when mS points in the direction opposite B
S

.
 Imagine the loop in Figure 29.22 is pivoted at point O on sides ! and ", so that 
it is free to rotate. If the loop carries current and the magnetic field is turned on, 
the loop is modeled as a rigid object under a net torque, with the torque given by 
Equation 29.17. The torque on the current loop causes the loop to rotate; this effect 
is exploited practically in a motor. Energy enters the motor by electrical transmis-
sion, and the rotating coil can do work on some device external to the motor. For 
example, the motor in a car’s electrical window system does work on the windows, 
applying a force on them and moving them up or down through some displace-
ment. We will discuss motors in more detail in Section 31.5.

Q uick Quiz 29.4  (i) Rank the magnitudes of the torques acting on the rectangu-
lar loops (a), (b), and (c) shown edge-on in Figure 29.24 from highest to lowest. 
All loops are identical and carry the same current. (ii) Rank the magnitudes of 
the net forces acting on the rectangular loops shown in Figure 29.24 from high-
est to lowest.

ca b

Figure 29.24  (Quick Quiz 
29.4) Which current loop (seen 
edge-on) experiences the great-
est torque, (a), (b), or (c)? Which 
experiences the greatest net 
force?

 

Example 29.5   The Magnetic Dipole Moment of a Coil

A rectangular coil of dimensions 5.40 cm 3 8.50 cm consists of 25 turns of wire and carries a current of 15.0 mA.  
A 0.350-T magnetic field is applied parallel to the plane of the coil.

(A)  Calculate the magnitude of the magnetic dipole moment of the coil.

Conceptualize  The magnetic moment of the coil is independent of any magnetic field in which the loop resides, so it 
depends only on the geometry of the loop and the current it carries.

Categorize  We evaluate quantities based on equations developed in this section, so we categorize this example as a 
substitution problem.

S O L U T I O N

Use Equation 29.16 to calculate the magnetic moment 
associated with a coil consisting of N turns:

mcoil 5 NIA 5 (25)(15.0 3 1023 A)(0.054 0 m)(0.085 0 m)

5 1.72 3 1023 A # m2

(B)  What is the magnitude of the torque acting on the loop?

S O L U T I O N

Use Equation 29.17, noting that B
S

 is perpendicular to mScoil: t 5 mcoilB 5 (1.72 3 1023 A ? m2)(0.350 T)

5 6.02 3 1024 N # m

(A) a

(B) b

(C) c

(D) all the same

1Serway & Jewett, 9th ed.
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it is free to rotate. If the loop carries current and the magnetic field is turned on, 
the loop is modeled as a rigid object under a net torque, with the torque given by 
Equation 29.17. The torque on the current loop causes the loop to rotate; this effect 
is exploited practically in a motor. Energy enters the motor by electrical transmis-
sion, and the rotating coil can do work on some device external to the motor. For 
example, the motor in a car’s electrical window system does work on the windows, 
applying a force on them and moving them up or down through some displace-
ment. We will discuss motors in more detail in Section 31.5.
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All loops are identical and carry the same current. (ii) Rank the magnitudes of 
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Example 29.5   The Magnetic Dipole Moment of a Coil

A rectangular coil of dimensions 5.40 cm 3 8.50 cm consists of 25 turns of wire and carries a current of 15.0 mA.  
A 0.350-T magnetic field is applied parallel to the plane of the coil.

(A)  Calculate the magnitude of the magnetic dipole moment of the coil.

Conceptualize  The magnetic moment of the coil is independent of any magnetic field in which the loop resides, so it 
depends only on the geometry of the loop and the current it carries.

Categorize  We evaluate quantities based on equations developed in this section, so we categorize this example as a 
substitution problem.

S O L U T I O N

Use Equation 29.16 to calculate the magnetic moment 
associated with a coil consisting of N turns:

mcoil 5 NIA 5 (25)(15.0 3 1023 A)(0.054 0 m)(0.085 0 m)

5 1.72 3 1023 A # m2

(B)  What is the magnitude of the torque acting on the loop?

S O L U T I O N

Use Equation 29.17, noting that B
S

 is perpendicular to mScoil: t 5 mcoilB 5 (1.72 3 1023 A ? m2)(0.350 T)

5 6.02 3 1024 N # m
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(B) b
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(D) all the same←
1Serway & Jewett, 9th ed.
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This expression shows that the system has its lowest energy Umin 5 2mB when  
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 Imagine the loop in Figure 29.22 is pivoted at point O on sides ! and ", so that 
it is free to rotate. If the loop carries current and the magnetic field is turned on, 
the loop is modeled as a rigid object under a net torque, with the torque given by 
Equation 29.17. The torque on the current loop causes the loop to rotate; this effect 
is exploited practically in a motor. Energy enters the motor by electrical transmis-
sion, and the rotating coil can do work on some device external to the motor. For 
example, the motor in a car’s electrical window system does work on the windows, 
applying a force on them and moving them up or down through some displace-
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A rectangular coil of dimensions 5.40 cm 3 8.50 cm consists of 25 turns of wire and carries a current of 15.0 mA.  
A 0.350-T magnetic field is applied parallel to the plane of the coil.

(A)  Calculate the magnitude of the magnetic dipole moment of the coil.

Conceptualize  The magnetic moment of the coil is independent of any magnetic field in which the loop resides, so it 
depends only on the geometry of the loop and the current it carries.

Categorize  We evaluate quantities based on equations developed in this section, so we categorize this example as a 
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Use Equation 29.16 to calculate the magnetic moment 
associated with a coil consisting of N turns:

mcoil 5 NIA 5 (25)(15.0 3 1023 A)(0.054 0 m)(0.085 0 m)

5 1.72 3 1023 A # m2

(B)  What is the magnitude of the torque acting on the loop?

S O L U T I O N

Use Equation 29.17, noting that B
S

 is perpendicular to mScoil: t 5 mcoilB 5 (1.72 3 1023 A ? m2)(0.350 T)

5 6.02 3 1024 N # m

(A) a, b, c

(B) b, a, c

(C) c, b, a

(D) c, a, b

1Serway & Jewett, 9th ed.



Torque on a Loop of Wire Question
Rank the magnitudes of the torques acting on the rectangular
loops from highest to lowest.

888 Chapter 29 Magnetic Fields

This expression shows that the system has its lowest energy Umin 5 2mB when  
mS points in the same direction as B

S
. The system has its highest energy Umax 5 1mB 

when mS points in the direction opposite B
S

.
 Imagine the loop in Figure 29.22 is pivoted at point O on sides ! and ", so that 
it is free to rotate. If the loop carries current and the magnetic field is turned on, 
the loop is modeled as a rigid object under a net torque, with the torque given by 
Equation 29.17. The torque on the current loop causes the loop to rotate; this effect 
is exploited practically in a motor. Energy enters the motor by electrical transmis-
sion, and the rotating coil can do work on some device external to the motor. For 
example, the motor in a car’s electrical window system does work on the windows, 
applying a force on them and moving them up or down through some displace-
ment. We will discuss motors in more detail in Section 31.5.

Q uick Quiz 29.4  (i) Rank the magnitudes of the torques acting on the rectangu-
lar loops (a), (b), and (c) shown edge-on in Figure 29.24 from highest to lowest. 
All loops are identical and carry the same current. (ii) Rank the magnitudes of 
the net forces acting on the rectangular loops shown in Figure 29.24 from high-
est to lowest.

ca b

Figure 29.24  (Quick Quiz 
29.4) Which current loop (seen 
edge-on) experiences the great-
est torque, (a), (b), or (c)? Which 
experiences the greatest net 
force?

 

Example 29.5   The Magnetic Dipole Moment of a Coil

A rectangular coil of dimensions 5.40 cm 3 8.50 cm consists of 25 turns of wire and carries a current of 15.0 mA.  
A 0.350-T magnetic field is applied parallel to the plane of the coil.

(A)  Calculate the magnitude of the magnetic dipole moment of the coil.

Conceptualize  The magnetic moment of the coil is independent of any magnetic field in which the loop resides, so it 
depends only on the geometry of the loop and the current it carries.

Categorize  We evaluate quantities based on equations developed in this section, so we categorize this example as a 
substitution problem.

S O L U T I O N

Use Equation 29.16 to calculate the magnetic moment 
associated with a coil consisting of N turns:

mcoil 5 NIA 5 (25)(15.0 3 1023 A)(0.054 0 m)(0.085 0 m)

5 1.72 3 1023 A # m2

(B)  What is the magnitude of the torque acting on the loop?

S O L U T I O N

Use Equation 29.17, noting that B
S

 is perpendicular to mScoil: t 5 mcoilB 5 (1.72 3 1023 A ? m2)(0.350 T)

5 6.02 3 1024 N # m

(A) a, b, c

(B) b, a, c

(C) c, b, a←
(D) c, a, b

1Serway & Jewett, 9th ed.



Torque on a Coil of Wire with a Current

τ = IA× B

Remarkably, that equation also holds for other shapes of loop as
long as they are flat (in one plane). A is the area of the loop.

For a coil of N loops stacked together, the effect of each loop adds
up:

τττ = NIA× B



Electric Motors

This effect can be used to turn electricity into mechanical work.

1Figure from hyperphysics.phys-arstr.gsu.edu



Electric Motors

Either direct current (DC) or alternating current (AC) can be used
for a motor.

1Figure from hyperphysics.phys-arstr.gsu.edu



Torque on a Loop of Wire with a Current
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28-9 Torque on a Current Loop
Much of the world’s work is done by electric motors. The forces behind this work
are the magnetic forces that we studied in the preceding section—that is, the
forces that a magnetic field exerts on a wire that carries a current.

Figure 28-18 shows a simple motor, consisting of a single current-carrying
loop immersed in a magnetic field . The two magnetic forces and pro-
duce a torque on the loop, tending to rotate it about its central axis. Although
many essential details have been omitted, the figure does suggest how the action
of a magnetic field on a current loop produces rotary motion. Let us analyze that
action.

Figure 28-19a shows a rectangular loop of sides a and b, carrying current
i through uniform magnetic field . We place the loop in the field so that
its long sides, labeled 1 and 3, are perpendicular to the field direction (which is
into the page), but its short sides, labeled 2 and 4, are not. Wires to lead the cur-
rent into and out of the loop are needed but, for simplicity, are not shown.

To define the orientation of the loop in the magnetic field, we use a normal
vector that is perpendicular to the plane of the loop. Figure 28-19b shows
a right-hand rule for finding the direction of . Point or curl the fingers of your
right hand in the direction of the current at any point on the loop. Your extended
thumb then points in the direction of the normal vector .

In Fig. 28-19c, the normal vector of the loop is shown at an arbitrary angle
u to the direction of the magnetic field . We wish to find the net force and net
torque acting on the loop in this orientation.

The net force on the loop is the vector sum of the forces acting on its 
four sides. For side 2 the vector in Eq. 28-26 points in the direction of the cur-
rent and has magnitude b. The angle between and for side 2 (see Fig. 28-19c)
is 90° ! u.Thus, the magnitude of the force acting on this side is

F2 " ibB sin(90° ! u) " ibB cos u. (28-31)

B
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L
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B
:

n:

n:
n:

B
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!F
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F
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B
:

Fig. 28-18 The elements of an electric
motor.A rectangular loop of wire, carrying a
current and free to rotate about a fixed axis,
is placed in a magnetic field. Magnetic
forces on the wire produce a torque that ro-
tates it.A commutator (not shown) reverses
the direction of the current every half-revo-
lution so that the torque always acts in the
same direction.

i

i

N S

F

–FB

Fig. 28-19 A rectangular loop, of
length a and width b and carrying a cur-
rent i, is located in a uniform magnetic
field.A torque t acts to align the normal
vector with the direction of the field. (a)
The loop as seen by looking in the direc-
tion of the magnetic field. (b) A perspec-
tive of the loop showing how the right-
hand rule gives the direction of , which is
perpendicular to the plane of the loop. (c)
A side view of the loop, from side 2.
The loop rotates as indicated.
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τ = IAB sin θ

We can make this expression more compact by defining A = An̂
where n̂ is normal to the loop plane.

τ = IA× B



Magnetic Moment for a Current Loop

For a current loop, we can define the magnetic moment of the
loop as

µ = IA

And for a coil of wire carrying a current:

µ = IA

Then the expression for the torque can be written

τ = µ× B



Magnetic Dipole Moment

Recall our definition for the Electric dipole moment:
dipole moment:

p = q d

where d is a vector pointing from the negative charge to the
positive charge, and its magnitude d is the separation of the
charges and each charge in the dipole has magnitude q.

584 CHAPTE R 22 E LECTR IC F I E LDS

Fig. 22-8 (a) An electric dipole.The
electric field vectors and at point
P on the dipole axis result from the dipole’s
two charges. Point P is at distances r(!) and
r(") from the individual charges that make
up the dipole. (b) The dipole moment of
the dipole points from the negative charge
to the positive charge.
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Up here the +q
field dominates.

Down here the –q
field dominates.

22-5 The Electric Field Due to an Electric Dipole
Figure 22-8a shows two charged particles of magnitude q but of opposite sign,
separated by a distance d. As was noted in connection with Fig. 22-5, we call this
configuration an electric dipole. Let us find the electric field due to the dipole of
Fig. 22-8a at a point P, a distance z from the midpoint of the dipole and on the
axis through the particles, which is called the dipole axis.

From symmetry, the electric field at point P—and also the fields and
E
:

(") due to the separate charges that make up the dipole—must lie along the
dipole axis, which we have taken to be a z axis.Applying the superposition princi-
ple for electric fields, we find that the magnitude E of the electric field at P is

(22-5)

After a little algebra, we can rewrite this equation as

(22-6)

After forming a common denominator and multiplying its terms, we come to

(22-7)

We are usually interested in the electrical effect of a dipole only at distances
that are large compared with the dimensions of the dipole—that is, at distances such
that z # d. At such large distances, we have d/2z $ 1 in Eq. 22-7. Thus, in our ap-
proximation, we can neglect the d/2z term in the denominator, which leaves us with

(22-8)

The product qd, which involves the two intrinsic properties q and d of the
dipole, is the magnitude p of a vector quantity known as the electric dipole moment

of the dipole. (The unit of is the coulomb-meter.) Thus, we can write Eq. 22-8 as

(electric dipole). (22-9)

The direction of is taken to be from the negative to the positive end of the
dipole, as indicated in Fig. 22-8b. We can use the direction of to specify the
orientation of a dipole.

Equation 22-9 shows that, if we measure the electric field of a dipole only at
distant points, we can never find q and d separately; instead, we can find only their
product. The field at distant points would be unchanged if, for example, q were
doubled and d simultaneously halved. Although Eq. 22-9 holds only for distant
points along the dipole axis, it turns out that E for a dipole varies as 1/r 3 for all
distant points, regardless of whether they lie on the dipole axis; here r is the dis-
tance between the point in question and the dipole center.

Inspection of Fig. 22-8 and of the field lines in Fig. 22-5 shows that the direc-
tion of for distant points on the dipole axis is always the direction of the dipoleE
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Torque on a electric dipole in an
electric field:

τ = p× E

Potential energy:

U = −p · E



Current Loop vs Bar Magnet

A loop of wire with a current in it produce a similar magnetic field
as a bar magnet.
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Magnetic Field of a Coil
We turn now to the other aspect of a current-carrying coil as a magnetic dipole.
What magnetic field does it produce at a point in the surrounding space? The
problem does not have enough symmetry to make Ampere’s law useful; so we
must turn to the law of Biot and Savart. For simplicity, we first consider only a
coil with a single circular loop and only points on its perpendicular central axis,
which we take to be a z axis. We shall show that the magnitude of the magnetic
field at such points is

(29-26)

in which R is the radius of the circular loop and z is the distance of the point in
question from the center of the loop. Furthermore, the direction of the mag-
netic field is the same as the direction of the magnetic dipole moment of
the loop.

For axial points far from the loop, we have z R in Eq. 29-26. With that
approximation, the equation reduces to

Recalling that pR2 is the area A of the loop and extending our result to include
a coil of N turns, we can write this equation as

Further, because and have the same direction, we can write the equation in
vector form, substituting from the identity NiA:

(current-carrying coil). (29-27)

Thus, we have two ways in which we can regard a current-carrying coil as a
magnetic dipole: (1) it experiences a torque when we place it in an external
magnetic field; (2) it generates its own intrinsic magnetic field, given, for dis-
tant points along its axis, by Eq. 29-27. Figure 29-21 shows the magnetic field of
a current loop; one side of the loop acts as a north pole (in the direction of )
and the other side as a south pole, as suggested by the lightly drawn magnet in
the figure. If we were to place a current-carrying coil in an external magnetic
field, it would tend to rotate just like a bar magnet would.
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CHECKPOINT 3

The figure here shows four arrangements of circular loops of radius r or 2r, centered on
vertical axes (perpendicular to the loops) and carrying identical currents in the direc-
tions indicated. Rank the arrangements according to the magnitude of the net magnetic
field at the dot, midway between the loops on the central axis, greatest first.

(a) (b) (c) (d)

N

S

i

i

B

µ

Fig. 29-21 A current loop produces a
magnetic field like that of a bar magnet and
thus has associated north and south poles.
The magnetic dipole moment of the loop,
its direction given by a curled–straight
right-hand rule, points from the south pole
to the north pole, in the direction of the
field within the loop.B

:

!:
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Magnetic Dipole Moment

For a pair of magnetic charges at either end of a thin bar magnet,
this would be: µ = qm d.
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Magnetic Field of a Coil
We turn now to the other aspect of a current-carrying coil as a magnetic dipole.
What magnetic field does it produce at a point in the surrounding space? The
problem does not have enough symmetry to make Ampere’s law useful; so we
must turn to the law of Biot and Savart. For simplicity, we first consider only a
coil with a single circular loop and only points on its perpendicular central axis,
which we take to be a z axis. We shall show that the magnitude of the magnetic
field at such points is

(29-26)

in which R is the radius of the circular loop and z is the distance of the point in
question from the center of the loop. Furthermore, the direction of the mag-
netic field is the same as the direction of the magnetic dipole moment of
the loop.

For axial points far from the loop, we have z R in Eq. 29-26. With that
approximation, the equation reduces to

Recalling that pR2 is the area A of the loop and extending our result to include
a coil of N turns, we can write this equation as

Further, because and have the same direction, we can write the equation in
vector form, substituting from the identity NiA:

(current-carrying coil). (29-27)

Thus, we have two ways in which we can regard a current-carrying coil as a
magnetic dipole: (1) it experiences a torque when we place it in an external
magnetic field; (2) it generates its own intrinsic magnetic field, given, for dis-
tant points along its axis, by Eq. 29-27. Figure 29-21 shows the magnetic field of
a current loop; one side of the loop acts as a north pole (in the direction of )
and the other side as a south pole, as suggested by the lightly drawn magnet in
the figure. If we were to place a current-carrying coil in an external magnetic
field, it would tend to rotate just like a bar magnet would.
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CHECKPOINT 3

The figure here shows four arrangements of circular loops of radius r or 2r, centered on
vertical axes (perpendicular to the loops) and carrying identical currents in the direc-
tions indicated. Rank the arrangements according to the magnitude of the net magnetic
field at the dot, midway between the loops on the central axis, greatest first.
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Fig. 29-21 A current loop produces a
magnetic field like that of a bar magnet and
thus has associated north and south poles.
The magnetic dipole moment of the loop,
its direction given by a curled–straight
right-hand rule, points from the south pole
to the north pole, in the direction of the
field within the loop.B
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Magnetic Dipole Moment

magnetic dipole moment, µ

The quantity relating an external magnetic field that a magnet or
coil of wire is in to the torque on the magnet or coil due to that
field.

τ = µ× B

For a magnet, it is a vector pointing from the south pole of a
magnet to the north pole, that is proportional to the strength of
the B-field produced by the magnet itself.

For a coil, it is defined according the the right hand rule for current
in a wire loop and is proportional to the coil area and current.



Potential Energy of a Dipole in a B-Field

τ = µ× B

754 CHAPTE R 28 MAG N ETIC F I E LDS

HALLIDAY REVISED

Using , we can rewrite Eq. 28-33 for the torque on the coil due to a mag-
netic field as

t ! mB sin u, (28-36)

in which u is the angle between the vectors and .
We can generalize this to the vector relation

(28-37)

which reminds us very much of the corresponding equation for the torque
exerted by an electric field on an electric dipole—namely, Eq. 22-34:

In each case the torque due to the field—either magnetic or electric—is equal to
the vector product of the corresponding dipole moment and the field vector.

A magnetic dipole in an external magnetic field has an energy that depends on
the dipole’s orientation in the field. For electric dipoles we have shown (Eq. 22-38)
that

In strict analogy, we can write for the magnetic case

(28-38)

In each case the energy due to the field is equal to the negative of the scalar prod-
uct of the corresponding dipole moment and the field vector.

A magnetic dipole has its lowest energy (! "mB cos 0 ! "mB) when its di-
pole moment is lined up with the magnetic field (Fig. 28-20). It has its highest
energy (! "mB cos 180° ! #mB) when is directed opposite the field. From Eq.
28-38, with U in joules and in teslas, we see that the unit of can be the joule
per tesla (J/T) instead of the ampere–square meter as suggested by Eq. 28-35.

If an applied torque (due to “an external agent”) rotates a magnetic dipole
from an initial orientation ui to another orientation uf, then work Wa is done on
the dipole by the applied torque. If the dipole is stationary before and after the
change in its orientation, then work Wa is

Wa ! Uf " Ui, (28-39)

where Uf and Ui are calculated with Eq. 28-38.
So far, we have identified only a current-carrying coil as a magnetic dipole.

However, a simple bar magnet is also a magnetic dipole, as is a rotating sphere of
charge. Earth itself is (approximately) a magnetic dipole. Finally, most subatomic
particles, including the electron, the proton, and the neutron, have magnetic
dipole moments. As you will see in Chapter 32, all these quantities can be viewed
as current loops. For comparison, some approximate magnetic dipole moments
are shown in Table 28-2.
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Table 28-2

Some Magnetic Dipole Moments

Small bar magnet 5 J/T
Earth 8.0 ' 1022 J/T
Proton 1.4 ' 10"26 J/T
Electron 9.3 ' 10"24 J/T

CHECKPOINT 5

The figure shows four orientations, at angle u, of a magnetic dipole moment in a
magnetic field. Rank the orientations according to (a) the magnitude of the torque on
the dipole and (b) the orientation energy of the dipole, greatest first.
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Fig. 28-20 The orientations of highest
and lowest energy of a magnetic dipole
(here a coil carrying current) in an external
magnetic field .The direction of the cur-
rent i gives the direction of the magnetic 
dipole moment via the right-hand rule
shown for in Fig. 28-19b.n:
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The energy can be found by integrating the torque over the angle
of rotation.

U = −µ · B



Question

The figure shows four orientations, at angle θ, of a magnetic dipole
moment µ in a magnetic field. Rank the orientations according to
the magnitude of the torque on the dipole, greatest first.
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Using , we can rewrite Eq. 28-33 for the torque on the coil due to a mag-
netic field as

t ! mB sin u, (28-36)

in which u is the angle between the vectors and .
We can generalize this to the vector relation

(28-37)

which reminds us very much of the corresponding equation for the torque
exerted by an electric field on an electric dipole—namely, Eq. 22-34:

In each case the torque due to the field—either magnetic or electric—is equal to
the vector product of the corresponding dipole moment and the field vector.

A magnetic dipole in an external magnetic field has an energy that depends on
the dipole’s orientation in the field. For electric dipoles we have shown (Eq. 22-38)
that

In strict analogy, we can write for the magnetic case

(28-38)

In each case the energy due to the field is equal to the negative of the scalar prod-
uct of the corresponding dipole moment and the field vector.

A magnetic dipole has its lowest energy (! "mB cos 0 ! "mB) when its di-
pole moment is lined up with the magnetic field (Fig. 28-20). It has its highest
energy (! "mB cos 180° ! #mB) when is directed opposite the field. From Eq.
28-38, with U in joules and in teslas, we see that the unit of can be the joule
per tesla (J/T) instead of the ampere–square meter as suggested by Eq. 28-35.

If an applied torque (due to “an external agent”) rotates a magnetic dipole
from an initial orientation ui to another orientation uf, then work Wa is done on
the dipole by the applied torque. If the dipole is stationary before and after the
change in its orientation, then work Wa is

Wa ! Uf " Ui, (28-39)

where Uf and Ui are calculated with Eq. 28-38.
So far, we have identified only a current-carrying coil as a magnetic dipole.

However, a simple bar magnet is also a magnetic dipole, as is a rotating sphere of
charge. Earth itself is (approximately) a magnetic dipole. Finally, most subatomic
particles, including the electron, the proton, and the neutron, have magnetic
dipole moments. As you will see in Chapter 32, all these quantities can be viewed
as current loops. For comparison, some approximate magnetic dipole moments
are shown in Table 28-2.
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Some Magnetic Dipole Moments

Small bar magnet 5 J/T
Earth 8.0 ' 1022 J/T
Proton 1.4 ' 10"26 J/T
Electron 9.3 ' 10"24 J/T

CHECKPOINT 5

The figure shows four orientations, at angle u, of a magnetic dipole moment in a
magnetic field. Rank the orientations according to (a) the magnitude of the torque on
the dipole and (b) the orientation energy of the dipole, greatest first.
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and lowest energy of a magnetic dipole
(here a coil carrying current) in an external
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shown for in Fig. 28-19b.n:
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(A) 1 and 2, 3 and 4

(B) 1 and 4, 2 and 3

(C) 3, 2, 1, 4

(D) all the same

1Halliday, Resnick, Walker, 9th ed, page 745.



Question

The figure shows four orientations, at angle θ, of a magnetic dipole
moment µ in a magnetic field. Rank the orientations according to
the magnitude of the torque on the dipole, greatest first.
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Using , we can rewrite Eq. 28-33 for the torque on the coil due to a mag-
netic field as

t ! mB sin u, (28-36)

in which u is the angle between the vectors and .
We can generalize this to the vector relation

(28-37)

which reminds us very much of the corresponding equation for the torque
exerted by an electric field on an electric dipole—namely, Eq. 22-34:

In each case the torque due to the field—either magnetic or electric—is equal to
the vector product of the corresponding dipole moment and the field vector.

A magnetic dipole in an external magnetic field has an energy that depends on
the dipole’s orientation in the field. For electric dipoles we have shown (Eq. 22-38)
that

In strict analogy, we can write for the magnetic case

(28-38)

In each case the energy due to the field is equal to the negative of the scalar prod-
uct of the corresponding dipole moment and the field vector.

A magnetic dipole has its lowest energy (! "mB cos 0 ! "mB) when its di-
pole moment is lined up with the magnetic field (Fig. 28-20). It has its highest
energy (! "mB cos 180° ! #mB) when is directed opposite the field. From Eq.
28-38, with U in joules and in teslas, we see that the unit of can be the joule
per tesla (J/T) instead of the ampere–square meter as suggested by Eq. 28-35.

If an applied torque (due to “an external agent”) rotates a magnetic dipole
from an initial orientation ui to another orientation uf, then work Wa is done on
the dipole by the applied torque. If the dipole is stationary before and after the
change in its orientation, then work Wa is

Wa ! Uf " Ui, (28-39)

where Uf and Ui are calculated with Eq. 28-38.
So far, we have identified only a current-carrying coil as a magnetic dipole.

However, a simple bar magnet is also a magnetic dipole, as is a rotating sphere of
charge. Earth itself is (approximately) a magnetic dipole. Finally, most subatomic
particles, including the electron, the proton, and the neutron, have magnetic
dipole moments. As you will see in Chapter 32, all these quantities can be viewed
as current loops. For comparison, some approximate magnetic dipole moments
are shown in Table 28-2.
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Table 28-2

Some Magnetic Dipole Moments

Small bar magnet 5 J/T
Earth 8.0 ' 1022 J/T
Proton 1.4 ' 10"26 J/T
Electron 9.3 ' 10"24 J/T

CHECKPOINT 5

The figure shows four orientations, at angle u, of a magnetic dipole moment in a
magnetic field. Rank the orientations according to (a) the magnitude of the torque on
the dipole and (b) the orientation energy of the dipole, greatest first.
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Fig. 28-20 The orientations of highest
and lowest energy of a magnetic dipole
(here a coil carrying current) in an external
magnetic field .The direction of the cur-
rent i gives the direction of the magnetic 
dipole moment via the right-hand rule
shown for in Fig. 28-19b.n:
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(A) 1 and 2, 3 and 4

(B) 1 and 4, 2 and 3

(C) 3, 2, 1, 4

(D) all the same←

1Halliday, Resnick, Walker, 9th ed, page 745.



Question

The figure shows four orientations, at angle θ, of a magnetic
dipole moment µ in a magnetic field. Rank the orientations
according to the orientation energy of the dipole, greatest first.
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Using , we can rewrite Eq. 28-33 for the torque on the coil due to a mag-
netic field as

t ! mB sin u, (28-36)

in which u is the angle between the vectors and .
We can generalize this to the vector relation

(28-37)

which reminds us very much of the corresponding equation for the torque
exerted by an electric field on an electric dipole—namely, Eq. 22-34:

In each case the torque due to the field—either magnetic or electric—is equal to
the vector product of the corresponding dipole moment and the field vector.

A magnetic dipole in an external magnetic field has an energy that depends on
the dipole’s orientation in the field. For electric dipoles we have shown (Eq. 22-38)
that

In strict analogy, we can write for the magnetic case

(28-38)

In each case the energy due to the field is equal to the negative of the scalar prod-
uct of the corresponding dipole moment and the field vector.

A magnetic dipole has its lowest energy (! "mB cos 0 ! "mB) when its di-
pole moment is lined up with the magnetic field (Fig. 28-20). It has its highest
energy (! "mB cos 180° ! #mB) when is directed opposite the field. From Eq.
28-38, with U in joules and in teslas, we see that the unit of can be the joule
per tesla (J/T) instead of the ampere–square meter as suggested by Eq. 28-35.

If an applied torque (due to “an external agent”) rotates a magnetic dipole
from an initial orientation ui to another orientation uf, then work Wa is done on
the dipole by the applied torque. If the dipole is stationary before and after the
change in its orientation, then work Wa is

Wa ! Uf " Ui, (28-39)

where Uf and Ui are calculated with Eq. 28-38.
So far, we have identified only a current-carrying coil as a magnetic dipole.

However, a simple bar magnet is also a magnetic dipole, as is a rotating sphere of
charge. Earth itself is (approximately) a magnetic dipole. Finally, most subatomic
particles, including the electron, the proton, and the neutron, have magnetic
dipole moments. As you will see in Chapter 32, all these quantities can be viewed
as current loops. For comparison, some approximate magnetic dipole moments
are shown in Table 28-2.
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Electron 9.3 ' 10"24 J/T

CHECKPOINT 5

The figure shows four orientations, at angle u, of a magnetic dipole moment in a
magnetic field. Rank the orientations according to (a) the magnitude of the torque on
the dipole and (b) the orientation energy of the dipole, greatest first.
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(A) 1 and 2, 3 and 4

(B) 1 and 4, 2 and 3

(C) 3, 2, 1, 4

(D) all the same

1Halliday, Resnick, Walker, 9th ed, page 745.



Question

The figure shows four orientations, at angle θ, of a magnetic
dipole moment µ in a magnetic field. Rank the orientations
according to the orientation energy of the dipole, greatest first.
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Using , we can rewrite Eq. 28-33 for the torque on the coil due to a mag-
netic field as

t ! mB sin u, (28-36)

in which u is the angle between the vectors and .
We can generalize this to the vector relation

(28-37)

which reminds us very much of the corresponding equation for the torque
exerted by an electric field on an electric dipole—namely, Eq. 22-34:

In each case the torque due to the field—either magnetic or electric—is equal to
the vector product of the corresponding dipole moment and the field vector.

A magnetic dipole in an external magnetic field has an energy that depends on
the dipole’s orientation in the field. For electric dipoles we have shown (Eq. 22-38)
that

In strict analogy, we can write for the magnetic case

(28-38)

In each case the energy due to the field is equal to the negative of the scalar prod-
uct of the corresponding dipole moment and the field vector.

A magnetic dipole has its lowest energy (! "mB cos 0 ! "mB) when its di-
pole moment is lined up with the magnetic field (Fig. 28-20). It has its highest
energy (! "mB cos 180° ! #mB) when is directed opposite the field. From Eq.
28-38, with U in joules and in teslas, we see that the unit of can be the joule
per tesla (J/T) instead of the ampere–square meter as suggested by Eq. 28-35.

If an applied torque (due to “an external agent”) rotates a magnetic dipole
from an initial orientation ui to another orientation uf, then work Wa is done on
the dipole by the applied torque. If the dipole is stationary before and after the
change in its orientation, then work Wa is

Wa ! Uf " Ui, (28-39)

where Uf and Ui are calculated with Eq. 28-38.
So far, we have identified only a current-carrying coil as a magnetic dipole.

However, a simple bar magnet is also a magnetic dipole, as is a rotating sphere of
charge. Earth itself is (approximately) a magnetic dipole. Finally, most subatomic
particles, including the electron, the proton, and the neutron, have magnetic
dipole moments. As you will see in Chapter 32, all these quantities can be viewed
as current loops. For comparison, some approximate magnetic dipole moments
are shown in Table 28-2.
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Some Magnetic Dipole Moments

Small bar magnet 5 J/T
Earth 8.0 ' 1022 J/T
Proton 1.4 ' 10"26 J/T
Electron 9.3 ' 10"24 J/T

CHECKPOINT 5

The figure shows four orientations, at angle u, of a magnetic dipole moment in a
magnetic field. Rank the orientations according to (a) the magnitude of the torque on
the dipole and (b) the orientation energy of the dipole, greatest first.
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(A) 1 and 2, 3 and 4

(B) 1 and 4, 2 and 3←
(C) 3, 2, 1, 4

(D) all the same

1Halliday, Resnick, Walker, 9th ed, page 745.



Electric Dipole and Magnetic Dipole

electric dipole magnetic dipole

torque τ τ = p× E τ = µ× B

potential energy U U = −p · E U = −µ · B



Magnetism in Matter

Ordinary matter exhibits magnetic properties.

Now we will see why.

This is covered in Chapter 32 of the book, but we will not go into
full detail.



Magnetism in Matter: Magnetic Moment of Atoms
Atoms and subatomic particles also have magnetic moments!

Why? Consider a classical model of a hydrogen atom. One
electron orbits the nucleus.

µ = IA

87332-7 MAG N ETI S M AN D E LECTRON S
PART 3

Orbital angular momentum cannot be measured; only its component
along any axis can be measured, and that component is quantized. The compo-
nent along, say, a z axis can have only the values given by

(32-29)

in which is called the orbital magnetic quantum number and “limit” refers to
some largest allowed integer value for . The signs in Eq. 32-29 have to do with
the direction of Lorb,z along the z axis.

The orbital magnetic dipole moment of an electron also cannot itself be
measured; only its component along an axis can be measured, and that compo-
nent is quantized. By writing Eq. 32-28 for a component along the same z axis
as above and then substituting for Lorb,z from Eq. 32-29, we can write the z
component morb,z of the orbital magnetic dipole moment as

(32-30)

and, in terms of the Bohr magneton, as

(32-31)

When an atom is placed in an external magnetic field , an energy U can be
associated with the orientation of the orbital magnetic dipole moment of each
electron in the atom. Its value is

(32-32)

where the z axis is taken in the direction of .
Although we have used the words “orbit” and “orbital” here, electrons do not

orbit the nucleus of an atom like planets orbiting the Sun. How can an electron
have an orbital angular momentum without orbiting in the common meaning of
the term? Once again, this can be explained only with quantum physics.

Loop Model for Electron Orbits
We can obtain Eq. 32-28 with the nonquantum derivation that follows, in which
we assume that an electron moves along a circular path with a radius that is much
larger than an atomic radius (hence the name “loop model”). However, the
derivation does not apply to an electron within an atom (for which we need
quantum physics).

We imagine an electron moving at constant speed v in a circular path of
radius r, counterclockwise as shown in Fig. 32-11. The motion of the negative
charge of the electron is equivalent to a conventional current i (of positive
charge) that is clockwise, as also shown in Fig. 32-11. The magnitude of the or-
bital magnetic dipole moment of such a current loop is obtained from Eq. 28-35
with N ! 1:

morb ! iA, (32-33)

where A is the area enclosed by the loop. The direction of this magnetic dipole
moment is, from the right-hand rule of Fig. 29-21, downward in Fig. 32-11.

To evaluate Eq. 32-33, we need the current i. Current is, generally, the rate
at which charge passes some point in a circuit. Here, the charge of magnitude
e takes a time T ! 2pr/v to circle from any point back through that point, so

(32-34)i !
charge
time
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Fig. 32-11 An electron moving at con-
stant speed v in a circular path of radius r
that encloses an area A.The electron has an
orbital angular momentum and an as-
sociated orbital magnetic dipole moment

.A clockwise current i (of positive
charge) is equivalent to the counterclock-
wise circulation of the negatively charged
electron.
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Magnetic Moment of Atoms
The current is the rate of charge flow with time:

I =
−e

T
= −e

v

2πr

assuming an orbital radius of r , speed v .

µ = IA

= −e
v

2πr
(πr2n̂)

= −
evr

2
n̂

Recall that for a particle of mass m orbiting at a radius r ,
velocity v , the angular momentum is:

L = mvr

µ = −
e

2me
L
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Electron Spin Angular Momentum

Electrons also have another kind of angular momentum: intrinsic
angular momentum. This is also called “spin”.

Spin is an inherent property of all electrons. It cannot be
understood with classical mechanics, but also contributes a
magnetic moment.

872 CHAPTE R 32 MAXWE LL’S EQUATION S; MAG N ETI S M OF MATTE R

Substituting for Sz from Eq. 32-23 then gives us

(32-24)

where the plus and minus signs correspond to ms,z being parallel and antiparallel
to the z axis, respectively.

The quantity on the right side of Eq. 32-24 is called the Bohr magneton mB:

(Bohr magneton). (32-25)

Spin magnetic dipole moments of electrons and other elementary particles can
be expressed in terms of mB. For an electron, the magnitude of the measured z
component of is

|ms,z| ! 1mB. (32-26)

(The quantum physics of the electron, called quantum electrodynamics, or QED, re-
veals that ms,z is actually slightly greater than 1mB, but we shall neglect that fact.)

When an electron is placed in an external magnetic field , an energy U can
be associated with the orientation of the electron’s spin magnetic dipole moment

just as an energy can be associated with the orientation of the magnetic dipole
moment of a current loop placed in . From Eq. 28-38, the orentation energy
for the electron is

(32-27)

where the z axis is taken to be in the direction of .
If we imagine an electron to be a microscopic sphere (which it is not), we can

represent the spin , the spin magnetic dipole moment , and the associated mag-
netic dipole field as in Fig. 32-10.Although we use the word “spin” here, electrons do
not spin like tops. How, then, can something have angular momentum without actu-
ally rotating? Again, we would need quantum physics to provide the answer.

Protons and neutrons also have an intrinsic angular momentum called spin and
an associated intrinsic spin magnetic dipole moment. For a proton those two vectors
have the same direction, and for a neutron they have opposite directions. We shall
not examine the contributions of these dipole moments to the magnetic fields of
atoms because they are about a thousand times smaller than that due to an electron.
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CHECKPOINT 4

The figure here shows the spin orientations of two particles
in an external magnetic field . (a) If the particles are
electrons, which spin orientation is at lower energy? (b) If,
instead, the particles are protons, which spin orientation is
at lower energy?

B
:

ext

Bext

Sz

(1) (2)

Sz

Fig. 32-10 The spin , spin magnetic
dipole moment , and magnetic dipole
field of an electron represented as a mi-
croscopic sphere.
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For an electron, the spin
is opposite the magnetic
dipole moment.

Orbital Magnetic Dipole Moment
When it is in an atom, an electron has an additional angular momentum called
its orbital angular momentum . Associated with is an orbital magnetic
dipole moment ; the two are related by

(32-28)
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Electron Spin Angular Momentum

You might imagine an electron as a rigid charge sphere spinning on
an axis through its center...

920 Chapter 30 Sources of the Magnetic Field

moment of one electron in an atom is canceled by that of another electron orbiting 
in the opposite direction. The net result is that, for most materials, the magnetic 
effect produced by the orbital motion of the electrons is either zero or very small.
 In addition to its orbital magnetic moment, an electron (as well as protons, neu-
trons, and other particles) has an intrinsic property called spin that also contrib-
utes to its magnetic moment. Classically, the electron might be viewed as spinning 
about its axis as shown in Figure 30.25, but you should be very careful with the clas-
sical interpretation. The magnitude of the angular momentum S

S
 associated with 

spin is on the same order of magnitude as the magnitude of the angular momen-
tum L

S
 due to the orbital motion. The magnitude of the spin angular momentum 

of an electron predicted by quantum theory is

S 5
"3

2
 U

The magnetic moment characteristically associated with the spin of an electron has 
the value

 mspin 5
e U

2me
 (30.24)

This combination of constants is called the Bohr magneton mB:

 mB 5
e U
2me

5 9.27 3 10224 J/T  (30.25)

Therefore, atomic magnetic moments can be expressed as multiples of the Bohr 
magneton. (Note that 1 J/T 5 1 A ? m2.)
 In atoms containing many electrons, the electrons usually pair up with their 
spins opposite each other; therefore, the spin magnetic moments cancel. Atoms 
containing an odd number of electrons, however, must have at least one unpaired 
electron and therefore some spin magnetic moment. The total magnetic moment 
of an atom is the vector sum of the orbital and spin magnetic moments, and a few 
examples are given in Table 30.1. Notice that helium and neon have zero moments 
because their individual spin and orbital moments cancel.
 The nucleus of an atom also has a magnetic moment associated with its constitu-
ent protons and neutrons. The magnetic moment of a proton or neutron, however, 
is much smaller than that of an electron and can usually be neglected. We can 
understand this smaller value by inspecting Equation 30.25 and replacing the mass 
of the electron with the mass of a proton or a neutron. Because the masses of the 
proton and neutron are much greater than that of the electron, their magnetic 
moments are on the order of 103 times smaller than that of the electron.

Ferromagnetism
A small number of crystalline substances exhibit strong magnetic effects called fer-
romagnetism. Some examples of ferromagnetic substances are iron, cobalt, nickel, 
gadolinium, and dysprosium. These substances contain permanent atomic mag-
netic moments that tend to align parallel to each other even in a weak external 
magnetic field. Once the moments are aligned, the substance remains magnetized 
after the external field is removed. This permanent alignment is due to a strong 
coupling between neighboring moments, a coupling that can be understood only 
in quantum-mechanical terms.
 All ferromagnetic materials are made up of microscopic regions called domains, 
regions within which all magnetic moments are aligned. These domains have vol-
umes of about 10212 to 1028 m3 and contain 1017 to 1021 atoms. The boundaries 
between the various domains having different orientations are called domain walls. 
In an unmagnetized sample, the magnetic moments in the domains are randomly 

Pitfall Prevention 30.3
The Electron Does Not Spin The 
electron is not physically spinning. 
It has an intrinsic angular momen-
tum as if it were spinning, but the 
notion of rotation for a point 
particle is meaningless. Rotation 
applies only to a rigid object, with 
an extent in space, as in Chapter 
10. Spin angular momentum is 
actually a relativistic effect.

spin

S
S

m
S

Figure 30.25  Classical model of 
a spinning electron. We can adopt 
this model to remind ourselves 
that electrons have an intrinsic 
angular momentum. The model 
should not be pushed too far, 
however; it gives an incorrect mag-
nitude for the magnetic moment, 
incorrect quantum numbers, and 
too many degrees of freedom.

Table 30.1 Magnetic 
Moments of Some Atoms 
and Ions
 Magnetic
 Moment
Atom or Ion (10224 J/T)

H 9.27
He 0
Ne 0
Ce31 19.8
Yb31 37.1

...but really, it’s not.



Electron Spin Angular Momentum
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Substituting for Sz from Eq. 32-23 then gives us

(32-24)

where the plus and minus signs correspond to ms,z being parallel and antiparallel
to the z axis, respectively.

The quantity on the right side of Eq. 32-24 is called the Bohr magneton mB:

(Bohr magneton). (32-25)

Spin magnetic dipole moments of electrons and other elementary particles can
be expressed in terms of mB. For an electron, the magnitude of the measured z
component of is

|ms,z| ! 1mB. (32-26)

(The quantum physics of the electron, called quantum electrodynamics, or QED, re-
veals that ms,z is actually slightly greater than 1mB, but we shall neglect that fact.)

When an electron is placed in an external magnetic field , an energy U can
be associated with the orientation of the electron’s spin magnetic dipole moment

just as an energy can be associated with the orientation of the magnetic dipole
moment of a current loop placed in . From Eq. 28-38, the orentation energy
for the electron is

(32-27)

where the z axis is taken to be in the direction of .
If we imagine an electron to be a microscopic sphere (which it is not), we can

represent the spin , the spin magnetic dipole moment , and the associated mag-
netic dipole field as in Fig. 32-10.Although we use the word “spin” here, electrons do
not spin like tops. How, then, can something have angular momentum without actu-
ally rotating? Again, we would need quantum physics to provide the answer.

Protons and neutrons also have an intrinsic angular momentum called spin and
an associated intrinsic spin magnetic dipole moment. For a proton those two vectors
have the same direction, and for a neutron they have opposite directions. We shall
not examine the contributions of these dipole moments to the magnetic fields of
atoms because they are about a thousand times smaller than that due to an electron.
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Orbital Magnetic Dipole Moment
When it is in an atom, an electron has an additional angular momentum called
its orbital angular momentum . Associated with is an orbital magnetic
dipole moment ; the two are related by

(32-28)

The minus sign means that and have opposite directions.L
:

orb":orb

":orb ! #
e

2m
 L

:
orb.

":orb

L
:

orbL
:

orb

halliday_c32_861-888hr.qxd  11-12-2009  13:14  Page 872

Electron’s spin magnetic dipole moment:

µs = −
g e

2me
S

where g ≈ 2.



Magnetic Moment of Atoms

In atoms with many electrons, the electrons tend to cancel out
each other’s magnetic moments, but outer-shell, unpaired electrons
can contribute a significant magnetic moment.

The particles in the nucleus also have magnetic moments, but they
are much smaller.

Most of an atom’s magnetic moment comes from unpaired
electons.

These tiny magnetic moments add up to big effects in bulk
materials.



Three Types of Bulk Magnetism

• ferromagnetism

• paramagnetism

• diamagnetism



Ferromagnetism

Atoms of ferromagnetic materials have non-zero magnetic
moments.

Interactions between outer electrons in different atoms causes
alignment of each atom’s magnetic moment.

Magnetic moments reenforce each other and will tend to
spontaneously align within domains.

Examples of ferromagnetic materials:

• iron

• nickel

• cobalt

• gadolinium

• dysprosium
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Ferromagnetism

No external B-field

 30.6 Magnetism in Matter 921

oriented so that the net magnetic moment is zero as in Figure 30.26a. When the sam-
ple is placed in an external magnetic field B

S
,  the size of those domains with mag-

netic moments aligned with the field grows, which results in a magnetized sample as 
in Figure 30.26b. As the external field becomes very strong as in Figure 30.26c, the 
domains in which the magnetic moments are not aligned with the field become very 
small. When the external field is removed, the sample may retain a net magnetiza-
tion in the direction of the original field. At ordinary temperatures, thermal agita-
tion is not sufficient to disrupt this preferred orientation of magnetic moments.
 When the temperature of a ferromagnetic substance reaches or exceeds a critical 
temperature called the Curie temperature, the substance loses its residual magne-
tization. Below the Curie temperature, the magnetic moments are aligned and the 
substance is ferromagnetic. Above the Curie temperature, the thermal agitation 
is great enough to cause a random orientation of the moments and the substance 
becomes paramagnetic. Curie temperatures for several ferromagnetic substances 
are given in Table 30.2.

Paramagnetism
Paramagnetic substances have a weak magnetism resulting from the presence of 
atoms (or ions) that have permanent magnetic moments. These moments inter-
act only weakly with one another and are randomly oriented in the absence of an 
external magnetic field. When a paramagnetic substance is placed in an external 
magnetic field, its atomic moments tend to line up with the field. This alignment 
process, however, must compete with thermal motion, which tends to randomize 
the magnetic moment orientations.

Diamagnetism
When an external magnetic field is applied to a diamagnetic substance, a weak 
magnetic moment is induced in the direction opposite the applied field, causing 
diamagnetic substances to be weakly repelled by a magnet. Although diamagne-
tism is present in all matter, its effects are much smaller than those of paramagnet-
ism or ferromagnetism and are evident only when those other effects do not exist.
 We can attain some understanding of diamagnetism by considering a classical 
model of two atomic electrons orbiting the nucleus in opposite directions but with 
the same speed. The electrons remain in their circular orbits because of the attractive 
electrostatic force exerted by the positively charged nucleus. Because the magnetic  
moments of the two electrons are equal in magnitude and opposite in direction, 
they cancel each other and the magnetic moment of the atom is zero. When an 
external magnetic field is applied, the electrons experience an additional mag-
netic force q vS 3 B

S
. This added magnetic force combines with the electrostatic  

force to increase the orbital speed of the electron whose magnetic moment is anti-
parallel to the field and to decrease the speed of the electron whose magnetic 
moment is parallel to the field. As a result, the two magnetic moments of the elec-
trons no longer cancel and the substance acquires a net magnetic moment that is 
opposite the applied field.
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oriented so that the net magnetic moment is zero as in Figure 30.26a. When the sam-
ple is placed in an external magnetic field B

S
,  the size of those domains with mag-

netic moments aligned with the field grows, which results in a magnetized sample as 
in Figure 30.26b. As the external field becomes very strong as in Figure 30.26c, the 
domains in which the magnetic moments are not aligned with the field become very 
small. When the external field is removed, the sample may retain a net magnetiza-
tion in the direction of the original field. At ordinary temperatures, thermal agita-
tion is not sufficient to disrupt this preferred orientation of magnetic moments.
 When the temperature of a ferromagnetic substance reaches or exceeds a critical 
temperature called the Curie temperature, the substance loses its residual magne-
tization. Below the Curie temperature, the magnetic moments are aligned and the 
substance is ferromagnetic. Above the Curie temperature, the thermal agitation 
is great enough to cause a random orientation of the moments and the substance 
becomes paramagnetic. Curie temperatures for several ferromagnetic substances 
are given in Table 30.2.

Paramagnetism
Paramagnetic substances have a weak magnetism resulting from the presence of 
atoms (or ions) that have permanent magnetic moments. These moments inter-
act only weakly with one another and are randomly oriented in the absence of an 
external magnetic field. When a paramagnetic substance is placed in an external 
magnetic field, its atomic moments tend to line up with the field. This alignment 
process, however, must compete with thermal motion, which tends to randomize 
the magnetic moment orientations.

Diamagnetism
When an external magnetic field is applied to a diamagnetic substance, a weak 
magnetic moment is induced in the direction opposite the applied field, causing 
diamagnetic substances to be weakly repelled by a magnet. Although diamagne-
tism is present in all matter, its effects are much smaller than those of paramagnet-
ism or ferromagnetism and are evident only when those other effects do not exist.
 We can attain some understanding of diamagnetism by considering a classical 
model of two atomic electrons orbiting the nucleus in opposite directions but with 
the same speed. The electrons remain in their circular orbits because of the attractive 
electrostatic force exerted by the positively charged nucleus. Because the magnetic  
moments of the two electrons are equal in magnitude and opposite in direction, 
they cancel each other and the magnetic moment of the atom is zero. When an 
external magnetic field is applied, the electrons experience an additional mag-
netic force q vS 3 B

S
. This added magnetic force combines with the electrostatic  

force to increase the orbital speed of the electron whose magnetic moment is anti-
parallel to the field and to decrease the speed of the electron whose magnetic 
moment is parallel to the field. As a result, the two magnetic moments of the elec-
trons no longer cancel and the substance acquires a net magnetic moment that is 
opposite the applied field.

a

c

b

In an unmagnetized substance, 
the atomic magnetic dipoles are 
randomly oriented. 

B
S

B
S

dA
S

B
S

When an external field     is 
applied, the domains with 
components of magnetic moment 
in the same direction as     grow 
larger, giving the sample a net 
magnetization.

B
S

B
S

As the field is made even stronger, 
the domains with magnetic 
moment vectors not aligned with 
the external field become very 
small.

Figure 30.26  Orientation of 
magnetic dipoles before and after 
a magnetic field is applied to a fer-
romagnetic substance.

Table 30.2 Curie Temperatures 
for Several Ferromagnetic Substances
Substance TCurie (K)

Iron 1 043
Cobalt 1 394
Nickel 631
Gadolinium 317
Fe2O3 893



Ferromagnetism

Strong external B-field

 30.6 Magnetism in Matter 921

oriented so that the net magnetic moment is zero as in Figure 30.26a. When the sam-
ple is placed in an external magnetic field B

S
,  the size of those domains with mag-

netic moments aligned with the field grows, which results in a magnetized sample as 
in Figure 30.26b. As the external field becomes very strong as in Figure 30.26c, the 
domains in which the magnetic moments are not aligned with the field become very 
small. When the external field is removed, the sample may retain a net magnetiza-
tion in the direction of the original field. At ordinary temperatures, thermal agita-
tion is not sufficient to disrupt this preferred orientation of magnetic moments.
 When the temperature of a ferromagnetic substance reaches or exceeds a critical 
temperature called the Curie temperature, the substance loses its residual magne-
tization. Below the Curie temperature, the magnetic moments are aligned and the 
substance is ferromagnetic. Above the Curie temperature, the thermal agitation 
is great enough to cause a random orientation of the moments and the substance 
becomes paramagnetic. Curie temperatures for several ferromagnetic substances 
are given in Table 30.2.

Paramagnetism
Paramagnetic substances have a weak magnetism resulting from the presence of 
atoms (or ions) that have permanent magnetic moments. These moments inter-
act only weakly with one another and are randomly oriented in the absence of an 
external magnetic field. When a paramagnetic substance is placed in an external 
magnetic field, its atomic moments tend to line up with the field. This alignment 
process, however, must compete with thermal motion, which tends to randomize 
the magnetic moment orientations.

Diamagnetism
When an external magnetic field is applied to a diamagnetic substance, a weak 
magnetic moment is induced in the direction opposite the applied field, causing 
diamagnetic substances to be weakly repelled by a magnet. Although diamagne-
tism is present in all matter, its effects are much smaller than those of paramagnet-
ism or ferromagnetism and are evident only when those other effects do not exist.
 We can attain some understanding of diamagnetism by considering a classical 
model of two atomic electrons orbiting the nucleus in opposite directions but with 
the same speed. The electrons remain in their circular orbits because of the attractive 
electrostatic force exerted by the positively charged nucleus. Because the magnetic  
moments of the two electrons are equal in magnitude and opposite in direction, 
they cancel each other and the magnetic moment of the atom is zero. When an 
external magnetic field is applied, the electrons experience an additional mag-
netic force q vS 3 B

S
. This added magnetic force combines with the electrostatic  

force to increase the orbital speed of the electron whose magnetic moment is anti-
parallel to the field and to decrease the speed of the electron whose magnetic 
moment is parallel to the field. As a result, the two magnetic moments of the elec-
trons no longer cancel and the substance acquires a net magnetic moment that is 
opposite the applied field.
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Paramagnetism

Atoms of paramagnetic materials have non-zero dipole moments,
but electrons of different atoms do not interact with each other.

They can interact with a strong magnetic field, and will align with
the field.

Paramagnetic effects tend to be much smaller than ferromagnetic
ones.

Examples of paramagnetic materials:

• Tungsten

• Cesium

• Aluminium

• Lithium

• Magnesium

• Sodium
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Paramagnetism

Liquid oxygen
stream deflected
in a strong
magnetic field.
The stream
collects in the
field.

1Image created by Pieter Kuiper.



Diamagnetism
Diamagnetism occurs in all materials, but is a weak effect, so it is
“drowned out” if a material is ferro- or paramagnetic.

It is the dominant (but weak) effect when the net magnetic
moment of a material’s atoms is zero.

The field polarizes the atoms and the resulting magnetic moments
oppose the external magnetic field.

Examples of diamagnetic materials:

• Pyrolytic carbon

• Bismuth

• Mercury

• Silver

• diamond (form of Carbon)

• water

Also superconductors can be said to exhibit extreme diamagnetism.
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Diamagnetism

1Levitating pyrolytic carbon on neodymium magnets. Image by Splarka.



Diamagnetism

1Magnet photo by Mai-Linh Doan, Wikipedia; Frog photo by Lijnis
Nelemans/High Field Magnet Laboratory/Radboud University Nijmeg.



Summary

• force on a wire in a magnetic field

• torque on a wire loop in a magnetic field

• relating a current loop to a magnet

• magnetic dipole moment

• torque and potential energy of magnetic dipole

• magnetism in matter

Homework Halliday, Resnick, Walker:

• PREVIOUS: Ch 28, Questions: 3; Problems: 13, 15, 27, 33,
35, 39, 41

• NEW: Ch 28, Problems: 49, 54, 55, 57, 61, 65


