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Last time

• force on a wire with a current in a B-field

• torque on a wire loop in a B-field

• motors

• relating a current loop to a magnet

• magnetic dipole moment

• torque and potential energy of magnetic dipole

• magnetism of matter



Overview

• magnetic fields from moving charges

• magnetic fields around current-carrying wires

• forces between parallel wires

• Gauss’s law



Magnetic fields from moving charges and currents

We are now moving into chapter 29.

Anything with a magnet moment creates a magnetic field.

This is a logical consequence of Newton’s third law.



Magnetic fields from moving charges

A moving charge will interact with other magnetic poles.

This is because it has a magnetic field of its own.

The field for a moving charge is given by the Biot-Savart Law:

B =
µ0

4π

q v × r̂

r2



Magnetic fields from moving charges

B =
µ0

4π

q v × r̂

r2

1Figure from rakeshkapoor.us.



Magnetic fields from currents

B =
µ0

4π

q v × r̂

r2

We can deduce from this what the magnetic field do to the current
in a small piece of wire is.

Current is made up of moving charges!

q v = q
∆s

∆t
=

q

∆t
∆s = I∆s

We can replace q v in the equation above.



Magnetic fields from currents

C H A P T E R
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M A G N E T I C  F I E L D S  
D U E  T O  
C U R R E N T S29

W H AT  I S  P H YS I C S ?29-1 One basic observation of physics is that a moving charged particle
produces a magnetic field around itself. Thus a current of moving charged parti-
cles produces a magnetic field around the current. This feature of electromagnet-
ism, which is the combined study of electric and magnetic effects, came as a sur-
prise to the people who discovered it. Surprise or not, this feature has become
enormously important in everyday life because it is the basis of countless electro-
magnetic devices. For example, a magnetic field is produced in maglev trains and
other devices used to lift heavy loads.

Our first step in this chapter is to find the magnetic field due to the current in
a very small section of current-carrying wire.Then we shall find the magnetic field
due to the entire wire for several different arrangements of the wire.

29-2 Calculating the Magnetic Field 
Due to a Current

Figure 29-1 shows a wire of arbitrary shape carrying a current i. We want to find
the magnetic field at a nearby point P. We first mentally divide the wire into
differential elements ds and then define for each element a length vector that
has length ds and whose direction is the direction of the current in ds. We can
then define a differential current-length element to be i ; we wish to calculate
the field produced at P by a typical current-length element. From experiment
we find that magnetic fields, like electric fields, can be superimposed to find a net
field. Thus, we can calculate the net field at P by summing, via integration, theB

:

dB
:

ds:

ds:
B
:

Fig. 29-1 A current-length element 
i produces a differential magnetic
field at point P.The green (the
tail of an arrow) at the dot for point P
indicates that is directed into the
page there.

dB
:

!dB
:

ds:

d B (into 
page) 

Current 
distribution  

i 

P 

θ  
ds 

ids 

r 
ˆ r 

This element of current creates a 
magnetic field at P, into the page.
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This is another version of the Biot-Savart Law:

Bseg =
µ0

4π

I ∆s× r̂

r2

where Bseg is the magnetic field from a small segment of wire, of
length ∆s.



Magnetic fields from currents

Magnetic field around a wire segment, viewed end-on:

76529-2 CALCU LATI NG TH E MAG N ETIC F I E LD  DU E TO A CU R R E NT
PART 3

HALLIDAY REVISED

contributions from all the current-length elements. However, this summation
is more challenging than the process associated with electric fields because of
a complexity; whereas a charge element dq producing an electric field is a scalar,
a current-length element i producing a magnetic field is a vector, being the
product of a scalar and a vector.

The magnitude of the field produced at point P at distance r by a current-
length element i turns out to be

(29-1)

where u is the angle between the directions of and , a unit vector that points
from ds toward P. Symbol m 0 is a constant, called the permeability constant,
whose value is defined to be exactly

m 0 ! 4p " 10#7 T $ m/A ! 1.26 " 10#6 T $ m/A. (29-2)

The direction of , shown as being into the page in Fig. 29-1, is that of the cross
product .We can therefore write Eq. 29-1 in vector form as

(Biot–Savart law). (29-3)

This vector equation and its scalar form, Eq. 29-1, are known as the law of Biot
and Savart (rhymes with “Leo and bazaar”). The law, which is experimentally
deduced, is an inverse-square law. We shall use this law to calculate the net 
magnetic field produced at a point by various distributions of current.

Magnetic Field Due to a Current in a Long Straight Wire
Shortly we shall use the law of Biot and Savart to prove that the magnitude of the
magnetic field at a perpendicular distance R from a long (infinite) straight wire
carrying a current i is given by

(long straight wire). (29-4)

The field magnitude B in Eq. 29-4 depends only on the current and the per-
pendicular distance R of the point from the wire. We shall show in our derivation
that the field lines of form concentric circles around the wire, as Fig. 29-2 shows
and as the iron filings in Fig. 29-3 suggest. The increase in the spacing of the lines
in Fig. 29-2 with increasing distance from the wire represents the 1/R decrease in
the magnitude of predicted by Eq. 29-4. The lengths of the two vectors in the
figure also show the 1/R decrease.

B
:

B
:

B
:

B !
% 0 i
2&R

B
:

dB
:

!
% 0

4&
 

i ds: ! r̂
r2

ds: ! r̂
dB

:

r̂ds:

dB !
% 0

4&
 

i ds sin '
r2 ,

ds:
dB

:

ds:

dB
:

Fig. 29-2 The magnetic field lines pro-
duced by a current in a long straight wire
form concentric circles around the wire.
Here the current is into the page, as indi-
cated by the ".

Wire with current 
into the page 

B 

B 

The magnetic field vector
at any point is tangent to
a circle.

Fig. 29-3 Iron filings
that have been sprinkled
onto cardboard collect in
concentric circles when
current is sent through the
central wire.The align-
ment, which is along
magnetic field lines, is
caused by the magnetic
field produced by the cur-
rent. (Courtesy Education
Development Center)
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Magnetic fields from currents

How to determine the direction of the field lines (right-hand rule):766 CHAPTE R 29 MAG N ETIC F I E LDS DU E TO CU R R E NTS

HALLIDAY REVISED

Here is a simple right-hand rule for finding the direction of the magnetic field
set up by a current-length element, such as a section of a long wire:

Right-hand rule: Grasp the element in your right hand with your extended thumb
pointing in the direction of the current.Your fingers will then naturally curl around in
the direction of the magnetic field lines due to that element.

Fig. 29-5 Calculating the mag-
netic field produced by a current i in
a long straight wire.The field at P
associated with the current-length el-
ement i is directed into the page,
as shown.

ds:

dB
:

This element of current
creates a magnetic field
at P, into the page.

i 

θ  

d B  

P  
R  

s  r 

ds 

ˆ r 

The result of applying this right-hand rule to the current in the straight wire
of Fig. 29-2 is shown in a side view in Fig. 29-4a. To determine the direction of the
magnetic field set up at any particular point by this current, mentally wrap your
right hand around the wire with your thumb in the direction of the current. Let
your fingertips pass through the point; their direction is then the direction of the
magnetic field at that point. In the view of Fig. 29-2, at any point is tangent to
a magnetic field line; in the view of Fig. 29-4, it is perpendicular to a dashed radial
line connecting the point and the current.

Proof of Equation 29-4
Figure 29-5, which is just like Fig. 29-1 except that now the wire is straight and of
infinite length, illustrates the task at hand. We seek the field at point P, a per-
pendicular distance R from the wire. The magnitude of the differential magnetic
field produced at P by the current-length element i located a distance r from P
is given by Eq. 29-1:

The direction of in Fig. 29-5 is that of the vector  —namely, directly
into the page.

Note that at point P has this same direction for all the current-length
elements into which the wire can be divided. Thus, we can find the magnitude of
the magnetic field produced at P by the current-length elements in the upper half
of the infinitely long wire by integrating dB in Eq. 29-1 from 0 to !.

Now consider a current-length element in the lower half of the wire, one that
is as far below P as is above P. By Eq. 29-3, the magnetic field produced at P
by this current-length element has the same magnitude and direction as that from
element i in Fig. 29-5. Further, the magnetic field produced by the lower half
of the wire is exactly the same as that produced by the upper half. To find the
magnitude of the total magnetic field at P, we need only multiply the result of
our integration by 2.We get

(29-5)

The variables u, s, and r in this equation are not independent; Fig. 29-5 shows
that they are related by

r " 2s2 # R2

B " 2!!

0
 dB "

$ 0 i
2%

 !!

0
 

sin & ds
r2 .

B
:

ds:

ds:

dB
:

ds: ! r̂dB
:

dB "
$ 0

4%
 

i ds sin &
r2 .

ds:

B
:

B
:

B
:

Fig. 29-4 A right-hand rule gives the di-
rection of the magnetic field due to a cur-
rent in a wire. (a) The situation of Fig. 29-2,
seen from the side.The magnetic field at
any point to the left of the wire is perpen-
dicular to the dashed radial line and di-
rected into the page, in the direction of the
fingertips, as indicated by the '. (b) If the
current is reversed, at any point to the
left is still perpendicular to the dashed ra-
dial line but now is directed out of the page,
as indicated by the dot.

B
:

B
:

B B

(a)

i

(b)

i The thumb is in the
current's direction.
The fingers reveal
the field vector's
direction, which is
tangent to a circle.
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Magnetic field from a long straight wire

The Biot-Savart Law,

Bseg =
µ0

4π

I ∆s× r̂

r2

implies what the magnetic field is at a perpendicular distance R
from an infinitely long straight wire:

B =
µ0I

2πR

(The proof requires some calculus.)



Force between 2 wires

With two current carrying wires, each creates its own magnetic
field:

B =
µ0I

2πR

The result is that the wires interact, much like two bar magnets
producing magnetic fields would.



Force between 2 wires

Currents in opposite directions repel, currents in the same direction
attract.

1Figure from salisbury.edu.



Force between 2 wires

It is a bit more intuitive to think about the force per unit length on
the wires (since longer wires will experience larger forces).

The force per unit length on a wire due to another parallel wire at
a distance d :

FB
`

=
µ0I1I2

2πd

Where does this come from?

The force on a current carrying wire is:

F = IL× B



Force between 2 wires

It is a bit more intuitive to think about the force per unit length on
the wires (since longer wires will experience larger forces).

The force per unit length on a wire due to another parallel wire at
a distance d :

FB
`

=
µ0I1I2

2πd

Where does this come from?

The force on a current carrying wire is:

F = IL× B



Force between 2 wires
Suppose that wire a produces a field: Ba =

µ0Ia
2πd770 CHAPTE R 29 MAG N ETIC F I E LDS DU E TO CU R R E NTS

HALLIDAY REVISED

29-3 Force Between Two Parallel Currents
Two long parallel wires carrying currents exert forces on each other. Figure 29-9
shows two such wires, separated by a distance d and carrying currents ia and ib.
Let us analyze the forces on these wires due to each other.

We seek first the force on wire b in Fig. 29-9 due to the current in wire a.That
current produces a magnetic field and it is this magnetic field that actually
causes the force we seek. To find the force, then, we need the magnitude and 
direction of the field at the site of wire b. The magnitude of at every point of
wire b is, from Eq. 29-4,

(29-11)

The curled–straight right-hand rule tells us that the direction of at wire b is
down, as Fig. 29-9 shows.

Now that we have the field, we can find the force it produces on wire b.
Equation 28-26 tells us that the force on a length L of wire b due to the exter-
nal magnetic field is

(29-12)

where is the length vector of the wire. In Fig. 29-9, vectors and are perpen-
dicular to each other, and so with Eq. 29-11, we can write

(29-13)

The direction of is the direction of the cross product Applying
the right-hand rule for cross products to and in Fig. 29-9, we see that is di-
rectly toward wire a, as shown.

The general procedure for finding the force on a current-carrying wire is this:

F
:

baB
:

aL
:

L
:

! B
:

a.F
:

ba

Fba ! ibLBa sin 90" !
#0Liaib

2$d
.

B
:

aL
:

L
:

F
:

ba ! ibL
:

! B
:

a,

B
:

a

F
:

ba

B
:

a

Ba !
#0 ia

2$d
.

B
:

aB
:

a

B
:

a,

To find the force on a current-carrying wire due to a second current-carrying wire,
first find the field due to the second wire at the site of the first wire.Then find the force
on the first wire due to that field.

Parallel currents attract each other, and antiparallel currents repel each other.

We could now use this procedure to compute the force on wire a due to the
current in wire b. We would find that the force is directly toward wire b; hence,
the two wires with parallel currents attract each other. Similarly, if the two cur-
rents were antiparallel, we could show that the two wires repel each other. Thus,

Fig. 29-9 Two parallel wires carrying
currents in the same direction attract each
other. is the magnetic field at wire b pro-
duced by the current in wire a. is the re-
sulting force acting on wire b because it
carries current in .B

:
a

F
:

ba

B
:

a

Fig. 29-10 (a) A rail gun, as a current i
is set up in it.The current rapidly causes the
conducting fuse to vaporize. (b) The cur-
rent produces a magnetic field between
the rails, and the field causes a force to
act on the conducting gas, which is part of
the current path.The gas propels the pro-
jectile along the rails, launching it.

F
:

B
:

Projectile 

Conducting fuse 

Conducting rail 

i 

i 

Conducting
gas 

(a) 

(b) 

i 

i i B 

F 

ia 

ib 

d 
a 

b 

L 

Fba 

Ba (due to ia ) 

L 

The field due to a
at the position of b
creates a force on b.

The force acting between currents in parallel wires is the basis for the defini-
tion of the ampere, which is one of the seven SI base units. The definition,
adopted in 1946, is this: The ampere is that constant current which, if maintained
in two straight, parallel conductors of infinite length, of negligible circular cross
section, and placed 1 m apart in vacuum, would produce on each of these con-
ductors a force of magnitude 2 % 10&7 newton per meter of wire length.

Rail Gun
One application of the physics of Eq. 29-13 is a rail gun. In this device, a magnetic
force accelerates a projectile to a high speed in a short time. The basics of a rail
gun are shown in Fig. 29-10a. A large current is sent out along one of two parallel
conducting rails, across a conducting “fuse” (such as a narrow piece of copper)
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The force on wire b is:

F = IbL
µ0Ia
2πd

sin(90◦)

FB
L

=
µ0IaIb

2πd



Force between 2 wires

1Figure from Stonebrook Physics ic.sunysb.edu.



Question

The figure here shows three long, straight, parallel, equally spaced
wires with identical currents either into or out of the page. Rank
the wires according to the magnitude of the force on each due to
the currents in the other two wires, greatest first.

between the rails, and then back to the current source along the second rail. The
projectile to be fired lies on the far side of the fuse and fits loosely between the
rails. Immediately after the current begins, the fuse element melts and vaporizes,
creating a conducting gas between the rails where the fuse had been.

The curled–straight right-hand rule of Fig. 29-4 reveals that the currents in
the rails of Fig. 29-10a produce magnetic fields that are directed downward
between the rails. The net magnetic field exerts a force on the gas due to the
current i through the gas (Fig. 29-10b). With Eq. 29-12 and the right-hand rule
for cross products, we find that points outward along the rails. As the gas is
forced outward along the rails, it pushes the projectile, accelerating it by as much
as 5 ! 106g, and then launches it with a speed of 10 km/s, all within 1 ms. Some-
day rail guns may be used to launch materials into space from mining operations
on the Moon or an asteroid.

F
:

F
:

B
:

CHECKPOINT 1

The figure here shows three long, straight, parallel, equally spaced wires with identical
currents either into or out of the page. Rank the wires according to the magnitude of
the force on each due to the currents in the other two wires, greatest first.

a b c

29-4 Ampere’s Law
We can find the net electric field due to any distribution of charges by first writing
the differential electric field due to a charge element and then summing the
contributions of from all the elements. However, if the distribution is compli-
cated, we may have to use a computer. Recall, however, that if the distribution
has planar, cylindrical, or spherical symmetry, we can apply Gauss’ law to find the
net electric field with considerably less effort.

Similarly, we can find the net magnetic field due to any distribution of currents
by first writing the differential magnetic field (Eq. 29-3) due to a current-length
element and then summing the contributions of from all the elements.Again we
may have to use a computer for a complicated distribution. However, if the distrib-
ution has some symmetry, we may be able to apply Ampere’s law to find the mag-
netic field with considerably less effort. This law, which can be derived from the
Biot–Savart law, has traditionally been credited to André-Marie Ampère
(1775–1836), for whom the SI unit of current is named. However, the law actually
was advanced by English physicist James Clerk Maxwell.

Ampere’s law is

(Ampere’s law). (29-14)

The loop on the integral sign means that the scalar (dot) product is to be
integrated around a closed loop, called an Amperian loop. The current ienc is the
net current encircled by that closed loop.

To see the meaning of the scalar product and its integral, let us first
apply Ampere’s law to the general situation of Fig. 29-11. The figure shows cross
sections of three long straight wires that carry currents i1, i2, and i3 either directly
into or directly out of the page. An arbitrary Amperian loop lying in the plane of
the page encircles two of the currents but not the third. The counterclockwise
direction marked on the loop indicates the arbitrarily chosen direction of integra-
tion for Eq. 29-14.

To apply Ampere’s law, we mentally divide the loop into differential vector
elements that are everywhere directed along the tangent to the loop in theds:

B
:

! ds:  

B
:

! ds: 

! B
:

! ds: " #0ienc

dB
:

dB
:

dE
:

dE
:

77129-4 AM PE R E’S LAW
PART 3

HALLIDAY REVISED

Fig. 29-11 Ampere’s law applied to an
arbitrary Amperian loop that encircles two
long straight wires but excludes a third
wire. Note the directions of the currents.

i3 

i1 

i2 

Direction of 
integration 

ds 
θ 

Amperian 
loop 

B 

Only the currents
encircled by the
loop are used in
Ampere's law.
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A a, b, c

B b, c, a

C c, b, a

1Halliday, Resnick, Walker, pg 771.



Question

The figure here shows three long, straight, parallel, equally spaced
wires with identical currents either into or out of the page. Rank
the wires according to the magnitude of the force on each due to
the currents in the other two wires, greatest first.

between the rails, and then back to the current source along the second rail. The
projectile to be fired lies on the far side of the fuse and fits loosely between the
rails. Immediately after the current begins, the fuse element melts and vaporizes,
creating a conducting gas between the rails where the fuse had been.

The curled–straight right-hand rule of Fig. 29-4 reveals that the currents in
the rails of Fig. 29-10a produce magnetic fields that are directed downward
between the rails. The net magnetic field exerts a force on the gas due to the
current i through the gas (Fig. 29-10b). With Eq. 29-12 and the right-hand rule
for cross products, we find that points outward along the rails. As the gas is
forced outward along the rails, it pushes the projectile, accelerating it by as much
as 5 ! 106g, and then launches it with a speed of 10 km/s, all within 1 ms. Some-
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29-4 Ampere’s Law
We can find the net electric field due to any distribution of charges by first writing
the differential electric field due to a charge element and then summing the
contributions of from all the elements. However, if the distribution is compli-
cated, we may have to use a computer. Recall, however, that if the distribution
has planar, cylindrical, or spherical symmetry, we can apply Gauss’ law to find the
net electric field with considerably less effort.

Similarly, we can find the net magnetic field due to any distribution of currents
by first writing the differential magnetic field (Eq. 29-3) due to a current-length
element and then summing the contributions of from all the elements.Again we
may have to use a computer for a complicated distribution. However, if the distrib-
ution has some symmetry, we may be able to apply Ampere’s law to find the mag-
netic field with considerably less effort. This law, which can be derived from the
Biot–Savart law, has traditionally been credited to André-Marie Ampère
(1775–1836), for whom the SI unit of current is named. However, the law actually
was advanced by English physicist James Clerk Maxwell.

Ampere’s law is

(Ampere’s law). (29-14)

The loop on the integral sign means that the scalar (dot) product is to be
integrated around a closed loop, called an Amperian loop. The current ienc is the
net current encircled by that closed loop.

To see the meaning of the scalar product and its integral, let us first
apply Ampere’s law to the general situation of Fig. 29-11. The figure shows cross
sections of three long straight wires that carry currents i1, i2, and i3 either directly
into or directly out of the page. An arbitrary Amperian loop lying in the plane of
the page encircles two of the currents but not the third. The counterclockwise
direction marked on the loop indicates the arbitrarily chosen direction of integra-
tion for Eq. 29-14.

To apply Ampere’s law, we mentally divide the loop into differential vector
elements that are everywhere directed along the tangent to the loop in theds:
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Fig. 29-11 Ampere’s law applied to an
arbitrary Amperian loop that encircles two
long straight wires but excludes a third
wire. Note the directions of the currents.
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Direction of 
integration 

ds 
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Amperian 
loop 
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Only the currents
encircled by the
loop are used in
Ampere's law.
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A a, b, c

B b, c, a←
C c, b, a

1Halliday, Resnick, Walker, pg 771.



Magnetic Permeability

A constant we will need is:

µ0 = 4π× 10−7 Tm/A

µ0 is called the magnetic permeability of free space.

It arises when we look at magnetic fields because of our choice of
SI units.

Whenever we use µ0 we assume we are considering the magnetic
field to be in a vacuum or air.

µ0 is not the magnetic dipole moment µµµ!
Another notation coincidence.



Definition of the Ampère (Amp)

This relation:

FB
L

=
µ0I1I2

2πd

gives us the formal definition of the Ampère.

Ampère Unit

Two long parallel wires separated by 1 m are said to each carry 1 A
of current when the force per unit length on each wire is
2× 10−7 N/m.



Gauss’s Law for Magnetic Fields

There is more we can say about magnetic fields.

When studying electric fields we used Gauss’s law to understand
the how the electric field looked around a point charge.

There is also Gauss’s law for magnetic fields, but it tells us
something different about magnetic fields.

Reminder about Gauss’s law for electric fields...



Gauss’s Law for Electric Fields basic idea

Gauss’s law relates the electric field across a closed surface (eg. a
sphere) to the amount of net charge enclosed by the surface.

HALLIDAY REVISED

23-1 One of the primary goals of physics is to find simple ways of solving
seemingly complex problems. One of the main tools of physics in attaining this
goal is the use of symmetry. For example, in finding the electric field of the
charged ring of Fig. 22-10 and the charged rod of Fig. 22-11, we considered the
fields of charge elements in the ring and rod. Then we simplified
the calculation of by using symmetry to discard the perpendicular components
of the vectors.That saved us some work.

For certain charge distributions involving symmetry, we can save far more work
by using a law called Gauss’ law, developed by German mathematician and physi-
cist Carl Friedrich Gauss (1777–1855). Instead of considering the fields of
charge elements in a given charge distribution, Gauss’ law considers a hypothetical
(imaginary) closed surface enclosing the charge distribution.This Gaussian surface,
as it is called, can have any shape, but the shape that minimizes our calculations of
the electric field is one that mimics the symmetry of the charge distribution. For ex-
ample, if the charge is spread uniformly over a sphere, we enclose the sphere with a
spherical Gaussian surface, such as the one in Fig. 23-1, and then, as we discuss in
this chapter, find the electric field on the surface by using the fact that

dE
:

dE
:

E
:

(!k dq/r 2)dE
:

E
:

G A U S S ’  L A W 23
C H A P T E R

605

W H AT  I S  P H YS I C S ?

Gauss’ law relates the electric fields at points on a (closed) Gaussian surface to the
net charge enclosed by that surface.

We can also use Gauss’ law in reverse: If we know the electric field on a Gaussian
surface, we can find the net charge enclosed by the surface. As a limited example,
suppose that the electric field vectors in Fig. 23-1 all point radially outward from the
center of the sphere and have equal magnitude. Gauss’ law immediately tells us that
the spherical surface must enclose a net positive charge that is either a particle or
distributed spherically. However, to calculate how much charge is enclosed, we need
a way of calculating how much electric field is intercepted by the Gaussian surface in
Fig. 23-1.This measure of intercepted field is called flux, which we discuss next.

23-2 Flux
Suppose that, as in Fig. 23-2a, you aim a wide airstream of uniform velocity at
a small square loop of area A. Let " represent the volume flow rate (volume per unit
time) at which air flows through the loop.This rate depends on the angle between 
and the plane of the loop. If is perpendicular to the plane, the rate " is equal to vA.

If is parallel to the plane of the loop, no air moves through the loop, so
" is zero. For an intermediate angle u, the rate " depends on the component of 

normal to the plane (Fig.23-2b).Since that component is v cos u, the rate of volume
flow through the loop is

" ! (v cos u)A. (23-1)

This rate of flow through an area is an example of a flux—a volume flux in this
situation.

v:

v:
v:

v:

v:

Fig. 23-1 A spherical Gaussian 
surface. If the electric field vectors
are of uniform magnitude and point
radially outward at all surface points,
you can conclude that a net positive
distribution of charge must lie within
the surface and have spherical 
symmetry.

Spherical
Gaussian
surface

?
E
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Flux

726 Chapter 24 Gauss’s Law

From the SI units of E and A, we see that FE has units of newton meters squared per 
coulomb (N ? m2/C). Electric flux is proportional to the number of electric field 
lines penetrating some surface.
 If the surface under consideration is not perpendicular to the field, the flux 
through it must be less than that given by Equation 24.1. Consider Figure 24.2, where 
the normal to the surface of area A is at an angle u to the uniform electric field. Notice 
that the number of lines that cross this area A is equal to the number of lines that 
cross the area A!, which is a projection of area A onto a plane oriented perpendicu-
lar to the field. The area A is the product of the length and the width of the surface:  
A 5 ,w. At the left edge of the figure, we see that the widths of the surfaces are related 
by w! 5 w cos u. The area A! is given by A! 5 ,w! 5 ,w cos u and we see that the two 
areas are related by A! 5 A cos u. Because the flux through A equals the flux through 
A!, the flux through A is
 FE 5 EA! 5 EA cos u (24.2)

From this result, we see that the flux through a surface of fixed area A has a maxi-
mum value EA when the surface is perpendicular to the field (when the normal to 
the surface is parallel to the field, that is, when u 5 08 in Fig. 24.2); the flux is zero 
when the surface is parallel to the field (when the normal to the surface is perpen-
dicular to the field, that is, when u 5 908).
 In this discussion, the angle u is used to describe the orientation of the surface 
of area A. We can also interpret the angle as that between the electric field vector 
and the normal to the surface. In this case, the product E cos u in Equation 24.2 is 
the component of the electric field perpendicular to the surface. The flux through 
the surface can then be written FE  5 (E cos u)A 5 EnA, where we use En as the com-
ponent of the electric field normal to the surface.
 We assumed a uniform electric field in the preceding discussion. In more gen-
eral situations, the electric field may vary over a large surface. Therefore, the defi-
nition of flux given by Equation 24.2 has meaning only for a small element of area 
over which the field is approximately constant. Consider a general surface divided 
into a large number of small elements, each of area DAi. It is convenient to define 
a vector D A

S
i whose magnitude represents the area of the i th element of the large 

surface and whose direction is defined to be perpendicular to the surface element as 
shown in Figure 24.3. The electric field E

S
i  at the location of this element makes an 

angle ui with the vector D A
S

i. The electric flux FE , i through this element is

FE,i 5 Ei DAi  cos ui 5 E
S

i ? D A
S

i

where we have used the definition of the scalar product of two vectors  
( A

S
? B

S
; AB cos u ; see Chapter 7). Summing the contributions of all elements 

gives an approximation to the total flux through the surface:

FE < a E
S

i ? D A
S

i

If the area of each element approaches zero, the number of elements approaches 
infinity and the sum is replaced by an integral. Therefore, the general definition of 
electric flux is

 FE ; 3
surface

E
S

? d A
S

 (24.3)

Equation 24.3 is a surface integral, which means it must be evaluated over the surface 
in question. In general, the value of FE depends both on the field pattern and on 
the surface.
 We are often interested in evaluating the flux through a closed surface, defined as 
a surface that divides space into an inside and an outside region so that one cannot 
move from one region to the other without crossing the surface. The surface of a 
sphere, for example, is a closed surface. By convention, if the area element in Equa-

Definition of electric flux X

A

w
w›

A›

Normal

u

u

E
S

The number of field lines that 
go through the area A› is the 
same as the number that go 
through area A.

,

Figure 24.2  Field lines repre-
senting a uniform electric field 
penetrating an area A whose nor-
mal is at an angle u to the field.

The electric field makes an angle
ui with the vector !Ai 

, defined as
being normal to the surface
element.  

ui

Ei
S

S

!Ai  
S

Figure 24.3  A small element of 
surface area DAi  in an electric field.



Reminder: Gauss’s Law for Electric Fields

Gauss’s Law for Electric fields:

ΦE =

∮
E · dA =

qenc
ε0

The electric flux through a closed surface is equal to the charge
enclosed by the surface, divided by ε0.

There is a similar expression for magnetic flux!

First we must define magnetic flux, ΦB .



Magnetic Flux

 30.5 Gauss’s Law in Magnetism 917

arbitrarily shaped surface as shown in Figure 30.19. If the magnetic field at this 
element is B

S
,  the magnetic flux through the element is B

S
? d A

S
, where d A

S
 is a vec-

tor that is perpendicular to the surface and has a magnitude equal to the area dA. 
Therefore, the total magnetic flux FB through the surface is

 FB ; 3  B
S

? d A
S

 (30.18)

 Consider the special case of a plane of area A in a uniform field B
S

 that makes an 
angle u with d A

S
. The magnetic flux through the plane in this case is

 FB 5 BA cos u  (30.19)

If the magnetic field is parallel to the plane as in Figure 30.20a, then u 5 908 and the 
flux through the plane is zero. If the field is perpendicular to the plane as in Figure 
30.20b, then u 5 0 and the flux through the plane is BA (the maximum value).
 The unit of magnetic flux is T ? m2, which is defined as a weber (Wb); 1 Wb 5  
1 T ? m2.

�W Definition of magnetic flux

Figure 30.20 Magnetic flux 
through a plane lying in a mag-
netic field.a

d

The flux through the plane is 
zero when the magnetic field is 
parallel to the plane surface.

A
S

B
S

b

dA
S

B
S

The flux through the plane is a 
maximum when the magnetic 
field is perpendicular to the plane.

Example 30.7   Magnetic Flux Through a Rectangular Loop

A rectangular loop of width a and length b is located near a long wire carrying a 
current I (Fig. 30.21). The distance between the wire and the closest side of the 
loop is c. The wire is parallel to the long side of the loop. Find the total magnetic 
flux through the loop due to the current in the wire.

Conceptualize  As we saw in Section 30.3, the magnetic field lines due to the wire 
will be circles, many of which will pass through the rectangular loop. We know that 
the magnetic field is a function of distance r from a long 
wire. Therefore, the magnetic field varies over the area of 
the rectangular loop.

Categorize  Because the magnetic field varies over the 
area of the loop, we must integrate over this area to find 
the total flux. That identifies this as an analysis problem.

S O L U T I O N

continued

b
r

I

c a

dr

Figure 30.21  (Example 
30.7) The magnetic field 
due to the wire carrying 
a current I is not uniform 
over the rectangular loop.

Analyze  Noting that B
S

 is parallel to d A
S

 at any point 
within the loop, find the magnetic flux through the rect-
angular area using Equation 30.18 and incorporate Equa-
tion 30.14 for the magnetic field:

FB 5 3 B
S

? d A
S

5 3 B dA 5  3 
m0I
2pr

 dA

B
S

 
u

d A 
S

Figure 30.19  The magnetic  
flux through an area element dA  
is B

S
? d A

S
5 B dA cos u, where  

d A
S

 is a vector perpendicular to 
the surface.

Magnetic flux

The magnetic flux of a magnetic field through a surface A is

ΦB =
∑

B · ∆A

Units: Tm2

If the surface is a flat plane and B is uniform, that just reduces to:

ΦB = B · A



Gauss’s Law for Magnetic Fields

Gauss’s Law for magnetic fields.:∮
B · dA = 0

Where the integral is taken over a closed surface A. (This is like a
sum over the flux through many small areas.)

We can interpret it as an assertion that magnetic monopoles do
not exist.

The magnetic field has no sources or sinks.



Gauss’s Law for Magnetic Fields∮
B · dA = 0

86332-3 I N DUCE D MAG N ETIC F I E LDS
PART 3

CHECKPOINT 1

The figure here shows four closed surfaces with flat top and bottom faces and curved
sides.The table gives the areas A of the faces and the magnitudes B of the uniform and
perpendicular magnetic fields through those faces; the units of A and B are arbitrary
but consistent. Rank the surfaces according to the magnitudes of the magnetic flux
through their curved sides, greatest first.

Surface Atop Btop Abot Bbot

a 2 6, outward 4 3, inward
b 2 1, inward 4 2, inward
c 2 6, inward 2 8, outward
d 2 3, outward 3 2, outward

(a) (b) (c) (d)

32-3 Induced Magnetic Fields
In Chapter 30 you saw that a changing magnetic flux induces an electric field, and
we ended up with Faraday’s law of induction in the form

(Faraday’s law of induction). (32-2)

Here is the electric field induced along a closed loop by the changing magnetic
flux encircled by that loop. Because symmetry is often so powerful in physics,
we should be tempted to ask whether induction can occur in the opposite sense;
that is, can a changing electric flux induce a magnetic field?

The answer is that it can; furthermore, the equation governing the induction
of a magnetic field is almost symmetric with Eq. 32-2. We often call it Maxwell’s
law of induction after James Clerk Maxwell, and we write it as

(Maxwell’s law of induction). (32-3)

Here is the magnetic field induced along a closed loop by the changing electric
flux !E in the region encircled by that loop.

As an example of this sort of induction, we consider the charging of a parallel-
plate capacitor with circular plates. (Although we shall focus on this arrangement,

B
:

! B
:

! ds: " #0$0
d!E

dt

!B

E
:

! E
:

! ds: " %
d!B

dt

Fig. 32-4 The field lines for the
magnetic field of a short bar mag-
net.The red curves represent cross
sections of closed, three-dimensional
Gaussian surfaces.

B
:

Surface IN

S

Surface II

B

Gauss’ law for magnetic fields holds for structures more complicated than
a magnetic dipole, and it holds even if the Gaussian surface does not enclose the
entire structure. Gaussian surface II near the bar magnet of Fig. 32-4 encloses no
poles, and we can easily conclude that the net magnetic flux through it is zero.
Gaussian surface I is more difficult. It may seem to enclose only the north pole of
the magnet because it encloses the label N and not the label S. However, a south
pole must be associated with the lower boundary of the surface because magnetic
field lines enter the surface there. (The enclosed section is like one piece of the
broken bar magnet in Fig. 32-3.) Thus, Gaussian surface I encloses a magnetic
dipole, and the net flux through the surface is zero.
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B-Field around a wire revisited

Gauss’s law will not help us find the strength of the B-field around
a wire, or wires carrying current: the flux through any closed
surface will be zero.

Another law can: Ampère’s Law.



Summary

• field from a moving charge

• field from a current

• force between two parallel wires

• Guass’s law

Homework Halliday, Resnick, Walker:

• PREVIOUS: Ch 28, Problems: 54, 55, 57, 61, 65

• NEW: Ch 29, onward from page 783. Questions: 3; Problems:
1, 11, 21, 23


