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Last time

• magnetic fields from moving charges

• magnetic fields around current-carrying wires

• forces between parallel wires

• Gauss’s law



Overview

• Ampère’s law

• motional emf

• induction

• Faraday’s law

• Lenz’s law



Gauss’s Law for Magnetic Fields

Gauss’s Law for magnetic fields.:∮
B · dA = 0

Where the integral is taken over a closed surface A. (This is like a
sum over the flux through many small areas.)

We can interpret it as an assertion that magnetic monopoles do
not exist.

The magnetic field has no sources or sinks.



Gauss’s Law for Magnetic Fields∮
B · dA = 0
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CHECKPOINT 1

The figure here shows four closed surfaces with flat top and bottom faces and curved
sides.The table gives the areas A of the faces and the magnitudes B of the uniform and
perpendicular magnetic fields through those faces; the units of A and B are arbitrary
but consistent. Rank the surfaces according to the magnitudes of the magnetic flux
through their curved sides, greatest first.

Surface Atop Btop Abot Bbot

a 2 6, outward 4 3, inward
b 2 1, inward 4 2, inward
c 2 6, inward 2 8, outward
d 2 3, outward 3 2, outward

(a) (b) (c) (d)

32-3 Induced Magnetic Fields
In Chapter 30 you saw that a changing magnetic flux induces an electric field, and
we ended up with Faraday’s law of induction in the form

(Faraday’s law of induction). (32-2)

Here is the electric field induced along a closed loop by the changing magnetic
flux encircled by that loop. Because symmetry is often so powerful in physics,
we should be tempted to ask whether induction can occur in the opposite sense;
that is, can a changing electric flux induce a magnetic field?

The answer is that it can; furthermore, the equation governing the induction
of a magnetic field is almost symmetric with Eq. 32-2. We often call it Maxwell’s
law of induction after James Clerk Maxwell, and we write it as

(Maxwell’s law of induction). (32-3)

Here is the magnetic field induced along a closed loop by the changing electric
flux !E in the region encircled by that loop.

As an example of this sort of induction, we consider the charging of a parallel-
plate capacitor with circular plates. (Although we shall focus on this arrangement,

B
:

! B
:

! ds: " #0$0
d!E

dt

!B

E
:

! E
:

! ds: " %
d!B

dt

Fig. 32-4 The field lines for the
magnetic field of a short bar mag-
net.The red curves represent cross
sections of closed, three-dimensional
Gaussian surfaces.

B
:

Surface IN

S

Surface II

B

Gauss’ law for magnetic fields holds for structures more complicated than
a magnetic dipole, and it holds even if the Gaussian surface does not enclose the
entire structure. Gaussian surface II near the bar magnet of Fig. 32-4 encloses no
poles, and we can easily conclude that the net magnetic flux through it is zero.
Gaussian surface I is more difficult. It may seem to enclose only the north pole of
the magnet because it encloses the label N and not the label S. However, a south
pole must be associated with the lower boundary of the surface because magnetic
field lines enter the surface there. (The enclosed section is like one piece of the
broken bar magnet in Fig. 32-3.) Thus, Gaussian surface I encloses a magnetic
dipole, and the net flux through the surface is zero.
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B-Field around a wire revisited

Gauss’s law will not help us find the strength of the B-field around
a wire, or wires carrying current: the flux through any closed
surface will be zero.

Another law can: Ampère’s Law.



Line Integrals
To understand Ampère’s Law, we first need to understand the
basic idea of what a line integral represents.

The most basic line integral is just:

` =
∑
k

∆sk =

∫Q
P

ds

This is just summing up the length of the line from P to Q.
` is the line length.
Each ∆sk is a little line segment.



Line Integrals
Line integrals involving fields are a little more complicated.
Suppose we want to evaluate the dot product between the field
vector at each point along the line withe the line segment at that
point.

This is a measure of how much the line points along the field.

∑
k

E · ∆sk =

∫B
A

E · ds



Line Integrals

There are two cases that are particularly easy to calculate:

1 The field always points perpendicularly to the path:∫b
a

B · ds = 0

2 The field always points parallel to the path:∫b
a

B · ds = B`

where ` is the path length.



Line Integrals

There is one other special piece of notation used with some line
integrals: ∮

This symbol means that the integral starts and ends at the same
point.

The path is a loop.

∮
B · ds



Ampère’s Law
For constant currents (magnetostatics):∮

B · ds = µ0Ienc

The line integral of the magnetic field around a closed loop is
proportional to the current that flows through the loop.1

between the rails, and then back to the current source along the second rail. The
projectile to be fired lies on the far side of the fuse and fits loosely between the
rails. Immediately after the current begins, the fuse element melts and vaporizes,
creating a conducting gas between the rails where the fuse had been.

The curled–straight right-hand rule of Fig. 29-4 reveals that the currents in
the rails of Fig. 29-10a produce magnetic fields that are directed downward
between the rails. The net magnetic field exerts a force on the gas due to the
current i through the gas (Fig. 29-10b). With Eq. 29-12 and the right-hand rule
for cross products, we find that points outward along the rails. As the gas is
forced outward along the rails, it pushes the projectile, accelerating it by as much
as 5 ! 106g, and then launches it with a speed of 10 km/s, all within 1 ms. Some-
day rail guns may be used to launch materials into space from mining operations
on the Moon or an asteroid.

F
:

F
:

B
:

CHECKPOINT 1

The figure here shows three long, straight, parallel, equally spaced wires with identical
currents either into or out of the page. Rank the wires according to the magnitude of
the force on each due to the currents in the other two wires, greatest first.

a b c

29-4 Ampere’s Law
We can find the net electric field due to any distribution of charges by first writing
the differential electric field due to a charge element and then summing the
contributions of from all the elements. However, if the distribution is compli-
cated, we may have to use a computer. Recall, however, that if the distribution
has planar, cylindrical, or spherical symmetry, we can apply Gauss’ law to find the
net electric field with considerably less effort.

Similarly, we can find the net magnetic field due to any distribution of currents
by first writing the differential magnetic field (Eq. 29-3) due to a current-length
element and then summing the contributions of from all the elements.Again we
may have to use a computer for a complicated distribution. However, if the distrib-
ution has some symmetry, we may be able to apply Ampere’s law to find the mag-
netic field with considerably less effort. This law, which can be derived from the
Biot–Savart law, has traditionally been credited to André-Marie Ampère
(1775–1836), for whom the SI unit of current is named. However, the law actually
was advanced by English physicist James Clerk Maxwell.

Ampere’s law is

(Ampere’s law). (29-14)

The loop on the integral sign means that the scalar (dot) product is to be
integrated around a closed loop, called an Amperian loop. The current ienc is the
net current encircled by that closed loop.

To see the meaning of the scalar product and its integral, let us first
apply Ampere’s law to the general situation of Fig. 29-11. The figure shows cross
sections of three long straight wires that carry currents i1, i2, and i3 either directly
into or directly out of the page. An arbitrary Amperian loop lying in the plane of
the page encircles two of the currents but not the third. The counterclockwise
direction marked on the loop indicates the arbitrarily chosen direction of integra-
tion for Eq. 29-14.

To apply Ampere’s law, we mentally divide the loop into differential vector
elements that are everywhere directed along the tangent to the loop in theds:

B
:

! ds:  

B
:

! ds: 

! B
:

! ds: " #0ienc

dB
:

dB
:

dE
:

dE
:
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Fig. 29-11 Ampere’s law applied to an
arbitrary Amperian loop that encircles two
long straight wires but excludes a third
wire. Note the directions of the currents.

i3 

i1 

i2 

Direction of 
integration 

ds 
θ 

Amperian 
loop 

B 

Only the currents
encircled by the
loop are used in
Ampere's law.
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1That is, the current that flows through any surface bounded by the loop.



Ampère’s Law
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Fig. 29-13 Using Ampere’s law to find
the magnetic field that a current i produces
outside a long straight wire of circular cross
section.The Amperian loop is a concentric
circle that lies outside the wire.

i  

(   = 0) θ 

r 
Amperian 
loop Wire 

surface 

B 

ds 

All of the current is
encircled and thus all
is used in Ampere's law.

direction of integration. Assume that at the location of the element shown in
Fig. 29-11, the net magnetic field due to the three currents is . Because the wires
are perpendicular to the page, we know that the magnetic field at due to each
current is in the plane of Fig. 29-11; thus, their net magnetic field at must also
be in that plane. However, we do not know the orientation of within the plane.
In Fig. 29-11, is arbitrarily drawn at an angle u to the direction of .

The scalar product on the left side of Eq. 29-14 is equal to B cos u ds.
Thus,Ampere’s law can be written as

(29-15)

We can now interpret the scalar product as being the product of a length ds
of the Amperian loop and the field component B cos u tangent to the loop. Then
we can interpret the integration as being the summation of all such products
around the entire loop.

When we can actually perform this integration, we do not need to know the
direction of before integrating. Instead, we arbitrarily assume to be generally
in the direction of integration (as in Fig. 29-11). Then we use the following
curled–straight right-hand rule to assign a plus sign or a minus sign to each of the
currents that make up the net encircled current ienc:

B
:

B
:

B
:

! ds:

! B
:

! ds: ! ! B cos " ds ! #0ienc.

B
:

! ds:
ds:B

:
B
:

ds:B
:

ds:
B
:

ds:

Curl your right hand around the Amperian loop, with the fingers pointing in the
direction of integration. A current through the loop in the general direction of your
outstretched thumb is assigned a plus sign, and a current generally in the opposite
direction is assigned a minus sign.

Finally, we solve Eq. 29-15 for the magnitude of . If B turns out positive, then
the direction we assumed for is correct. If it turns out negative, we neglect the
minus sign and redraw in the opposite direction.

In Fig. 29-12 we apply the curled–straight right-hand rule for Ampere’s law
to the situation of Fig. 29-11. With the indicated counterclockwise direction of
integration, the net current encircled by the loop is

ienc ! i1 $ i2.

(Current i3 is not encircled by the loop.) We can then rewrite Eq. 29-15 as

(29-16)

You might wonder why, since current i3 contributes to the magnetic-field mag-
nitude B on the left side of Eq. 29-16, it is not needed on the right side.The answer
is that the contributions of current i3 to the magnetic field cancel out because the
integration in Eq. 29-16 is made around the full loop. In contrast, the contributions
of an encircled current to the magnetic field do not cancel out.

We cannot solve Eq. 29-16 for the magnitude B of the magnetic field because for
the situation of Fig. 29-11 we do not have enough information to simplify and solve
the integral.However,we do know the outcome of the integration; it must be equal to
m0(i1 $ i2), the value of which is set by the net current passing through the loop.

We shall now apply Ampere’s law to two situations in which symmetry does
allow us to simplify and solve the integral, hence to find the magnetic field.

Magnetic Field Outside a Long Straight Wire with Current
Figure 29-13 shows a long straight wire that carries current i directly out of the
page. Equation 29-4 tells us that the magnetic field produced by the current has
the same magnitude at all points that are the same distance r from the wire;

B
:

! B cos " ds ! #0(i1 $ i2).

B
:

B
:

B
:

Fig. 29-12 A right-hand rule for
Ampere’s law, to determine the signs for
currents encircled by an Amperian loop.
The situation is that of Fig. 29-11.

+i1 

–i2 
Direction of 
integration 

This is how to assign a
sign to a current used in
Ampere's law.
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A current through the loop in the general direction of your
outstretched thumb is assigned a plus sign, and a current generally
in the opposite direction is assigned a minus sign.



Question
The figure here shows three equal currents i (two parallel and one
antiparallel) and four Amperian loops. Rank the loops according to
the magnitude of

∮
B · ds along each, greatest first.
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that is, the field has cylindrical symmetry about the wire. We can take advan-
tage of that symmetry to simplify the integral in Ampere’s law (Eqs. 29-14 and
29-15) if we encircle the wire with a concentric circular Amperian loop of radius
r, as in Fig. 29-13. The magnetic field then has the same magnitude B at every
point on the loop. We shall integrate counterclockwise, so that has the direc-
tion shown in Fig. 29-13.

We can further simplify the quantity B cos u in Eq. 29-15 by noting that is
tangent to the loop at every point along the loop, as is . Thus, and are
either parallel or antiparallel at each point of the loop, and we shall arbitrarily
assume the former. Then at every point the angle u between and is 0°, so
cos u ! cos 0° ! 1.The integral in Eq. 29-15 then becomes

Note that ! ds is the summation of all the line segment lengths ds around the
circular loop; that is, it simply gives the circumference 2pr of the loop.

Our right-hand rule gives us a plus sign for the current of Fig. 29-13.The right
side of Ampere’s law becomes "m0 i, and we then have

B(2pr) ! m0i

or (outside straight wire). (29-17)

With a slight change in notation, this is Eq. 29-4, which we derived earlier—with
considerably more effort—using the law of Biot and Savart. In addition, because
the magnitude B turned out positive, we know that the correct direction of 
must be the one shown in Fig. 29-13.

Magnetic Field Inside a Long Straight Wire with Current
Figure 29-14 shows the cross section of a long straight wire of radius R that
carries a uniformly distributed current i directly out of the page. Because the
current is uniformly distributed over a cross section of the wire, the magnetic
field produced by the current must be cylindrically symmetrical. Thus, to find
the magnetic field at points inside the wire, we can again use an Amperian loop of
radius r, as shown in Fig. 29-14, where now r # R. Symmetry again suggests that 
is tangent to the loop, as shown; so the left side of Ampere’s law again yields

(29-18)

To find the right side of Ampere’s law, we note that because the current is
uniformly distributed, the current ienc encircled by the loop is proportional to the
area encircled by the loop; that is,

(29-19)

Our right-hand rule tells us that ienc gets a plus sign. Then Ampere’s law gives us

or (inside straight wire). (29-20)

Thus, inside the wire, the magnitude B of the magnetic field is proportional to r ,
is zero at the center, and is maximum at r = R (the surface). Note that Eqs. 29-17
and 29-20 give the same value for B at the surface.

B ! " $0i
2%R2  # r

B(2%r) ! $0i 
%r 2

%R2

ienc ! i 
%r2

%R2 .

$ B
:

! ds: ! B $ ds ! B(2%r).

B
:

B
:

B
:

B !
$0i
2%r

$ B
:

! ds: ! $ B cos & ds ! B $ ds ! B(2%r).

B
:

ds:

ds:B
:

ds:
B
:

ds:
B
:

B
:

Fig. 29-14 Using Ampere’s law to find
the magnetic field that a current i produces
inside a long straight wire of circular cross
section.The current is uniformly distrib-
uted over the cross section of the wire and
emerges from the page.An Amperian loop
is drawn inside the wire.

R 

Amperian 
loop 

r 

Wire 
surface

i  

ds 

B 

Only the current encircled
by the loop is used in
Ampere's law.

CHECKPOINT 2

The figure here shows three equal cur-
rents i (two parallel and one antiparal-
lel) and four Amperian loops. Rank the
loops according to the magnitude of

along each, greatest first.! B
:

! ds:  

c d

b

a

ii

i
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A a, b, c, d

B d, b, c, a

C (a and b), d, c

D d, (a and c), b
1Halliday, Resnick, Walker, page 773.



Question
The figure here shows three equal currents i (two parallel and one
antiparallel) and four Amperian loops. Rank the loops according to
the magnitude of

∮
B · ds along each, greatest first.
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that is, the field has cylindrical symmetry about the wire. We can take advan-
tage of that symmetry to simplify the integral in Ampere’s law (Eqs. 29-14 and
29-15) if we encircle the wire with a concentric circular Amperian loop of radius
r, as in Fig. 29-13. The magnetic field then has the same magnitude B at every
point on the loop. We shall integrate counterclockwise, so that has the direc-
tion shown in Fig. 29-13.

We can further simplify the quantity B cos u in Eq. 29-15 by noting that is
tangent to the loop at every point along the loop, as is . Thus, and are
either parallel or antiparallel at each point of the loop, and we shall arbitrarily
assume the former. Then at every point the angle u between and is 0°, so
cos u ! cos 0° ! 1.The integral in Eq. 29-15 then becomes

Note that ! ds is the summation of all the line segment lengths ds around the
circular loop; that is, it simply gives the circumference 2pr of the loop.

Our right-hand rule gives us a plus sign for the current of Fig. 29-13.The right
side of Ampere’s law becomes "m0 i, and we then have

B(2pr) ! m0i

or (outside straight wire). (29-17)

With a slight change in notation, this is Eq. 29-4, which we derived earlier—with
considerably more effort—using the law of Biot and Savart. In addition, because
the magnitude B turned out positive, we know that the correct direction of 
must be the one shown in Fig. 29-13.

Magnetic Field Inside a Long Straight Wire with Current
Figure 29-14 shows the cross section of a long straight wire of radius R that
carries a uniformly distributed current i directly out of the page. Because the
current is uniformly distributed over a cross section of the wire, the magnetic
field produced by the current must be cylindrically symmetrical. Thus, to find
the magnetic field at points inside the wire, we can again use an Amperian loop of
radius r, as shown in Fig. 29-14, where now r # R. Symmetry again suggests that 
is tangent to the loop, as shown; so the left side of Ampere’s law again yields

(29-18)

To find the right side of Ampere’s law, we note that because the current is
uniformly distributed, the current ienc encircled by the loop is proportional to the
area encircled by the loop; that is,

(29-19)

Our right-hand rule tells us that ienc gets a plus sign. Then Ampere’s law gives us

or (inside straight wire). (29-20)

Thus, inside the wire, the magnitude B of the magnetic field is proportional to r ,
is zero at the center, and is maximum at r = R (the surface). Note that Eqs. 29-17
and 29-20 give the same value for B at the surface.

B ! " $0i
2%R2  # r

B(2%r) ! $0i 
%r 2

%R2

ienc ! i 
%r2

%R2 .

$ B
:

! ds: ! B $ ds ! B(2%r).

B
:

B
:

B
:

B !
$0i
2%r

$ B
:

! ds: ! $ B cos & ds ! B $ ds ! B(2%r).

B
:

ds:

ds:B
:

ds:
B
:

ds:
B
:

B
:

Fig. 29-14 Using Ampere’s law to find
the magnetic field that a current i produces
inside a long straight wire of circular cross
section.The current is uniformly distrib-
uted over the cross section of the wire and
emerges from the page.An Amperian loop
is drawn inside the wire.

R 

Amperian 
loop 

r 

Wire 
surface

i  

ds 

B 

Only the current encircled
by the loop is used in
Ampere's law.

CHECKPOINT 2

The figure here shows three equal cur-
rents i (two parallel and one antiparal-
lel) and four Amperian loops. Rank the
loops according to the magnitude of

along each, greatest first.! B
:

! ds:  

c d

b

a

ii

i

halliday_c29_764-790v2.qxd  3-12-2009  16:13  Page 773

A a, b, c, d

B d, b, c, a

C (a and b), d, c

D d, (a and c), b←
1Halliday, Resnick, Walker, page 773.



Ampère’s Law and the Magnetic Field from a
Current Outside a wire

Suppose we want to know the magnitude of the magnetic field at a
distance r outside a wire. Using Ampère’s Law?
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Fig. 29-13 Using Ampere’s law to find
the magnetic field that a current i produces
outside a long straight wire of circular cross
section.The Amperian loop is a concentric
circle that lies outside the wire.

i  

(   = 0) θ 

r 
Amperian 
loop Wire 

surface 

B 

ds 

All of the current is
encircled and thus all
is used in Ampere's law.

direction of integration. Assume that at the location of the element shown in
Fig. 29-11, the net magnetic field due to the three currents is . Because the wires
are perpendicular to the page, we know that the magnetic field at due to each
current is in the plane of Fig. 29-11; thus, their net magnetic field at must also
be in that plane. However, we do not know the orientation of within the plane.
In Fig. 29-11, is arbitrarily drawn at an angle u to the direction of .

The scalar product on the left side of Eq. 29-14 is equal to B cos u ds.
Thus,Ampere’s law can be written as

(29-15)

We can now interpret the scalar product as being the product of a length ds
of the Amperian loop and the field component B cos u tangent to the loop. Then
we can interpret the integration as being the summation of all such products
around the entire loop.

When we can actually perform this integration, we do not need to know the
direction of before integrating. Instead, we arbitrarily assume to be generally
in the direction of integration (as in Fig. 29-11). Then we use the following
curled–straight right-hand rule to assign a plus sign or a minus sign to each of the
currents that make up the net encircled current ienc:

B
:

B
:

B
:

! ds:

! B
:

! ds: ! ! B cos " ds ! #0ienc.

B
:

! ds:
ds:B

:
B
:

ds:B
:

ds:
B
:

ds:

Curl your right hand around the Amperian loop, with the fingers pointing in the
direction of integration. A current through the loop in the general direction of your
outstretched thumb is assigned a plus sign, and a current generally in the opposite
direction is assigned a minus sign.

Finally, we solve Eq. 29-15 for the magnitude of . If B turns out positive, then
the direction we assumed for is correct. If it turns out negative, we neglect the
minus sign and redraw in the opposite direction.

In Fig. 29-12 we apply the curled–straight right-hand rule for Ampere’s law
to the situation of Fig. 29-11. With the indicated counterclockwise direction of
integration, the net current encircled by the loop is

ienc ! i1 $ i2.

(Current i3 is not encircled by the loop.) We can then rewrite Eq. 29-15 as

(29-16)

You might wonder why, since current i3 contributes to the magnetic-field mag-
nitude B on the left side of Eq. 29-16, it is not needed on the right side.The answer
is that the contributions of current i3 to the magnetic field cancel out because the
integration in Eq. 29-16 is made around the full loop. In contrast, the contributions
of an encircled current to the magnetic field do not cancel out.

We cannot solve Eq. 29-16 for the magnitude B of the magnetic field because for
the situation of Fig. 29-11 we do not have enough information to simplify and solve
the integral.However,we do know the outcome of the integration; it must be equal to
m0(i1 $ i2), the value of which is set by the net current passing through the loop.

We shall now apply Ampere’s law to two situations in which symmetry does
allow us to simplify and solve the integral, hence to find the magnetic field.

Magnetic Field Outside a Long Straight Wire with Current
Figure 29-13 shows a long straight wire that carries current i directly out of the
page. Equation 29-4 tells us that the magnetic field produced by the current has
the same magnitude at all points that are the same distance r from the wire;

B
:

! B cos " ds ! #0(i1 $ i2).

B
:

B
:

B
:

Fig. 29-12 A right-hand rule for
Ampere’s law, to determine the signs for
currents encircled by an Amperian loop.
The situation is that of Fig. 29-11.

+i1 

–i2 
Direction of 
integration 

This is how to assign a
sign to a current used in
Ampere's law.
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Ampère’s Law and the Magnetic Field from a
Current Outside a wire
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Fig. 29-13 Using Ampere’s law to find
the magnetic field that a current i produces
outside a long straight wire of circular cross
section.The Amperian loop is a concentric
circle that lies outside the wire.

i  

(   = 0) θ 

r 
Amperian 
loop Wire 

surface 

B 

ds 

All of the current is
encircled and thus all
is used in Ampere's law.

direction of integration. Assume that at the location of the element shown in
Fig. 29-11, the net magnetic field due to the three currents is . Because the wires
are perpendicular to the page, we know that the magnetic field at due to each
current is in the plane of Fig. 29-11; thus, their net magnetic field at must also
be in that plane. However, we do not know the orientation of within the plane.
In Fig. 29-11, is arbitrarily drawn at an angle u to the direction of .

The scalar product on the left side of Eq. 29-14 is equal to B cos u ds.
Thus,Ampere’s law can be written as

(29-15)

We can now interpret the scalar product as being the product of a length ds
of the Amperian loop and the field component B cos u tangent to the loop. Then
we can interpret the integration as being the summation of all such products
around the entire loop.

When we can actually perform this integration, we do not need to know the
direction of before integrating. Instead, we arbitrarily assume to be generally
in the direction of integration (as in Fig. 29-11). Then we use the following
curled–straight right-hand rule to assign a plus sign or a minus sign to each of the
currents that make up the net encircled current ienc:

B
:

B
:

B
:

! ds:

! B
:

! ds: ! ! B cos " ds ! #0ienc.

B
:

! ds:
ds:B

:
B
:

ds:B
:

ds:
B
:

ds:

Curl your right hand around the Amperian loop, with the fingers pointing in the
direction of integration. A current through the loop in the general direction of your
outstretched thumb is assigned a plus sign, and a current generally in the opposite
direction is assigned a minus sign.

Finally, we solve Eq. 29-15 for the magnitude of . If B turns out positive, then
the direction we assumed for is correct. If it turns out negative, we neglect the
minus sign and redraw in the opposite direction.

In Fig. 29-12 we apply the curled–straight right-hand rule for Ampere’s law
to the situation of Fig. 29-11. With the indicated counterclockwise direction of
integration, the net current encircled by the loop is

ienc ! i1 $ i2.

(Current i3 is not encircled by the loop.) We can then rewrite Eq. 29-15 as

(29-16)

You might wonder why, since current i3 contributes to the magnetic-field mag-
nitude B on the left side of Eq. 29-16, it is not needed on the right side.The answer
is that the contributions of current i3 to the magnetic field cancel out because the
integration in Eq. 29-16 is made around the full loop. In contrast, the contributions
of an encircled current to the magnetic field do not cancel out.

We cannot solve Eq. 29-16 for the magnitude B of the magnetic field because for
the situation of Fig. 29-11 we do not have enough information to simplify and solve
the integral.However,we do know the outcome of the integration; it must be equal to
m0(i1 $ i2), the value of which is set by the net current passing through the loop.

We shall now apply Ampere’s law to two situations in which symmetry does
allow us to simplify and solve the integral, hence to find the magnetic field.

Magnetic Field Outside a Long Straight Wire with Current
Figure 29-13 shows a long straight wire that carries current i directly out of the
page. Equation 29-4 tells us that the magnetic field produced by the current has
the same magnitude at all points that are the same distance r from the wire;
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Fig. 29-12 A right-hand rule for
Ampere’s law, to determine the signs for
currents encircled by an Amperian loop.
The situation is that of Fig. 29-11.
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Ampère’s Law:∮
B · ds = µ0Ienc

To find the B-field at a distance r from the wire’s center choose a
circular path of radius r .

By cylindrical symmetry, everywhere along the circle B · ds is
constant.

The magnetic field lines must form a closed loop ⇒ B · ds = B ds.
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Fig. 29-13 Using Ampere’s law to find
the magnetic field that a current i produces
outside a long straight wire of circular cross
section.The Amperian loop is a concentric
circle that lies outside the wire.
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direction of integration. Assume that at the location of the element shown in
Fig. 29-11, the net magnetic field due to the three currents is . Because the wires
are perpendicular to the page, we know that the magnetic field at due to each
current is in the plane of Fig. 29-11; thus, their net magnetic field at must also
be in that plane. However, we do not know the orientation of within the plane.
In Fig. 29-11, is arbitrarily drawn at an angle u to the direction of .

The scalar product on the left side of Eq. 29-14 is equal to B cos u ds.
Thus,Ampere’s law can be written as

(29-15)

We can now interpret the scalar product as being the product of a length ds
of the Amperian loop and the field component B cos u tangent to the loop. Then
we can interpret the integration as being the summation of all such products
around the entire loop.

When we can actually perform this integration, we do not need to know the
direction of before integrating. Instead, we arbitrarily assume to be generally
in the direction of integration (as in Fig. 29-11). Then we use the following
curled–straight right-hand rule to assign a plus sign or a minus sign to each of the
currents that make up the net encircled current ienc:
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Curl your right hand around the Amperian loop, with the fingers pointing in the
direction of integration. A current through the loop in the general direction of your
outstretched thumb is assigned a plus sign, and a current generally in the opposite
direction is assigned a minus sign.

Finally, we solve Eq. 29-15 for the magnitude of . If B turns out positive, then
the direction we assumed for is correct. If it turns out negative, we neglect the
minus sign and redraw in the opposite direction.

In Fig. 29-12 we apply the curled–straight right-hand rule for Ampere’s law
to the situation of Fig. 29-11. With the indicated counterclockwise direction of
integration, the net current encircled by the loop is

ienc ! i1 $ i2.

(Current i3 is not encircled by the loop.) We can then rewrite Eq. 29-15 as

(29-16)

You might wonder why, since current i3 contributes to the magnetic-field mag-
nitude B on the left side of Eq. 29-16, it is not needed on the right side.The answer
is that the contributions of current i3 to the magnetic field cancel out because the
integration in Eq. 29-16 is made around the full loop. In contrast, the contributions
of an encircled current to the magnetic field do not cancel out.

We cannot solve Eq. 29-16 for the magnitude B of the magnetic field because for
the situation of Fig. 29-11 we do not have enough information to simplify and solve
the integral.However,we do know the outcome of the integration; it must be equal to
m0(i1 $ i2), the value of which is set by the net current passing through the loop.

We shall now apply Ampere’s law to two situations in which symmetry does
allow us to simplify and solve the integral, hence to find the magnetic field.

Magnetic Field Outside a Long Straight Wire with Current
Figure 29-13 shows a long straight wire that carries current i directly out of the
page. Equation 29-4 tells us that the magnetic field produced by the current has
the same magnitude at all points that are the same distance r from the wire;
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Ampère’s Law:∮
B · ds = µ0Ienc

To find the B-field at a distance r from the wire’s center choose a
circular path of radius r .

By cylindrical symmetry, everywhere along the circle B · ds is
constant.

The magnetic field lines must form a closed loop ⇒ B · ds = B ds.
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Fig. 29-13 Using Ampere’s law to find
the magnetic field that a current i produces
outside a long straight wire of circular cross
section.The Amperian loop is a concentric
circle that lies outside the wire.
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direction of integration. Assume that at the location of the element shown in
Fig. 29-11, the net magnetic field due to the three currents is . Because the wires
are perpendicular to the page, we know that the magnetic field at due to each
current is in the plane of Fig. 29-11; thus, their net magnetic field at must also
be in that plane. However, we do not know the orientation of within the plane.
In Fig. 29-11, is arbitrarily drawn at an angle u to the direction of .

The scalar product on the left side of Eq. 29-14 is equal to B cos u ds.
Thus,Ampere’s law can be written as

(29-15)

We can now interpret the scalar product as being the product of a length ds
of the Amperian loop and the field component B cos u tangent to the loop. Then
we can interpret the integration as being the summation of all such products
around the entire loop.

When we can actually perform this integration, we do not need to know the
direction of before integrating. Instead, we arbitrarily assume to be generally
in the direction of integration (as in Fig. 29-11). Then we use the following
curled–straight right-hand rule to assign a plus sign or a minus sign to each of the
currents that make up the net encircled current ienc:

B
:

B
:

B
:

! ds:

! B
:

! ds: ! ! B cos " ds ! #0ienc.

B
:

! ds:
ds:B

:
B
:

ds:B
:

ds:
B
:

ds:

Curl your right hand around the Amperian loop, with the fingers pointing in the
direction of integration. A current through the loop in the general direction of your
outstretched thumb is assigned a plus sign, and a current generally in the opposite
direction is assigned a minus sign.

Finally, we solve Eq. 29-15 for the magnitude of . If B turns out positive, then
the direction we assumed for is correct. If it turns out negative, we neglect the
minus sign and redraw in the opposite direction.

In Fig. 29-12 we apply the curled–straight right-hand rule for Ampere’s law
to the situation of Fig. 29-11. With the indicated counterclockwise direction of
integration, the net current encircled by the loop is

ienc ! i1 $ i2.

(Current i3 is not encircled by the loop.) We can then rewrite Eq. 29-15 as

(29-16)

You might wonder why, since current i3 contributes to the magnetic-field mag-
nitude B on the left side of Eq. 29-16, it is not needed on the right side.The answer
is that the contributions of current i3 to the magnetic field cancel out because the
integration in Eq. 29-16 is made around the full loop. In contrast, the contributions
of an encircled current to the magnetic field do not cancel out.

We cannot solve Eq. 29-16 for the magnitude B of the magnetic field because for
the situation of Fig. 29-11 we do not have enough information to simplify and solve
the integral.However,we do know the outcome of the integration; it must be equal to
m0(i1 $ i2), the value of which is set by the net current passing through the loop.

We shall now apply Ampere’s law to two situations in which symmetry does
allow us to simplify and solve the integral, hence to find the magnetic field.

Magnetic Field Outside a Long Straight Wire with Current
Figure 29-13 shows a long straight wire that carries current i directly out of the
page. Equation 29-4 tells us that the magnetic field produced by the current has
the same magnitude at all points that are the same distance r from the wire;
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B

∮
ds = µ0Ienc

B(2πr) = µ0I

And again we get

B =
µ0I

2πr



Ampère’s Law and the Magnetic Field from a
Current Inside a wire

We can also use Ampère’s Law in another context, where using the
Biot-Savart Law is harder.
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that is, the field has cylindrical symmetry about the wire. We can take advan-
tage of that symmetry to simplify the integral in Ampere’s law (Eqs. 29-14 and
29-15) if we encircle the wire with a concentric circular Amperian loop of radius
r, as in Fig. 29-13. The magnetic field then has the same magnitude B at every
point on the loop. We shall integrate counterclockwise, so that has the direc-
tion shown in Fig. 29-13.

We can further simplify the quantity B cos u in Eq. 29-15 by noting that is
tangent to the loop at every point along the loop, as is . Thus, and are
either parallel or antiparallel at each point of the loop, and we shall arbitrarily
assume the former. Then at every point the angle u between and is 0°, so
cos u ! cos 0° ! 1.The integral in Eq. 29-15 then becomes

Note that ! ds is the summation of all the line segment lengths ds around the
circular loop; that is, it simply gives the circumference 2pr of the loop.

Our right-hand rule gives us a plus sign for the current of Fig. 29-13.The right
side of Ampere’s law becomes "m0 i, and we then have

B(2pr) ! m0i

or (outside straight wire). (29-17)

With a slight change in notation, this is Eq. 29-4, which we derived earlier—with
considerably more effort—using the law of Biot and Savart. In addition, because
the magnitude B turned out positive, we know that the correct direction of 
must be the one shown in Fig. 29-13.

Magnetic Field Inside a Long Straight Wire with Current
Figure 29-14 shows the cross section of a long straight wire of radius R that
carries a uniformly distributed current i directly out of the page. Because the
current is uniformly distributed over a cross section of the wire, the magnetic
field produced by the current must be cylindrically symmetrical. Thus, to find
the magnetic field at points inside the wire, we can again use an Amperian loop of
radius r, as shown in Fig. 29-14, where now r # R. Symmetry again suggests that 
is tangent to the loop, as shown; so the left side of Ampere’s law again yields

(29-18)

To find the right side of Ampere’s law, we note that because the current is
uniformly distributed, the current ienc encircled by the loop is proportional to the
area encircled by the loop; that is,

(29-19)

Our right-hand rule tells us that ienc gets a plus sign. Then Ampere’s law gives us

or (inside straight wire). (29-20)

Thus, inside the wire, the magnitude B of the magnetic field is proportional to r ,
is zero at the center, and is maximum at r = R (the surface). Note that Eqs. 29-17
and 29-20 give the same value for B at the surface.
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Fig. 29-14 Using Ampere’s law to find
the magnetic field that a current i produces
inside a long straight wire of circular cross
section.The current is uniformly distrib-
uted over the cross section of the wire and
emerges from the page.An Amperian loop
is drawn inside the wire.
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Now we place the Amperian loop inside the wire.

We still have
∮

B · ds = 2πrB, but now the current that flows
through the loop is reduced.
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B · ds = 2πrB, but now the current that flow
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that is, the field has cylindrical symmetry about the wire. We can take advan-
tage of that symmetry to simplify the integral in Ampere’s law (Eqs. 29-14 and
29-15) if we encircle the wire with a concentric circular Amperian loop of radius
r, as in Fig. 29-13. The magnetic field then has the same magnitude B at every
point on the loop. We shall integrate counterclockwise, so that has the direc-
tion shown in Fig. 29-13.

We can further simplify the quantity B cos u in Eq. 29-15 by noting that is
tangent to the loop at every point along the loop, as is . Thus, and are
either parallel or antiparallel at each point of the loop, and we shall arbitrarily
assume the former. Then at every point the angle u between and is 0°, so
cos u ! cos 0° ! 1.The integral in Eq. 29-15 then becomes

Note that ! ds is the summation of all the line segment lengths ds around the
circular loop; that is, it simply gives the circumference 2pr of the loop.

Our right-hand rule gives us a plus sign for the current of Fig. 29-13.The right
side of Ampere’s law becomes "m0 i, and we then have

B(2pr) ! m0i

or (outside straight wire). (29-17)

With a slight change in notation, this is Eq. 29-4, which we derived earlier—with
considerably more effort—using the law of Biot and Savart. In addition, because
the magnitude B turned out positive, we know that the correct direction of 
must be the one shown in Fig. 29-13.

Magnetic Field Inside a Long Straight Wire with Current
Figure 29-14 shows the cross section of a long straight wire of radius R that
carries a uniformly distributed current i directly out of the page. Because the
current is uniformly distributed over a cross section of the wire, the magnetic
field produced by the current must be cylindrically symmetrical. Thus, to find
the magnetic field at points inside the wire, we can again use an Amperian loop of
radius r, as shown in Fig. 29-14, where now r # R. Symmetry again suggests that 
is tangent to the loop, as shown; so the left side of Ampere’s law again yields

(29-18)

To find the right side of Ampere’s law, we note that because the current is
uniformly distributed, the current ienc encircled by the loop is proportional to the
area encircled by the loop; that is,

(29-19)

Our right-hand rule tells us that ienc gets a plus sign. Then Ampere’s law gives us

or (inside straight wire). (29-20)

Thus, inside the wire, the magnitude B of the magnetic field is proportional to r ,
is zero at the center, and is maximum at r = R (the surface). Note that Eqs. 29-17
and 29-20 give the same value for B at the surface.
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Assuming the wire has uniform
resistivity, Ienc:
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that is, the field has cylindrical symmetry about the wire. We can take advan-
tage of that symmetry to simplify the integral in Ampere’s law (Eqs. 29-14 and
29-15) if we encircle the wire with a concentric circular Amperian loop of radius
r, as in Fig. 29-13. The magnetic field then has the same magnitude B at every
point on the loop. We shall integrate counterclockwise, so that has the direc-
tion shown in Fig. 29-13.

We can further simplify the quantity B cos u in Eq. 29-15 by noting that is
tangent to the loop at every point along the loop, as is . Thus, and are
either parallel or antiparallel at each point of the loop, and we shall arbitrarily
assume the former. Then at every point the angle u between and is 0°, so
cos u ! cos 0° ! 1.The integral in Eq. 29-15 then becomes

Note that ! ds is the summation of all the line segment lengths ds around the
circular loop; that is, it simply gives the circumference 2pr of the loop.

Our right-hand rule gives us a plus sign for the current of Fig. 29-13.The right
side of Ampere’s law becomes "m0 i, and we then have

B(2pr) ! m0i

or (outside straight wire). (29-17)

With a slight change in notation, this is Eq. 29-4, which we derived earlier—with
considerably more effort—using the law of Biot and Savart. In addition, because
the magnitude B turned out positive, we know that the correct direction of 
must be the one shown in Fig. 29-13.

Magnetic Field Inside a Long Straight Wire with Current
Figure 29-14 shows the cross section of a long straight wire of radius R that
carries a uniformly distributed current i directly out of the page. Because the
current is uniformly distributed over a cross section of the wire, the magnetic
field produced by the current must be cylindrically symmetrical. Thus, to find
the magnetic field at points inside the wire, we can again use an Amperian loop of
radius r, as shown in Fig. 29-14, where now r # R. Symmetry again suggests that 
is tangent to the loop, as shown; so the left side of Ampere’s law again yields

(29-18)

To find the right side of Ampere’s law, we note that because the current is
uniformly distributed, the current ienc encircled by the loop is proportional to the
area encircled by the loop; that is,

(29-19)

Our right-hand rule tells us that ienc gets a plus sign. Then Ampere’s law gives us

or (inside straight wire). (29-20)

Thus, inside the wire, the magnitude B of the magnetic field is proportional to r ,
is zero at the center, and is maximum at r = R (the surface). Note that Eqs. 29-17
and 29-20 give the same value for B at the surface.
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Ampère’s Law

For constant currents (magnetostatics):∮
B · ds = µ0Ienc

The line integral of the magnetic field around a closed loop is
proportional to the current that flows through the loop.

Later we will extend this law to deal with the situation where the
fields / currents are changing.



Solenoids

solenoid

A helical coil of tightly wound wire that can carry a current.
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Additional examples, video, and practice available at WileyPLUS

Sample Problem

Note that in these steps we took the differential area dA to
be the area of the thin ring in Figs. 29-15d–f and then re-
placed it with its equivalent, the product of the ring’s cir-
cumference 2pr and its thickness dr.

For the Amperian loop, the direction of integration indi-
cated in Fig. 29-15b is (arbitrarily) clockwise. Applying the
right-hand rule for Ampere’s law to that loop, we find that we
should take ienc as negative because the current is directed out
of the page but our thumb is directed into the page.

We next evaluate the left side of Ampere’s law 
exactly as we did in Fig. 29-14, and we again obtain 
Eq. 29-18.Then Ampere’s law,

gives us

Solving for B and substituting known data yield

Thus, the magnetic field at a point 3.0 cm from the central
axis has magnitude

B ! 2.0 " 10#5 T (Answer)

and forms magnetic field lines that are directed opposite
our direction of integration, hence counterclockwise in
Fig. 29-15b.

B
:

 ! #2.0 " 10#5 T.

  " [(0.030 m)4 # (0.020 m)4]

 ! #
(4$ " 10 #7 T %m/A)(3.0 " 10 6 A/m4)

4(0.030 m)

  B ! #
&0 c
4r

 (r4 # a4)

B(2$r) ! #
& 0$c

2
 (r 4 # a 4).

! B
:

! ds: ! & 0 ienc ,

Ampere’s law to find the field inside a long cylinder of current

Figure 29-15a shows the cross section of a long conducting
cylinder with inner radius a ! 2.0 cm and outer radius 
b ! 4.0 cm. The cylinder carries a current out of the page,
and the magnitude of the current density in the cross sec-
tion is given by J ! cr2, with c ! 3.0 " 10 6 A/m4 and r in
meters. What is the magnetic field at the dot in Fig.
29-15a, which is at radius r ! 3.0 cm from the central axis
of the cylinder?

The point at which we want to evaluate is inside the mate-
rial of the conducting cylinder, between its inner and outer
radii. We note that the current distribution has cylindrical
symmetry (it is the same all around the cross section for any
given radius). Thus, the symmetry allows us to use Ampere’s
law to find at the point. We first draw the Amperian loop
shown in Fig. 29-15b. The loop is concentric with the cylin-
der and has radius r ! 3.0 cm because we want to evaluate

at that distance from the cylinder’s central axis.
Next, we must compute the current ienc that is encircled

by the Amperian loop. However, we cannot set up a propor-
tionality as in Eq. 29-19, because here the current is not uni-
formly distributed. Instead, we must integrate the current
density magnitude from the cylinder’s inner radius a to the
loop radius r , using the steps shown in Figs. 29-15c through h.

Calculations: We write the integral as

 !
$c(r 4 # a4)

2
.

 ! 2$c "r

a
  r 3 dr ! 2$c # r 4

4 $
a

r

  ienc ! "  
J dA ! "r

a
  cr 2(2$r dr)

B
:

B
:

B
:

B
:

KEY I DEAS

29-5 Solenoids and Toroids
Magnetic Field of a Solenoid
We now turn our attention to another situation in which Ampere’s law proves
useful. It concerns the magnetic field produced by the current in a long, tightly
wound helical coil of wire. Such a coil is called a solenoid (Fig. 29-16). We assume
that the length of the solenoid is much greater than the diameter.

Figure 29-17 shows a section through a portion of a “stretched-out” solenoid.
The solenoid’s magnetic field is the vector sum of the fields produced by the indi-Fig. 29-16 A solenoid carrying current i.

i

i
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turn

A single complete loop of wire in a solenoid. “This solenoid has 10
turns,” means it has 10 complete loops.



Magnetic Field inside and around a solenoid
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Fig. 29-15 (a) – (b) To find the magnetic field at a point within this conducting cylinder, we use a con-
centric Amperian loop through the point.We then need the current encircled by the loop. (c) – (h)
Because the current density is nonuniform, we start with a thin ring and then sum (via integration) the
currents in all such rings in the encircled area.

A

Fig. 29-17 A vertical cross section through the central axis of a
“stretched-out” solenoid.The back portions of five turns are shown, as are
the magnetic field lines due to a current through the solenoid. Each turn pro-
duces circular magnetic field lines near itself. Near the solenoid’s axis, the
field lines combine into a net magnetic field that is directed along the axis.
The closely spaced field lines there indicate a strong magnetic field. Outside
the solenoid the field lines are widely spaced; the field there is very weak.

P

Amperian
loop

r
a

r

b

(a) (b) (c) (d)

We want the
magnetic field at
the dot at radius r.

We start with a ring
that is so thin that
we can approximate
the current density as
being uniform within it.

a

(g)

Our job is to sum
the currents in all
rings from this
smallest one ...

(h)

r

... to this largest
one, which has the
same radius as the
Amperian loop.

(e)

dr

Its area dA is the
product of the ring's
circumference
and the width dr.

( f )

dA

The current within the
ring is the product of
the current density J
and the ring's area dA.

So, we put a concentric
Amperian loop through
the dot.

We need to find the
current in the area
encircled by the loop.
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Each turn of wire locally has a circular magnetic field around it.
The fields from all the wires add together to create very dense field
lines inside the solenoid.



Magnetic Field of a solenoid
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Fig. 29-19 Application of Ampere’s law to a section of a long ideal solenoid carrying
a current i.The Amperian loop is the rectangle abcda.

a b

d c
h

i

B

vidual turns (windings) that make up the solenoid. For points very close to a turn,
the wire behaves magnetically almost like a long straight wire, and the lines of 
there are almost concentric circles. Figure 29-17 suggests that the field tends to
cancel between adjacent turns. It also suggests that, at points inside the solenoid
and reasonably far from the wire, is approximately parallel to the (central)
solenoid axis. In the limiting case of an ideal solenoid, which is infinitely long
and consists of tightly packed (close-packed) turns of square wire, the field inside
the coil is uniform and parallel to the solenoid axis.

At points above the solenoid, such as P in Fig. 29-17, the magnetic field set
up by the upper parts of the solenoid turns (these upper turns are marked !)
is directed to the left (as drawn near P) and tends to cancel the field set up at P
by the lower parts of the turns (these lower turns are marked "), which is di-
rected to the right (not drawn). In the limiting case of an ideal solenoid, the
magnetic field outside the solenoid is zero. Taking the external field to be zero
is an excellent assumption for a real solenoid if its length is much greater than
its diameter and if we consider external points such as point P that are not at
either end of the solenoid. The direction of the magnetic field along the sole-
noid axis is given by a curled – straight right-hand rule: Grasp the solenoid with
your right hand so that your fingers follow the direction of the current in the
windings; your extended right thumb then points in the direction of the axial
magnetic field.

Figure 29-18 shows the lines of for a real solenoid.The spacing of these lines
in the central region shows that the field inside the coil is fairly strong and uniform
over the cross section of the coil.The external field, however, is relatively weak.

Let us now apply Ampere’s law,

(29-21)

to the ideal solenoid of Fig. 29-19, where is uniform within the solenoid and
zero outside it, using the rectangular Amperian loop abcda. We write as! B

:
! ds:

B
:

" B
:

! ds: ! " 0 ienc ,

B
:

B
:

B
:

Fig. 29-18 Magnetic field lines for a real solenoid of finite length.The field is strong
and uniform at interior points such as P1 but relatively weak at external points such as P2.

P2

P1
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The wires on opposite sides (top and bottom in the picture) have
currents in opposite directions. The fields add up between them,
but cancel out outside of them.



Magnetic Field of an ideal solenoid
In an ideal solenoid (with infinite length) the field outside is
negligible and inside is uniform. (Similar to a capacitor!)

Can use an Amperian loop to find the B-field inside:

776 CHAPTE R 29 MAG N ETIC F I E LDS DU E TO CU R R E NTS

HALLIDAY REVISED

Fig. 29-19 Application of Ampere’s law to a section of a long ideal solenoid carrying
a current i.The Amperian loop is the rectangle abcda.

a b

d c
h

i

B

vidual turns (windings) that make up the solenoid. For points very close to a turn,
the wire behaves magnetically almost like a long straight wire, and the lines of 
there are almost concentric circles. Figure 29-17 suggests that the field tends to
cancel between adjacent turns. It also suggests that, at points inside the solenoid
and reasonably far from the wire, is approximately parallel to the (central)
solenoid axis. In the limiting case of an ideal solenoid, which is infinitely long
and consists of tightly packed (close-packed) turns of square wire, the field inside
the coil is uniform and parallel to the solenoid axis.

At points above the solenoid, such as P in Fig. 29-17, the magnetic field set
up by the upper parts of the solenoid turns (these upper turns are marked !)
is directed to the left (as drawn near P) and tends to cancel the field set up at P
by the lower parts of the turns (these lower turns are marked "), which is di-
rected to the right (not drawn). In the limiting case of an ideal solenoid, the
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your right hand so that your fingers follow the direction of the current in the
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in the central region shows that the field inside the coil is fairly strong and uniform
over the cross section of the coil.The external field, however, is relatively weak.
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to the ideal solenoid of Fig. 29-19, where is uniform within the solenoid and
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Fig. 29-18 Magnetic field lines for a real solenoid of finite length.The field is strong
and uniform at interior points such as P1 but relatively weak at external points such as P2.

P2

P1

halliday_c29_764-790v2.qxd  3-12-2009  16:13  Page 776

∮
B · ds = µ0Ienc

Here, suppose there are n turns per unit length in the solenoid,
then Ienc = Inh

Bh = µ0Inh

Inside an ideal solenoid:

B = µ0In



Magnetic Field of an ideal solenoid
In an ideal solenoid (with infinite length) the field outside is
negligible and inside is uniform. (Similar to a capacitor!)

Can use an Amperian loop to find the B-field inside:
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∮
B · ds = µ0Ienc

Here, suppose there are n turns per unit length in the solenoid,
then Ienc = Inh

Bh = µ0Inh

Inside an ideal solenoid:

B = µ0In



Question

For what current through a solenoid with 50 turns per centimeter
will the magnetic field be 20 mT?

I = 3.18 A



Question

For what current through a solenoid with 50 turns per centimeter
will the magnetic field be 20 mT?

I = 3.18 A



Induction and Inductance

Changing magnetic fields can put forces on charges.

To see how, we start by looking again at conductors moving in
magnetic fields.



Motional EMF
If a conductor moves through a magnetic field at an angle to the
field, an emf is induced across the conductor.

940 Chapter 31 Faraday’s Law

 The straight conductor of length , shown in Figure 31.7 is moving through a uni-
form magnetic field directed into the page. For simplicity, let’s assume the conductor 
is moving in a direction perpendicular to the field with constant velocity under the 
influence of some external agent. From the magnetic version of the particle in a field 
model, the electrons in the conductor experience a force F

S
B 5 q vS 3 B

S
 (Eq. 29.1)  

that is directed along the length ,, perpendicular to both vS and B
S

. Under the  
influence of this force, the electrons move to the lower end of the conductor and 
accumulate there, leaving a net positive charge at the upper end. As a result of this 
charge separation, an electric field E

S
 is produced inside the conductor. Therefore, 

the electrons are also described by the electric version of the particle in a field 
model. The charges accumulate at both ends until the downward magnetic force qvB 
on charges remaining in the conductor is balanced by the upward electric force qE.  
The electrons are then described by the particle in equilibrium model. The condi-
tion for equilibrium requires that the forces on the electrons balance:

 qE 5 qvB    or    E 5 vB 

The magnitude of the electric field produced in the conductor is related to the 
potential difference across the ends of the conductor according to the relationship 
DV 5 E, (Eq. 25.6). Therefore, for the equilibrium condition,

 DV 5 E, 5 B,v (31.4)

where the upper end of the conductor in Figure 31.7 is at a higher electric potential 
than the lower end. Therefore, a potential difference is maintained between the 
ends of the conductor as long as the conductor continues to move through the uni-
form magnetic field. If the direction of the motion is reversed, the polarity of the 
potential difference is also reversed.
 A more interesting situation occurs when the moving conductor is part of a closed 
conducting path. This situation is particularly useful for illustrating how a changing 
magnetic flux causes an induced current in a closed circuit. Consider a circuit con-
sisting of a conducting bar of length , sliding along two fixed, parallel conducting 
rails as shown in Figure 31.8a. For simplicity, let’s assume the bar has zero resistance 
and the stationary part of the circuit has a resistance R. A uniform and constant 
magnetic field B

S
 is applied perpendicular to the plane of the circuit. As the bar is 

pulled to the right with a velocity vS under the influence of an applied force F
S

app, 
free charges in the bar are moving particles in a magnetic field that experience a 
magnetic force directed along the length of the bar. This force sets up an induced 
current because the charges are free to move in the closed conducting path. In this 
case, the rate of change of magnetic flux through the circuit and the corresponding 
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E
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S
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Due to the magnetic force on 
electrons, the ends of the 
conductor become oppositely 
charged, which establishes an 
electric field in the conductor.

In steady state, the electric and 
magnetic forces on an electron 
in the conductor are balanced.

"

Figure 31.7  A straight electrical 
conductor of length , moving with 
a velocity vS through a uniform 
magnetic field B

S
 directed perpen-

dicular to vS.

a b

vS

R # B!v

I

I

R

x
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I

e

A counterclockwise current I is 
induced in the loop. The magnetic 
force       on the bar carrying this 
current opposes the motion.
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Bin
S
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!

Figure 31.8 (a) A conducting 
bar sliding with a velocity vS along 
two conducting rails under the 
action of an applied force F

S
app.  

(b) The equivalent circuit dia-
gram for the setup shown in (a).

There are two ways to see this:

1 force on conduction charges F = q v × B

2 in the rest frame of the conductor there is also an electric field



Motional EMF
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Once the charge distribution reaches
equilibrium, the net force on each
charge:

Fnet = q(E + v × B) = 0

E = vB (v ⊥ B)

E

`
= vB

E = vB`



Motional emf and loops

Imagine a loop of wire that moves in a uniform magnetic field,
B, directed into the page.

vS

a b

Imagine the loop is composed of a pair of curved rods cut along
the lines shown.

Which way (left or right) the emf directed in the top half? In the
bottom? How do the magnitudes compare?



Motional emf and loops

Imagine a loop of wire that moves in a uniform magnetic field,
B, directed into the page.

vS

a b

In this case, part of the loop near a develops a negative charge and
the part near b a positive charge, but overall no steady current
flows around the loop.



Motional emf and loops

Now imagine a loop of wire that moves in a non-uniform
magnetic field falling towards a wire.

I

vS

a b

How do the magnitudes of the emfs in the top and bottom
compare?

They are not the same! A current can flow.



Motional emf and loops

Now imagine a loop of wire that moves in a non-uniform
magnetic field falling towards a wire.

I

vS

a b

How do the magnitudes of the emfs in the top and bottom
compare?

They are not the same! A current can flow.



Motional emf and loops
Now imagine a loop of wire that moves in a non-uniform
magnetic field falling towards a wire. (Quiz 31.3)

I

vS

a b

What is the direction of the induced current in the loop of wire?

(A) clockwise

(B) counterclockwise

(C) zero

(D) impossible to determine



Motional emf and loops
Now imagine a loop of wire that moves in a non-uniform
magnetic field falling towards a wire. (Quiz 31.3)

I

vS

a b

What is the direction of the induced current in the loop of wire?

(A) clockwise

(B) counterclockwise←
(C) zero

(D) impossible to determine



Motional emf and loops

What was different in the two cases (uniform vs. non-uniform
field)?

→ The field at different parts of the loop was different.

→ The magnetic flux through the loop was changing.



Motional emf and loops

What was different in the two cases (uniform vs. non-uniform
field)?

→ The field at different parts of the loop was different.

→ The magnetic flux through the loop was changing.



Reminder: Magnetic Flux

 30.5 Gauss’s Law in Magnetism 917

arbitrarily shaped surface as shown in Figure 30.19. If the magnetic field at this 
element is B

S
,  the magnetic flux through the element is B

S
? d A

S
, where d A

S
 is a vec-

tor that is perpendicular to the surface and has a magnitude equal to the area dA. 
Therefore, the total magnetic flux FB through the surface is

 FB ; 3  B
S

? d A
S

 (30.18)

 Consider the special case of a plane of area A in a uniform field B
S

 that makes an 
angle u with d A

S
. The magnetic flux through the plane in this case is

 FB 5 BA cos u  (30.19)

If the magnetic field is parallel to the plane as in Figure 30.20a, then u 5 908 and the 
flux through the plane is zero. If the field is perpendicular to the plane as in Figure 
30.20b, then u 5 0 and the flux through the plane is BA (the maximum value).
 The unit of magnetic flux is T ? m2, which is defined as a weber (Wb); 1 Wb 5  
1 T ? m2.

�W Definition of magnetic flux

Figure 30.20 Magnetic flux 
through a plane lying in a mag-
netic field.a

d

The flux through the plane is 
zero when the magnetic field is 
parallel to the plane surface.

A
S

B
S

b

dA
S

B
S

The flux through the plane is a 
maximum when the magnetic 
field is perpendicular to the plane.

Example 30.7   Magnetic Flux Through a Rectangular Loop

A rectangular loop of width a and length b is located near a long wire carrying a 
current I (Fig. 30.21). The distance between the wire and the closest side of the 
loop is c. The wire is parallel to the long side of the loop. Find the total magnetic 
flux through the loop due to the current in the wire.

Conceptualize  As we saw in Section 30.3, the magnetic field lines due to the wire 
will be circles, many of which will pass through the rectangular loop. We know that 
the magnetic field is a function of distance r from a long 
wire. Therefore, the magnetic field varies over the area of 
the rectangular loop.

Categorize  Because the magnetic field varies over the 
area of the loop, we must integrate over this area to find 
the total flux. That identifies this as an analysis problem.

S O L U T I O N

continued

b
r

I

c a

dr

Figure 30.21  (Example 
30.7) The magnetic field 
due to the wire carrying 
a current I is not uniform 
over the rectangular loop.

Analyze  Noting that B
S

 is parallel to d A
S

 at any point 
within the loop, find the magnetic flux through the rect-
angular area using Equation 30.18 and incorporate Equa-
tion 30.14 for the magnetic field:

FB 5 3 B
S

? d A
S

5 3 B dA 5  3 
m0I
2pr

 dA

B
S

 
u

d A 
S

Figure 30.19  The magnetic  
flux through an area element dA  
is B

S
? d A

S
5 B dA cos u, where  

d A
S

 is a vector perpendicular to 
the surface.

Magnetic flux

The magnetic flux of a magnetic field through a surface A is

ΦB =
∑

B · (∆A)

Units: Tm2

If the surface is a flat plane and B is uniform, that just reduces to:

ΦB = B · A



Changing flux and emf

When a magnet is at rest near a loop of wire there is no potential
difference across the ends of the wire.

936 Chapter 31 Faraday’s Law

is moved either toward or away from it, the reading changes from zero. From these 
observations, we conclude that the loop detects that the magnet is moving relative to 
it and we relate this detection to a change in magnetic field. Therefore, it seems that 
a relationship exists between a current and a changing magnetic field.
 These results are quite remarkable because a current is set up even though no 
batteries are present in the circuit! We call such a current an induced current and say 
that it is produced by an induced emf.
 Now let’s describe an experiment conducted by Faraday and illustrated in Figure 
31.2. A primary coil is wrapped around an iron ring and connected to a switch and 
a battery. A current in the coil produces a magnetic field when the switch is closed. 
A secondary coil also is wrapped around the ring and is connected to a sensitive 
ammeter. No battery is present in the secondary circuit, and the secondary coil is 
not electrically connected to the primary coil. Any current detected in the second-
ary circuit must be induced by some external agent.
 Initially, you might guess that no current is ever detected in the secondary cir-
cuit. Something quite amazing happens when the switch in the primary circuit is 
either opened or thrown closed, however. At the instant the switch is closed, the 
ammeter reading changes from zero momentarily and then returns to zero. At the 
instant the switch is opened, the ammeter changes to a reading with the opposite 
sign and again returns to zero. Finally, the ammeter reads zero when there is either 
a steady current or no current in the primary circuit. To understand what happens 
in this experiment, note that when the switch is closed, the current in the primary 
circuit produces a magnetic field that penetrates the secondary circuit. Further-
more, when the switch is thrown closed, the magnetic field produced by the cur-
rent in the primary circuit changes from zero to some value over some finite time, 
and this changing field induces a current in the secondary circuit. Notice that no 
current is induced in the secondary coil even when a steady current exists in the 
primary coil. It is a change in the current in the primary coil that induces a current 
in the secondary coil, not just the existence of a current.
 As a result of these observations, Faraday concluded that an electric current can 
be induced in a loop by a changing magnetic field. The induced current exists 
only while the magnetic field through the loop is changing. Once the magnetic 
field reaches a steady value, the current in the loop disappears. In effect, the loop 
behaves as though a source of emf were connected to it for a short time. It is cus-
tomary to say that an induced emf is produced in the loop by the changing mag-
netic field.

Michael Faraday
British Physicist and Chemist 
(1791–1867)
Faraday is often regarded as the great-
est experimental scientist of the 1800s. 
His many contributions to the study of 
electricity include the invention of the 
electric motor, electric generator, and 
transformer as well as the discovery 
of electromagnetic induction and the 
laws of electrolysis. Greatly influenced 
by religion, he refused to work on the 
development of poison gas for the Brit-
ish military.
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When a magnet is moved 
toward a loop of wire 
connected to a sensitive 
ammeter, the ammeter 
shows that a current is 
induced in the loop.

N S

When the magnet is held 
stationary, there is no 
induced current in the 
loop, even when the 
magnet is inside the loop.
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c

When the magnet is 
moved away from the 
loop, the ammeter shows 
that the induced current 
is opposite that shown in 
part      .a

Figure 31.1 A simple experiment 
showing that a current is induced 
in a loop when a magnet is moved 
toward or away from the loop.



Changing flux and emf

When the north pole of the magnet is moved towards the loop, the
magnetic flux increases.
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is moved either toward or away from it, the reading changes from zero. From these 
observations, we conclude that the loop detects that the magnet is moving relative to 
it and we relate this detection to a change in magnetic field. Therefore, it seems that 
a relationship exists between a current and a changing magnetic field.
 These results are quite remarkable because a current is set up even though no 
batteries are present in the circuit! We call such a current an induced current and say 
that it is produced by an induced emf.
 Now let’s describe an experiment conducted by Faraday and illustrated in Figure 
31.2. A primary coil is wrapped around an iron ring and connected to a switch and 
a battery. A current in the coil produces a magnetic field when the switch is closed. 
A secondary coil also is wrapped around the ring and is connected to a sensitive 
ammeter. No battery is present in the secondary circuit, and the secondary coil is 
not electrically connected to the primary coil. Any current detected in the second-
ary circuit must be induced by some external agent.
 Initially, you might guess that no current is ever detected in the secondary cir-
cuit. Something quite amazing happens when the switch in the primary circuit is 
either opened or thrown closed, however. At the instant the switch is closed, the 
ammeter reading changes from zero momentarily and then returns to zero. At the 
instant the switch is opened, the ammeter changes to a reading with the opposite 
sign and again returns to zero. Finally, the ammeter reads zero when there is either 
a steady current or no current in the primary circuit. To understand what happens 
in this experiment, note that when the switch is closed, the current in the primary 
circuit produces a magnetic field that penetrates the secondary circuit. Further-
more, when the switch is thrown closed, the magnetic field produced by the cur-
rent in the primary circuit changes from zero to some value over some finite time, 
and this changing field induces a current in the secondary circuit. Notice that no 
current is induced in the secondary coil even when a steady current exists in the 
primary coil. It is a change in the current in the primary coil that induces a current 
in the secondary coil, not just the existence of a current.
 As a result of these observations, Faraday concluded that an electric current can 
be induced in a loop by a changing magnetic field. The induced current exists 
only while the magnetic field through the loop is changing. Once the magnetic 
field reaches a steady value, the current in the loop disappears. In effect, the loop 
behaves as though a source of emf were connected to it for a short time. It is cus-
tomary to say that an induced emf is produced in the loop by the changing mag-
netic field.

Michael Faraday
British Physicist and Chemist 
(1791–1867)
Faraday is often regarded as the great-
est experimental scientist of the 1800s. 
His many contributions to the study of 
electricity include the invention of the 
electric motor, electric generator, and 
transformer as well as the discovery 
of electromagnetic induction and the 
laws of electrolysis. Greatly influenced 
by religion, he refused to work on the 
development of poison gas for the Brit-
ish military.
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When a magnet is moved 
toward a loop of wire 
connected to a sensitive 
ammeter, the ammeter 
shows that a current is 
induced in the loop.
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When the magnet is held 
stationary, there is no 
induced current in the 
loop, even when the 
magnet is inside the loop.
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When the magnet is 
moved away from the 
loop, the ammeter shows 
that the induced current 
is opposite that shown in 
part      .a

Figure 31.1 A simple experiment 
showing that a current is induced 
in a loop when a magnet is moved 
toward or away from the loop.

A current flows clockwise in the loop.



Changing flux and emf

When the north pole of the magnet is moved away from the loop,
the magnetic flux decreases.
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is moved either toward or away from it, the reading changes from zero. From these 
observations, we conclude that the loop detects that the magnet is moving relative to 
it and we relate this detection to a change in magnetic field. Therefore, it seems that 
a relationship exists between a current and a changing magnetic field.
 These results are quite remarkable because a current is set up even though no 
batteries are present in the circuit! We call such a current an induced current and say 
that it is produced by an induced emf.
 Now let’s describe an experiment conducted by Faraday and illustrated in Figure 
31.2. A primary coil is wrapped around an iron ring and connected to a switch and 
a battery. A current in the coil produces a magnetic field when the switch is closed. 
A secondary coil also is wrapped around the ring and is connected to a sensitive 
ammeter. No battery is present in the secondary circuit, and the secondary coil is 
not electrically connected to the primary coil. Any current detected in the second-
ary circuit must be induced by some external agent.
 Initially, you might guess that no current is ever detected in the secondary cir-
cuit. Something quite amazing happens when the switch in the primary circuit is 
either opened or thrown closed, however. At the instant the switch is closed, the 
ammeter reading changes from zero momentarily and then returns to zero. At the 
instant the switch is opened, the ammeter changes to a reading with the opposite 
sign and again returns to zero. Finally, the ammeter reads zero when there is either 
a steady current or no current in the primary circuit. To understand what happens 
in this experiment, note that when the switch is closed, the current in the primary 
circuit produces a magnetic field that penetrates the secondary circuit. Further-
more, when the switch is thrown closed, the magnetic field produced by the cur-
rent in the primary circuit changes from zero to some value over some finite time, 
and this changing field induces a current in the secondary circuit. Notice that no 
current is induced in the secondary coil even when a steady current exists in the 
primary coil. It is a change in the current in the primary coil that induces a current 
in the secondary coil, not just the existence of a current.
 As a result of these observations, Faraday concluded that an electric current can 
be induced in a loop by a changing magnetic field. The induced current exists 
only while the magnetic field through the loop is changing. Once the magnetic 
field reaches a steady value, the current in the loop disappears. In effect, the loop 
behaves as though a source of emf were connected to it for a short time. It is cus-
tomary to say that an induced emf is produced in the loop by the changing mag-
netic field.

Michael Faraday
British Physicist and Chemist 
(1791–1867)
Faraday is often regarded as the great-
est experimental scientist of the 1800s. 
His many contributions to the study of 
electricity include the invention of the 
electric motor, electric generator, and 
transformer as well as the discovery 
of electromagnetic induction and the 
laws of electrolysis. Greatly influenced 
by religion, he refused to work on the 
development of poison gas for the Brit-
ish military.
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When a magnet is moved 
toward a loop of wire 
connected to a sensitive 
ammeter, the ammeter 
shows that a current is 
induced in the loop.

N S

When the magnet is held 
stationary, there is no 
induced current in the 
loop, even when the 
magnet is inside the loop.

a b

I

N S

c

When the magnet is 
moved away from the 
loop, the ammeter shows 
that the induced current 
is opposite that shown in 
part      .a

Figure 31.1 A simple experiment 
showing that a current is induced 
in a loop when a magnet is moved 
toward or away from the loop.

A current flows counterclockwise in the loop.



Faraday’s Law

Faraday’s Law

If a conducting loop experiences a changing magnetic flux through
the area of the loop, an emf EF is induced in the loop that is
directly proportional to the rate of change of the flux, ΦB with
time.

Faraday’s Law for a conducting loop:

E = −
∆ΦB

∆t



Faraday’s Law

Faraday’s Law for a coil of N turns:

EF = −N
∆ΦB

∆t

if ΦB is the flux through a single loop.



Changing Magnetic Flux

The magnetic flux might change for any of several reasons:

• the magnitude of B can change with time,

• the area A enclosed by the loop can change with time, or

• the angle θ between the field and the normal to the loop can
change with time.



Lenz’s Law
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30-4 Lenz’s Law
Soon after Faraday proposed his law of induction, Heinrich Friedrich Lenz
devised a rule for determining the direction of an induced current in a loop:

Additional examples, video, and practice available at WileyPLUS

Fig. 30-3 A coil C is located inside a solenoid S, which 
carries current i.

Axis

i

i

C

S

An induced current has a direction such that the magnetic field due to the current
opposes the change in the magnetic flux that induces the current.

Fig. 30-4 Lenz’s law at work.As the
magnet is moved toward the loop, a current
is induced in the loop.The current produces
its own magnetic field, with magnetic di-
pole moment oriented so as to oppose
the motion of the magnet.Thus, the in-
duced current must be counterclockwise 
as shown.

!:

N 

S 

i 

N 

S 

µ µ 

The magnet's motion
creates a magnetic
dipole that opposes
the motion.

Furthermore, the direction of an induced emf is that of the induced current. To get
a feel for Lenz’s law, let us apply it in two different but equivalent ways to Fig. 30-4,
where the north pole of a magnet is being moved toward a conducting loop.

1. Opposition to Pole Movement. The approach of the magnet’s north pole in
Fig. 30-4 increases the magnetic flux through the loop and thereby induces a
current in the loop. From Fig. 29-21, we know that the loop then acts as a mag-
netic dipole with a south pole and a north pole, and that its magnetic dipole
moment is directed from south to north. To oppose the magnetic flux
increase being caused by the approaching magnet, the loop’s north pole (and
thus ) must face toward the approaching north pole so as to repel it (Fig.
30-4). Then the curled–straight right-hand rule for (Fig. 29-21) tells us that
the current induced in the loop must be counterclockwise in Fig. 30-4.

If we next pull the magnet away from the loop, a current will again be
induced in the loop. Now, however, the loop will have a south pole facing
the retreating north pole of the magnet, so as to oppose the retreat. Thus, the
induced current will be clockwise.

2. Opposition to Flux Change. In Fig. 30-4, with the magnet initially distant, no
magnetic flux passes through the loop. As the north pole of the magnet then

!:
!:

!:

because the final current in the solenoid is zero. To find the
initial flux "B,i, we note that area A is pd2 (# 3.464 $ 10%41

4

4. The flux through each turn of coil C depends on the area
A and orientation of that turn in the solenoid’s magnetic
field . Because is uniform and directed perpendicular
to area A, the flux is given by Eq. 30-2 ("B # BA).

5. The magnitude B of the magnetic field in the interior of a so-
lenoid depends on the solenoid’s current i and its number n
of turns per unit length,according to Eq.29-23 (B # m0in).

Calculations: Because coil C consists of more than one
turn, we apply Faraday’s law in the form of Eq. 30-5
(! # %N d"B/dt), where the number of turns N is 130 and
d"B/dt is the rate at which the flux changes.

Because the current in the solenoid decreases at a
steady rate, flux "B also decreases at a steady rate, and so we
can write d"B/dt as &"B/&t. Then, to evaluate &"B, we need
the final and initial flux values. The final flux "B, f is zero 

B
:B

:

m2) and the number n is 220 turns/cm, or 22 000 turns/m.
Substituting Eq. 29-23 into Eq. 30-2 then leads to

Now we can write

We are interested only in magnitudes; so we ignore the mi-
nus signs here and in Eq. 30-5, writing

(Answer)# 7.5 $ 10 %2 V # 75 mV.

 ! # N 
d"B

dt
# (130 turns)(5.76 $ 10 %4 V)

 # %5.76 $ 10 %4 Wb/s # %5.76 $ 10 %4 V.

 #
(0 % 1.44 $ 10 %5 Wb)

25 $ 10 %3 s

 
d"B

dt
#

&"B

&t
 #

"B, f % "B,i

&t

 #  1.44 $ 10 %5 Wb.
  $ (3.464 $ 10 %4 m2)

 # (4' $ 10 %7 T (m/A)(1.5 A)(22 000 turns/m)

"B, i # BA # (!0 in)A
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Lenz’s Law

An induced current has a direction such that the
magnetic field due to the current opposes the
change in the magnetic flux that induces the
current.

Basically, Lenz’s law let’s us interpret the minus
sign in the equation we write to represent
Faraday’s Law.

E = −−−
∆ΦB

∆t

1Figure from Halliday, Resnick, Walker, 9th ed.



Summary

• Ampère’s law

• motional emf

• Faraday’s law

• Lenz’s law

Homework
Halliday, Resnick, Walker:

• PREVIOUS: Ch 29, onward from page 783. Questions: 3;
Problems: 1, 11, 21, 23

• NEW: Ch 29, Questions: 7; Problems: 35, 43, 45, 51, 53

• NEW: Ch 30, onward from page 816. Questions: 1, 3;
Problems: 1, 3, 4.


