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Last time

• Ampere’s law

• Faraday’s law

• Lenz’s law



Overview

• induction and energy transfer

• induced electric fields

• inductance

• self-induction

• RL Circuits



Faraday’s Law

Faraday’s Law

If a conducting loop experiences a changing magnetic flux through
the area of the loop, an emf EF is induced in the loop that is
directly proportional to the rate of change of the flux, ΦB with
time.

Faraday’s Law for a conducting loop:

E = −
∆ΦB

∆t



Lenz’s Law
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30-4 Lenz’s Law
Soon after Faraday proposed his law of induction, Heinrich Friedrich Lenz
devised a rule for determining the direction of an induced current in a loop:

Additional examples, video, and practice available at WileyPLUS

Fig. 30-3 A coil C is located inside a solenoid S, which 
carries current i.
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An induced current has a direction such that the magnetic field due to the current
opposes the change in the magnetic flux that induces the current.

Fig. 30-4 Lenz’s law at work.As the
magnet is moved toward the loop, a current
is induced in the loop.The current produces
its own magnetic field, with magnetic di-
pole moment oriented so as to oppose
the motion of the magnet.Thus, the in-
duced current must be counterclockwise 
as shown.
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The magnet's motion
creates a magnetic
dipole that opposes
the motion.

Furthermore, the direction of an induced emf is that of the induced current. To get
a feel for Lenz’s law, let us apply it in two different but equivalent ways to Fig. 30-4,
where the north pole of a magnet is being moved toward a conducting loop.

1. Opposition to Pole Movement. The approach of the magnet’s north pole in
Fig. 30-4 increases the magnetic flux through the loop and thereby induces a
current in the loop. From Fig. 29-21, we know that the loop then acts as a mag-
netic dipole with a south pole and a north pole, and that its magnetic dipole
moment is directed from south to north. To oppose the magnetic flux
increase being caused by the approaching magnet, the loop’s north pole (and
thus ) must face toward the approaching north pole so as to repel it (Fig.
30-4). Then the curled–straight right-hand rule for (Fig. 29-21) tells us that
the current induced in the loop must be counterclockwise in Fig. 30-4.

If we next pull the magnet away from the loop, a current will again be
induced in the loop. Now, however, the loop will have a south pole facing
the retreating north pole of the magnet, so as to oppose the retreat. Thus, the
induced current will be clockwise.

2. Opposition to Flux Change. In Fig. 30-4, with the magnet initially distant, no
magnetic flux passes through the loop. As the north pole of the magnet then

!:
!:

!:

because the final current in the solenoid is zero. To find the
initial flux "B,i, we note that area A is pd2 (# 3.464 $ 10%41

4

4. The flux through each turn of coil C depends on the area
A and orientation of that turn in the solenoid’s magnetic
field . Because is uniform and directed perpendicular
to area A, the flux is given by Eq. 30-2 ("B # BA).

5. The magnitude B of the magnetic field in the interior of a so-
lenoid depends on the solenoid’s current i and its number n
of turns per unit length,according to Eq.29-23 (B # m0in).

Calculations: Because coil C consists of more than one
turn, we apply Faraday’s law in the form of Eq. 30-5
(! # %N d"B/dt), where the number of turns N is 130 and
d"B/dt is the rate at which the flux changes.

Because the current in the solenoid decreases at a
steady rate, flux "B also decreases at a steady rate, and so we
can write d"B/dt as &"B/&t. Then, to evaluate &"B, we need
the final and initial flux values. The final flux "B, f is zero 

B
:B

:

m2) and the number n is 220 turns/cm, or 22 000 turns/m.
Substituting Eq. 29-23 into Eq. 30-2 then leads to

Now we can write

We are interested only in magnitudes; so we ignore the mi-
nus signs here and in Eq. 30-5, writing

(Answer)# 7.5 $ 10 %2 V # 75 mV.

 ! # N 
d"B

dt
# (130 turns)(5.76 $ 10 %4 V)

 # %5.76 $ 10 %4 Wb/s # %5.76 $ 10 %4 V.

 #
(0 % 1.44 $ 10 %5 Wb)

25 $ 10 %3 s

 
d"B

dt
#

&"B

&t
 #

"B, f % "B,i

&t

 #  1.44 $ 10 %5 Wb.
  $ (3.464 $ 10 %4 m2)

 # (4' $ 10 %7 T (m/A)(1.5 A)(22 000 turns/m)

"B, i # BA # (!0 in)A
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Lenz’s Law

An induced current has a direction such that the
magnetic field due to the current opposes the
change in the magnetic flux that induces the
current.

Basically, Lenz’s law let’s us interpret the minus
sign in the equation we write to represent
Faraday’s Law.

E = −−−
∆ΦB

∆t

1Figure from Halliday, Resnick, Walker, 9th ed.



Faraday’s and Lenz’s Laws

What about this case? We found the current should flow
counterclockwise.

 31.3 Lenz’s Law 945

produce a field directed out of the page. Hence, the induced current must be 
directed counterclockwise when the bar moves to the right. (Use the right-hand 
rule to verify this direction.) If the bar is moving to the left as in Figure 31.11b, the 
external magnetic flux through the area enclosed by the loop decreases with time. 
Because the field is directed into the page, the direction of the induced current 
must be clockwise if it is to produce a field that also is directed into the page. In 
either case, the induced current attempts to maintain the original flux through the 
area enclosed by the current loop.
 Let’s examine this situation using energy considerations. Suppose the bar is 
given a slight push to the right. In the preceding analysis, we found that this motion 
sets up a counterclockwise current in the loop. What happens if we assume the cur-
rent is clockwise such that the direction of the magnetic force exerted on the bar is 
to the right? This force would accelerate the rod and increase its velocity, which in 
turn would cause the area enclosed by the loop to increase more rapidly. The result 
would be an increase in the induced current, which would cause an increase in the 
force, which would produce an increase in the current, and so on. In effect, the sys-
tem would acquire energy with no input of energy. This behavior is clearly inconsis-
tent with all experience and violates the law of conservation of energy. Therefore, 
the current must be counterclockwise.

Q uick Quiz 31.3  Figure 31.12 shows a circular loop of wire falling toward a wire 
carrying a current to the left. What is the direction of the induced current in 
the loop of wire? (a) clockwise (b) counterclockwise (c) zero (d) impossible to 
determine
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As the conducting bar slides to the 
right, the magnetic flux due to the 
external magnetic field into the 
page through the area enclosed by 
the loop increases in time.
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By Lenz’s law, the 
induced current 
must be 
counterclockwise 
to produce a 
counteracting 
magnetic field 
directed out of 
the page.

Figure 31.11  (a) Lenz’s law  
can be used to determine the 
direction of the induced current.  
(b) When the bar moves to the 
left, the induced current must  
be clockwise. Why?
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Figure 31.12  (Quick Quiz 31.3)

Conceptual Example 31.5   Application of Lenz’s Law

A magnet is placed near a metal loop as shown in Figure 31.13a (page 946).

(A)  Find the direction of the induced current in the loop when the magnet is pushed toward the loop.

As the magnet moves to the right toward the loop, the external magnetic flux through the loop increases with time. 
To counteract this increase in flux due to a field toward the right, the induced current produces its own magnetic 
field to the left as illustrated in Figure 31.13b; hence, the induced current is in the direction shown. Knowing that like  

S O L U T I O N

continued

The flux from the wire is into the page and increasing.

The field from the current is out of the page.

There is an upward resistive force on the ring.
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Faraday’s and Lenz’s Laws
Consider a conducting bar placed on conducting rails in a magnetic
field, with a resistor (outside the field) completing the circuit.

940 Chapter 31 Faraday’s Law

 The straight conductor of length , shown in Figure 31.7 is moving through a uni-
form magnetic field directed into the page. For simplicity, let’s assume the conductor 
is moving in a direction perpendicular to the field with constant velocity under the 
influence of some external agent. From the magnetic version of the particle in a field 
model, the electrons in the conductor experience a force F

S
B 5 q vS 3 B

S
 (Eq. 29.1)  

that is directed along the length ,, perpendicular to both vS and B
S

. Under the  
influence of this force, the electrons move to the lower end of the conductor and 
accumulate there, leaving a net positive charge at the upper end. As a result of this 
charge separation, an electric field E

S
 is produced inside the conductor. Therefore, 

the electrons are also described by the electric version of the particle in a field 
model. The charges accumulate at both ends until the downward magnetic force qvB 
on charges remaining in the conductor is balanced by the upward electric force qE.  
The electrons are then described by the particle in equilibrium model. The condi-
tion for equilibrium requires that the forces on the electrons balance:

 qE 5 qvB    or    E 5 vB 

The magnitude of the electric field produced in the conductor is related to the 
potential difference across the ends of the conductor according to the relationship 
DV 5 E, (Eq. 25.6). Therefore, for the equilibrium condition,

 DV 5 E, 5 B,v (31.4)

where the upper end of the conductor in Figure 31.7 is at a higher electric potential 
than the lower end. Therefore, a potential difference is maintained between the 
ends of the conductor as long as the conductor continues to move through the uni-
form magnetic field. If the direction of the motion is reversed, the polarity of the 
potential difference is also reversed.
 A more interesting situation occurs when the moving conductor is part of a closed 
conducting path. This situation is particularly useful for illustrating how a changing 
magnetic flux causes an induced current in a closed circuit. Consider a circuit con-
sisting of a conducting bar of length , sliding along two fixed, parallel conducting 
rails as shown in Figure 31.8a. For simplicity, let’s assume the bar has zero resistance 
and the stationary part of the circuit has a resistance R. A uniform and constant 
magnetic field B

S
 is applied perpendicular to the plane of the circuit. As the bar is 

pulled to the right with a velocity vS under the influence of an applied force F
S

app, 
free charges in the bar are moving particles in a magnetic field that experience a 
magnetic force directed along the length of the bar. This force sets up an induced 
current because the charges are free to move in the closed conducting path. In this 
case, the rate of change of magnetic flux through the circuit and the corresponding 
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electrons, the ends of the 
conductor become oppositely 
charged, which establishes an 
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Figure 31.7  A straight electrical 
conductor of length , moving with 
a velocity vS through a uniform 
magnetic field B

S
 directed perpen-
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A counterclockwise current I is 
induced in the loop. The magnetic 
force       on the bar carrying this 
current opposes the motion.
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Figure 31.8 (a) A conducting 
bar sliding with a velocity vS along 
two conducting rails under the 
action of an applied force F

S
app.  

(b) The equivalent circuit dia-
gram for the setup shown in (a).

Using the motional emf approach, what is the induced emf across
the bar?

Using Faraday’s law, what is the induced emf across the bar?



Faraday’s and Lenz’s Laws
Motional emf:

E = Bv`

upwards

Faraday’s Law:

E = −
∆ΦB

∆t
= −B`

∆x

∆t
= −Bv`
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Figure 31.8 (a) A conducting 
bar sliding with a velocity vS along 
two conducting rails under the 
action of an applied force F

S
app.  

(b) The equivalent circuit dia-
gram for the setup shown in (a).

A counterclockwise current begins to flow as the rod moves.
(Opposes the field.)



Faraday’s and Lenz’s Laws

Power is delivered to the resistor as current flows.

That power must come from the force needed to keep the rod in
motion.

940 Chapter 31 Faraday’s Law
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Prove they are equal.



Faraday’s and Lenz’s Laws
Power delivered to resistor:

P =
E2

R
=

B2v2`2

R

Power supplied by applied force needed to keep rod moving with
constant velocity v :

Fnet = 0 ⇒ Fapp = FB

P = Fapp · v
= (I`B)v

=
E

R
Bv`

=
B2v2`2

R
X
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Faraday’s and Lenz’s Laws

Implication: it is possible to turn mechanical power into electrical
power.



Electric Generators

1Figure from hyperphysics.phys-arstr.gsu.edu



Electric Guitar Pickups

Strings are made of ferrous metal: steel (iron) or nickel, which
become magnetized by the permanent magnets.

Plucked strings create a changing magnetic field that produces a
current in the pickup coil.

1Figure from HowStuffWorks.



Induction and Energy Transfer to a Wire Loop

When you move a magnet near a loop of wire or a loop of wire
near a magnetic field, a force resists the motion.

This is due to the induced magnetic dipole in the loop.

Since you must apply a force to overcome the resistance, you do
work moving the magnet / loop.

This energy goes to heating the loop of wire.



Energy Transfer

Easy to see for the case of a loop being pulled out of a B-field.798 CHAPTE R 30 I N DUCTION AN D I N DUCTANCE

Figure 30-8 shows another situation involving induced current. A rectan-
gular loop of wire of width L has one end in a uniform external magnetic
field that is directed perpendicularly into the plane of the loop. This field
may be produced, for example, by a large electromagnet. The dashed lines in
Fig. 30-8 show the assumed limits of the magnetic field; the fringing of the
field at its edges is neglected. You are to pull this loop to the right at a con-
stant velocity .

The situation of Fig. 30-8 does not differ in any essential way from that of 
Fig. 30-1. In each case a magnetic field and a conducting loop are in relative
motion; in each case the flux of the field through the loop is changing with time.
It is true that in Fig. 30-1 the flux is changing because is changing and in
Fig. 30-8 the flux is changing because the area of the loop still in the magnetic
field is changing, but that difference is not important. The important difference
between the two arrangements is that the arrangement of Fig. 30-8 makes calcu-
lations easier. Let us now calculate the rate at which you do mechanical work as
you pull steadily on the loop in Fig. 30-8.

As you will see, to pull the loop at a constant velocity , you must apply
a constant force to the loop because a magnetic force of equal magnitude but
opposite direction acts on the loop to oppose you. From Eq. 7-48, the rate at
which you do work—that is, the power—is then

P ! Fv, (30-6)

where F is the magnitude of your force. We wish to find an expression for P in
terms of the magnitude B of the magnetic field and the characteristics of the
loop—namely, its resistance R to current and its dimension L.

As you move the loop to the right in Fig. 30-8, the portion of its area within
the magnetic field decreases. Thus, the flux through the loop also decreases and,
according to Faraday’s law, a current is produced in the loop. It is the presence of
this current that causes the force that opposes your pull.

To find the current, we first apply Faraday’s law. When x is the length of the
loop still in the magnetic field, the area of the loop still in the field is Lx. Then
from Eq. 30-2, the magnitude of the flux through the loop is

"B ! BA ! BLx. (30-7)

As x decreases, the flux decreases. Faraday’s law tells us that with this flux
decrease, an emf is induced in the loop. Dropping the minus sign in Eq. 30-4 and

F
:

v:

B
:

v:

Fig. 30-8 You pull a closed conducting loop out of a magnetic field at constant
velocity . While the loop is moving, a clockwise current i is induced in the loop, and
the loop segments still within the magnetic field experience forces , , and .F

:
3F

:
2F

:
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v:

i 
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Decreasing the area
decreases the flux,
inducing a current.
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The B-field is uniform within the rectangle and zero outside it.



Loops in B-Fields Question

The figure shows four wire loops, with edge lengths of either L or
2L. All four loops will move through a region of uniform magnetic
field B (directed out of the page) at the same constant velocity.

Rank the four loops according to the maximum magnitude of the
emf induced as they move into the field, greatest first.

800 CHAPTE R 30 I N DUCTION AN D I N DUCTANCE

Eddy Currents
Suppose we replace the conducting loop of Fig. 30-8 with a solid conducting plate.
If we then move the plate out of the magnetic field as we did the loop (Fig. 30-10a),
the relative motion of the field and the conductor again induces a current in the
conductor. Thus, we again encounter an opposing force and must do work because
of the induced current. With the plate, however, the conduction electrons making
up the induced current do not follow one path as they do with the loop. Instead, the
electrons swirl about within the plate as if they were caught in an eddy (whirlpool)
of water. Such a current is called an eddy current and can be represented, as it is in
Fig. 30-10a, as if it followed a single path.

As with the conducting loop of Fig. 30-8, the current induced in the plate
results in mechanical energy being dissipated as thermal energy. The dissipation
is more apparent in the arrangement of Fig. 30-10b; a conducting plate, free to
rotate about a pivot, is allowed to swing down through a magnetic field like
a pendulum. Each time the plate enters and leaves the field, a portion of its
mechanical energy is transferred to its thermal energy. After several swings, no
mechanical energy remains and the warmed-up plate just hangs from its pivot.

CHECKPOINT 3

The figure shows four wire loops, with edge lengths of either L or 2L. All four loops
will move through a region of uniform magnetic field (directed out of the page) at
the same constant velocity. Rank the four loops according to the maximum magnitude
of the emf induced as they move through the field, greatest first.

B
:

a b

c d
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30-6 Induced Electric Fields
Let us place a copper ring of radius r in a uniform external magnetic field, as in
Fig. 30-11a.The field—neglecting fringing—fills a cylindrical volume of radius R.
Suppose that we increase the strength of this field at a steady rate, perhaps by
increasing—in an appropriate way—the current in the windings of the electro-
magnet that produces the field. The magnetic flux through the ring will then
change at a steady rate and—by Faraday’s law—an induced emf and thus an
induced current will appear in the ring. From Lenz’s law we can deduce that the
direction of the induced current is counterclockwise in Fig. 30-11a.

If there is a current in the copper ring, an electric field must be present along the
ring because an electric field is needed to do the work of moving the conduction
electrons. Moreover, the electric field must have been produced by the changing

Fig. 30-10 (a) As you pull a solid con-
ducting plate out of a magnetic field, eddy
currents are induced in the plate.A typical
loop of eddy current is shown. (b) A con-
ducting plate is allowed to swing like a pen-
dulum about a pivot and into a region of
magnetic field.As it enters and leaves the
field, eddy currents are induced in the
plate.
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(a) (b)
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A a, b, c, d

B (b and c), (a and d)

C (c and d), (a and b)

D (a and b), (c and d)
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Loops in B-Fields Question

The figure shows four wire loops, with edge lengths of either L or
2L. All four loops will move through a region of uniform magnetic
field B (directed out of the page) at the same constant velocity.

Rank the four loops according to the maximum magnitude of the
emf induced as they move into the field, greatest first.
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Eddy Currents
Suppose we replace the conducting loop of Fig. 30-8 with a solid conducting plate.
If we then move the plate out of the magnetic field as we did the loop (Fig. 30-10a),
the relative motion of the field and the conductor again induces a current in the
conductor. Thus, we again encounter an opposing force and must do work because
of the induced current. With the plate, however, the conduction electrons making
up the induced current do not follow one path as they do with the loop. Instead, the
electrons swirl about within the plate as if they were caught in an eddy (whirlpool)
of water. Such a current is called an eddy current and can be represented, as it is in
Fig. 30-10a, as if it followed a single path.

As with the conducting loop of Fig. 30-8, the current induced in the plate
results in mechanical energy being dissipated as thermal energy. The dissipation
is more apparent in the arrangement of Fig. 30-10b; a conducting plate, free to
rotate about a pivot, is allowed to swing down through a magnetic field like
a pendulum. Each time the plate enters and leaves the field, a portion of its
mechanical energy is transferred to its thermal energy. After several swings, no
mechanical energy remains and the warmed-up plate just hangs from its pivot.

CHECKPOINT 3

The figure shows four wire loops, with edge lengths of either L or 2L. All four loops
will move through a region of uniform magnetic field (directed out of the page) at
the same constant velocity. Rank the four loops according to the maximum magnitude
of the emf induced as they move through the field, greatest first.
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30-6 Induced Electric Fields
Let us place a copper ring of radius r in a uniform external magnetic field, as in
Fig. 30-11a.The field—neglecting fringing—fills a cylindrical volume of radius R.
Suppose that we increase the strength of this field at a steady rate, perhaps by
increasing—in an appropriate way—the current in the windings of the electro-
magnet that produces the field. The magnetic flux through the ring will then
change at a steady rate and—by Faraday’s law—an induced emf and thus an
induced current will appear in the ring. From Lenz’s law we can deduce that the
direction of the induced current is counterclockwise in Fig. 30-11a.

If there is a current in the copper ring, an electric field must be present along the
ring because an electric field is needed to do the work of moving the conduction
electrons. Moreover, the electric field must have been produced by the changing

Fig. 30-10 (a) As you pull a solid con-
ducting plate out of a magnetic field, eddy
currents are induced in the plate.A typical
loop of eddy current is shown. (b) A con-
ducting plate is allowed to swing like a pen-
dulum about a pivot and into a region of
magnetic field.As it enters and leaves the
field, eddy currents are induced in the
plate.
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Loop moving into and out of a B-field
 31.4 Induced emf and Electric Fields 947

cancels the motional emf present in the right side 
of the loop. As the right side of the loop leaves the 
field, the flux through the loop begins to decrease, 
a clockwise current is induced, and the induced 
emf is B,v. As soon as the left side leaves the field, 
the emf decreases to zero.

(C)  Plot the external applied force necessary to 
counter the magnetic force and keep v constant as 
a function of x.

The external force that must be applied to the loop 
to maintain this motion is plotted in Figure 31.14d. 
Before the loop enters the field, no magnetic force 
acts on it; hence, the applied force must be zero if v 
is constant. When the right side of the loop enters 
the field, the applied force necessary to maintain 
constant speed must be equal in magnitude and 
opposite in direction to the magnetic force exerted 
on that side, so that the loop is a particle in equi-
librium. When the loop is entirely in the field, the 
flux through the loop is not changing with time. Hence, the net emf induced in the loop is zero and the current also 
is zero. Therefore, no external force is needed to maintain the motion. Finally, as the right side leaves the field, the 
applied force must be equal in magnitude and opposite in direction to the magnetic force acting on the left side of 
the loop.
 From this analysis, we conclude that power is supplied only when the loop is either entering or leaving the field. 
Furthermore, this example shows that the motional emf induced in the loop can be zero even when there is motion 
through the field! A motional emf is induced only when the magnetic flux through the loop changes in time.
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Figure 31.14  (Conceptual Example 31.6) (a) A conducting rectan-
gular loop of width w and length , moving with a velocity vS through 
a uniform magnetic field extending a distance 3w. (b) Magnetic flux 
through the area enclosed by the loop as a function of loop position. 
(c) Induced emf as a function of loop position. (d) Applied force 
required for constant velocity as a function of loop position.

31.4 Induced emf and Electric Fields
We have seen that a changing magnetic flux induces an emf and a current in a 
conducting loop. In our study of electricity, we related a current to an electric field 
that applies electric forces on charged particles. In the same way, we can relate an 
induced current in a conducting loop to an electric field by claiming that an elec-
tric field is created in the conductor as a result of the changing magnetic flux.
 We also noted in our study of electricity that the existence of an electric field is 
independent of the presence of any test charges. This independence suggests that 
even in the absence of a conducting loop, a changing magnetic field generates an 
electric field in empty space.
 This induced electric field is nonconservative, unlike the electrostatic field pro-
duced by stationary charges. To illustrate this point, consider a conducting loop 
of radius r situated in a uniform magnetic field that is perpendicular to the plane 
of the loop as in Figure 31.15. If the magnetic field changes with time, an emf 
e 5 2dFB /dt is, according to Faraday’s law (Eq. 31.1), induced in the loop. The 
induction of a current in the loop implies the presence of an induced electric field 
E
S

,  which must be tangent to the loop because that is the direction in which the 
charges in the wire move in response to the electric force. The work done by the 
electric field in moving a charge q once around the loop is equal to qe. Because  
the electric force acting on the charge is q E

S
, the work done by the electric field in 
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If     changes in time, an electric 
field is induced in a direction 
tangent to the circumference of 
the loop.
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Figure 31.15  A conducting loop 
of radius r in a uniform magnetic 
field perpendicular to the plane 
of the loop.
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Energy Transfer

If we pull a loop out of a magnetic field, a current flows in the loop.798 CHAPTE R 30 I N DUCTION AN D I N DUCTANCE

Figure 30-8 shows another situation involving induced current. A rectan-
gular loop of wire of width L has one end in a uniform external magnetic
field that is directed perpendicularly into the plane of the loop. This field
may be produced, for example, by a large electromagnet. The dashed lines in
Fig. 30-8 show the assumed limits of the magnetic field; the fringing of the
field at its edges is neglected. You are to pull this loop to the right at a con-
stant velocity .

The situation of Fig. 30-8 does not differ in any essential way from that of 
Fig. 30-1. In each case a magnetic field and a conducting loop are in relative
motion; in each case the flux of the field through the loop is changing with time.
It is true that in Fig. 30-1 the flux is changing because is changing and in
Fig. 30-8 the flux is changing because the area of the loop still in the magnetic
field is changing, but that difference is not important. The important difference
between the two arrangements is that the arrangement of Fig. 30-8 makes calcu-
lations easier. Let us now calculate the rate at which you do mechanical work as
you pull steadily on the loop in Fig. 30-8.

As you will see, to pull the loop at a constant velocity , you must apply
a constant force to the loop because a magnetic force of equal magnitude but
opposite direction acts on the loop to oppose you. From Eq. 7-48, the rate at
which you do work—that is, the power—is then

P ! Fv, (30-6)

where F is the magnitude of your force. We wish to find an expression for P in
terms of the magnitude B of the magnetic field and the characteristics of the
loop—namely, its resistance R to current and its dimension L.

As you move the loop to the right in Fig. 30-8, the portion of its area within
the magnetic field decreases. Thus, the flux through the loop also decreases and,
according to Faraday’s law, a current is produced in the loop. It is the presence of
this current that causes the force that opposes your pull.

To find the current, we first apply Faraday’s law. When x is the length of the
loop still in the magnetic field, the area of the loop still in the field is Lx. Then
from Eq. 30-2, the magnitude of the flux through the loop is

"B ! BA ! BLx. (30-7)

As x decreases, the flux decreases. Faraday’s law tells us that with this flux
decrease, an emf is induced in the loop. Dropping the minus sign in Eq. 30-4 and

F
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v:

Fig. 30-8 You pull a closed conducting loop out of a magnetic field at constant
velocity . While the loop is moving, a clockwise current i is induced in the loop, and
the loop segments still within the magnetic field experience forces , , and .F
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Decreasing the area
decreases the flux,
inducing a current.
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The B-field is uniform within the rectangle and zero outside it.



Eddy Currents

If the wire is replaced by a solid conducting plate, circulations of
current form in the plate.800 CHAPTE R 30 I N DUCTION AN D I N DUCTANCE

Eddy Currents
Suppose we replace the conducting loop of Fig. 30-8 with a solid conducting plate.
If we then move the plate out of the magnetic field as we did the loop (Fig. 30-10a),
the relative motion of the field and the conductor again induces a current in the
conductor. Thus, we again encounter an opposing force and must do work because
of the induced current. With the plate, however, the conduction electrons making
up the induced current do not follow one path as they do with the loop. Instead, the
electrons swirl about within the plate as if they were caught in an eddy (whirlpool)
of water. Such a current is called an eddy current and can be represented, as it is in
Fig. 30-10a, as if it followed a single path.

As with the conducting loop of Fig. 30-8, the current induced in the plate
results in mechanical energy being dissipated as thermal energy. The dissipation
is more apparent in the arrangement of Fig. 30-10b; a conducting plate, free to
rotate about a pivot, is allowed to swing down through a magnetic field like
a pendulum. Each time the plate enters and leaves the field, a portion of its
mechanical energy is transferred to its thermal energy. After several swings, no
mechanical energy remains and the warmed-up plate just hangs from its pivot.

CHECKPOINT 3

The figure shows four wire loops, with edge lengths of either L or 2L. All four loops
will move through a region of uniform magnetic field (directed out of the page) at
the same constant velocity. Rank the four loops according to the maximum magnitude
of the emf induced as they move through the field, greatest first.
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c d

B

30-6 Induced Electric Fields
Let us place a copper ring of radius r in a uniform external magnetic field, as in
Fig. 30-11a.The field—neglecting fringing—fills a cylindrical volume of radius R.
Suppose that we increase the strength of this field at a steady rate, perhaps by
increasing—in an appropriate way—the current in the windings of the electro-
magnet that produces the field. The magnetic flux through the ring will then
change at a steady rate and—by Faraday’s law—an induced emf and thus an
induced current will appear in the ring. From Lenz’s law we can deduce that the
direction of the induced current is counterclockwise in Fig. 30-11a.

If there is a current in the copper ring, an electric field must be present along the
ring because an electric field is needed to do the work of moving the conduction
electrons. Moreover, the electric field must have been produced by the changing

Fig. 30-10 (a) As you pull a solid con-
ducting plate out of a magnetic field, eddy
currents are induced in the plate.A typical
loop of eddy current is shown. (b) A con-
ducting plate is allowed to swing like a pen-
dulum about a pivot and into a region of
magnetic field.As it enters and leaves the
field, eddy currents are induced in the
plate.
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Since the cross section of the plate is larger than that of a similar
wire, the resistance will be low, but the current can be high.

The plate will heat.



Induced Electric Fields

If moving a conductor in a magnetic field causes a current to flow,
if must be because the process has created an electric field across
the conductor.

The fact that in a conducting plate circulations of current appear
tells us that the electric field lines must also makes these circles.

Another way to cause a current and electric field is to change the
flux by increasing or decreasing the magnetic field.

80130-6 I N DUCE D E LECTR IC F I E LDS
PART 3

Fig. 30-11 (a) If the magnetic field increases at a steady rate, a constant induced cur-
rent appears, as shown, in the copper ring of radius r.(b) An induced electric field exists
even when the ring is removed; the electric field is shown at four points. (c) The complete
picture of the induced electric field, displayed as field lines. (d) Four similar closed paths that
enclose identical areas. Equal emfs are induced around paths 1 and 2, which lie entirely within
the region of changing magnetic field.A smaller emf is induced around path 3, which only
partially lies in that region. No net emf is induced around path 4, which lies entirely outside
the magnetic field.
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magnetic flux.This induced electric field is just as real as an electric field produced
by static charges; either field will exert a force on a particle of charge q0.

By this line of reasoning, we are led to a useful and informative restatement
of Faraday’s law of induction:

q0E
:

E
:

A changing magnetic field produces an electric field.

The striking feature of this statement is that the electric field is induced even if
there is no copper ring. Thus, the electric field would appear even if the changing
magnetic field were in a vacuum.

To fix these ideas, consider Fig. 30-11b, which is just like Fig. 30-11a except
the copper ring has been replaced by a hypothetical circular path of radius r. We
assume, as previously, that the magnetic field is increasing in magnitude at
a constant rate dB/dt. The electric field induced at various points around the
circular path must—from the symmetry—be tangent to the circle, as Fig. 30-11b
shows.* Hence, the circular path is an electric field line. There is nothing special
about the circle of radius r, so the electric field lines produced by the changing
magnetic field must be a set of concentric circles, as in Fig. 30-11c.

As long as the magnetic field is increasing with time, the electric field repre-
sented by the circular field lines in Fig. 30-11c will be present. If the magnetic field
remains constant with time, there will be no induced electric field and thus no
electric field lines. If the magnetic field is decreasing with time (at a constant

B
:

*Arguments of symmetry would also permit the lines of around the circular path to be radial,
rather than tangential. However, such radial lines would imply that there are free charges, distributed
symmetrically about the axis of symmetry, on which the electric field lines could begin or end; there
are no such charges.

E
:
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Induced Electric Fields
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Fig. 30-11 (a) If the magnetic field increases at a steady rate, a constant induced cur-
rent appears, as shown, in the copper ring of radius r.(b) An induced electric field exists
even when the ring is removed; the electric field is shown at four points. (c) The complete
picture of the induced electric field, displayed as field lines. (d) Four similar closed paths that
enclose identical areas. Equal emfs are induced around paths 1 and 2, which lie entirely within
the region of changing magnetic field.A smaller emf is induced around path 3, which only
partially lies in that region. No net emf is induced around path 4, which lies entirely outside
the magnetic field.
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magnetic flux.This induced electric field is just as real as an electric field produced
by static charges; either field will exert a force on a particle of charge q0.

By this line of reasoning, we are led to a useful and informative restatement
of Faraday’s law of induction:

q0E
:

E
:

A changing magnetic field produces an electric field.

The striking feature of this statement is that the electric field is induced even if
there is no copper ring. Thus, the electric field would appear even if the changing
magnetic field were in a vacuum.

To fix these ideas, consider Fig. 30-11b, which is just like Fig. 30-11a except
the copper ring has been replaced by a hypothetical circular path of radius r. We
assume, as previously, that the magnetic field is increasing in magnitude at
a constant rate dB/dt. The electric field induced at various points around the
circular path must—from the symmetry—be tangent to the circle, as Fig. 30-11b
shows.* Hence, the circular path is an electric field line. There is nothing special
about the circle of radius r, so the electric field lines produced by the changing
magnetic field must be a set of concentric circles, as in Fig. 30-11c.

As long as the magnetic field is increasing with time, the electric field repre-
sented by the circular field lines in Fig. 30-11c will be present. If the magnetic field
remains constant with time, there will be no induced electric field and thus no
electric field lines. If the magnetic field is decreasing with time (at a constant

B
:

*Arguments of symmetry would also permit the lines of around the circular path to be radial,
rather than tangential. However, such radial lines would imply that there are free charges, distributed
symmetrically about the axis of symmetry, on which the electric field lines could begin or end; there
are no such charges.

E
:
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The circulation E-field occurs whether or not a conductor is
present: it is the direct result of the changing magnetic flux.

Faraday’s Law of Induction (in words)

A changing magnetic field gives rise to an electric field.



Induced emf and the Electric Field

For a closed path, s,

E =

∮
E · ds

Notice that by definition ∆V =
∮

E · ds = 0. Emf does not have
this property.

When a charge is moved around a closed path in an electrostatic
electric field the work done is zero:

Wapp = q(∆V ) = 0



Induced emf and the Electric Field

When a charge is moved around a closed path in an electrostatic
electric field the work done is zero:

Wapp = q(∆V ) = 0

For the induced E-field from a changing magnetic flux, the
associated force F = qE is not conservative.

We say the E-field is nonconservative.

This is no longer the “electrostatic” case.



Faraday’s Law

Faraday’s Law for a conducting loop:

E = −
∆ΦB

∆t

(Differential form:)

E = −
dΦB

dt

Faraday’s law reformulated:∮
E · ds = −

dΦB

dt



Faraday’s Law

Faraday’s Law for a conducting loop:

E = −
∆ΦB

∆t

(Differential form:)

E = −
dΦB

dt

Faraday’s law reformulated:∮
E · ds = −

dΦB

dt



Induced emf and the Electric Field

 31.4 Induced emf and Electric Fields 947

cancels the motional emf present in the right side 
of the loop. As the right side of the loop leaves the 
field, the flux through the loop begins to decrease, 
a clockwise current is induced, and the induced 
emf is B,v. As soon as the left side leaves the field, 
the emf decreases to zero.

(C)  Plot the external applied force necessary to 
counter the magnetic force and keep v constant as 
a function of x.

The external force that must be applied to the loop 
to maintain this motion is plotted in Figure 31.14d. 
Before the loop enters the field, no magnetic force 
acts on it; hence, the applied force must be zero if v 
is constant. When the right side of the loop enters 
the field, the applied force necessary to maintain 
constant speed must be equal in magnitude and 
opposite in direction to the magnetic force exerted 
on that side, so that the loop is a particle in equi-
librium. When the loop is entirely in the field, the 
flux through the loop is not changing with time. Hence, the net emf induced in the loop is zero and the current also 
is zero. Therefore, no external force is needed to maintain the motion. Finally, as the right side leaves the field, the 
applied force must be equal in magnitude and opposite in direction to the magnetic force acting on the left side of 
the loop.
 From this analysis, we conclude that power is supplied only when the loop is either entering or leaving the field. 
Furthermore, this example shows that the motional emf induced in the loop can be zero even when there is motion 
through the field! A motional emf is induced only when the magnetic flux through the loop changes in time.
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Figure 31.14  (Conceptual Example 31.6) (a) A conducting rectan-
gular loop of width w and length , moving with a velocity vS through 
a uniform magnetic field extending a distance 3w. (b) Magnetic flux 
through the area enclosed by the loop as a function of loop position. 
(c) Induced emf as a function of loop position. (d) Applied force 
required for constant velocity as a function of loop position.

31.4 Induced emf and Electric Fields
We have seen that a changing magnetic flux induces an emf and a current in a 
conducting loop. In our study of electricity, we related a current to an electric field 
that applies electric forces on charged particles. In the same way, we can relate an 
induced current in a conducting loop to an electric field by claiming that an elec-
tric field is created in the conductor as a result of the changing magnetic flux.
 We also noted in our study of electricity that the existence of an electric field is 
independent of the presence of any test charges. This independence suggests that 
even in the absence of a conducting loop, a changing magnetic field generates an 
electric field in empty space.
 This induced electric field is nonconservative, unlike the electrostatic field pro-
duced by stationary charges. To illustrate this point, consider a conducting loop 
of radius r situated in a uniform magnetic field that is perpendicular to the plane 
of the loop as in Figure 31.15. If the magnetic field changes with time, an emf 
e 5 2dFB /dt is, according to Faraday’s law (Eq. 31.1), induced in the loop. The 
induction of a current in the loop implies the presence of an induced electric field 
E
S

,  which must be tangent to the loop because that is the direction in which the 
charges in the wire move in response to the electric force. The work done by the 
electric field in moving a charge q once around the loop is equal to qe. Because  
the electric force acting on the charge is q E

S
, the work done by the electric field in 
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Figure 31.15  A conducting loop 
of radius r in a uniform magnetic 
field perpendicular to the plane 
of the loop.
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We can also write Faraday’s Law as:∮
E · ds = −

dΦB

dt



Reformulated Faraday’s Law

We can use this value of E together with E = − dΦB
dt , to

reformulate Faraday’s Law.

Faraday’s law ∮
E · ds = −

∆ΦB

∆t

(Differential form:) ∮
E · ds = −

dΦB

dt



Faraday’s Law Examples

Faraday’s law: ∮
E · ds = −

∆ΦB

∆t

(Differential form:)
∮

E · ds = − dΦB
dt
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Fig. 30-11 (a) If the magnetic field increases at a steady rate, a constant induced cur-
rent appears, as shown, in the copper ring of radius r.(b) An induced electric field exists
even when the ring is removed; the electric field is shown at four points. (c) The complete
picture of the induced electric field, displayed as field lines. (d) Four similar closed paths that
enclose identical areas. Equal emfs are induced around paths 1 and 2, which lie entirely within
the region of changing magnetic field.A smaller emf is induced around path 3, which only
partially lies in that region. No net emf is induced around path 4, which lies entirely outside
the magnetic field.
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magnetic flux.This induced electric field is just as real as an electric field produced
by static charges; either field will exert a force on a particle of charge q0.

By this line of reasoning, we are led to a useful and informative restatement
of Faraday’s law of induction:

q0E
:

E
:

A changing magnetic field produces an electric field.

The striking feature of this statement is that the electric field is induced even if
there is no copper ring. Thus, the electric field would appear even if the changing
magnetic field were in a vacuum.

To fix these ideas, consider Fig. 30-11b, which is just like Fig. 30-11a except
the copper ring has been replaced by a hypothetical circular path of radius r. We
assume, as previously, that the magnetic field is increasing in magnitude at
a constant rate dB/dt. The electric field induced at various points around the
circular path must—from the symmetry—be tangent to the circle, as Fig. 30-11b
shows.* Hence, the circular path is an electric field line. There is nothing special
about the circle of radius r, so the electric field lines produced by the changing
magnetic field must be a set of concentric circles, as in Fig. 30-11c.

As long as the magnetic field is increasing with time, the electric field repre-
sented by the circular field lines in Fig. 30-11c will be present. If the magnetic field
remains constant with time, there will be no induced electric field and thus no
electric field lines. If the magnetic field is decreasing with time (at a constant

B
:

*Arguments of symmetry would also permit the lines of around the circular path to be radial,
rather than tangential. However, such radial lines would imply that there are free charges, distributed
symmetrically about the axis of symmetry, on which the electric field lines could begin or end; there
are no such charges.

E
:
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Electric Potential

Electric potential has meaning only for electric fields that are the
result of static charges; it has no meaning for electric fields that
are produced by induction.

For E-fields produced by static charges
∮

E · ds = 0

For induced E-fields, the integral may not be zero.

E =

∮
E · ds



Inductors
A capacitor is a device that stores an electric field as a component
of a circuit.

inductor

a device that stores a magnetic field in a circuit

It is typically a coil of wire.



Circuit component symbols

battery V
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26.3 Combinations of Capacitors
Two or more capacitors often are combined in electric circuits. We can calculate 
the equivalent capacitance of certain combinations using methods described in 
this section. Throughout this section, we assume the capacitors to be combined are 
initially uncharged.
 In studying electric circuits, we use a simplified pictorial representation called a 
circuit diagram. Such a diagram uses circuit symbols to represent various circuit 
elements. The circuit symbols are connected by straight lines that represent the 
wires between the circuit elements. The circuit symbols for capacitors, batteries, 
and switches as well as the color codes used for them in this text are given in Fig-
ure 26.6. The symbol for the capacitor reflects the geometry of the most common 
model for a capacitor, a pair of parallel plates. The positive terminal of the battery 
is at the higher potential and is represented in the circuit symbol by the longer line.

Parallel Combination
Two capacitors connected as shown in Figure 26.7a are known as a parallel combi-
nation of capacitors. Figure 26.7b shows a circuit diagram for this combination of 
capacitors. The left plates of the capacitors are connected to the positive terminal of 
the battery by a conducting wire and are therefore both at the same electric potential 

Substitute the absolute value of DV into Equation 26.1: C 5
Q

DV
5

Q0 Vb 2 Va 0 5
ab

ke 1b 2 a 2  (26.6)

Apply the result of Example 24.3 for the electric field 
outside a spherically symmetric charge distribution  
and note that E

S
 is parallel to d sS along a radial line:

Vb 2 Va 5 2 3
b

a
 Er dr 5 2keQ 3

b

a
 
dr
r 2 5 keQ c1r d b

a

(1)   Vb 2 Va 5 keQ a1
b

2
1
ab 5 keQ 

a 2 b
ab

Write an expression for the potential difference between 
the two conductors from Equation 25.3:

Vb 2 Va 5 2 3
b

a
E
S

? d sS

Finalize  The capacitance depends on a and b as expected. The potential difference between the spheres in Equation 
(1) is negative because Q is positive and b . a. Therefore, in Equation 26.6, when we take the absolute value, we change 
a 2 b to b 2 a. The result is a positive number.

 If the radius b of the outer sphere approaches infinity, what does the capacitance become?

Answer  In Equation 26.6, we let b S `:

C 5 lim
b S `

  ab
ke 1b 2 a 2 5

ab
ke 1b 2 5

a
ke

5 4pP0a

Notice that this expression is the same as Equation 26.2, the capacitance of an isolated spherical conductor.

WHAT IF ?

Capacitor
symbol

Battery
symbol

symbol
Switch Open

Closed

!

"

Figure 26.6  Circuit symbols for 
capacitors, batteries, and switches. 
Notice that capacitors are in 
blue, batteries are in green, and 
switches are in red. The closed 
switch can carry current, whereas 
the open one cannot.

 

▸ 26.2 c o n t i n u e d

Categorize  Because of the spherical symmetry of the sys-
tem, we can use results from previous studies of spherical 
systems to find the capacitance.

Analyze  As shown in Chapter 24, the direction of the 
electric field outside a spherically symmetric charge 
distribution is radial and its magnitude is given by the 
expression E 5 keQ /r 2. In this case, this result applies to 
the field between the spheres (a , r , b).

a

b

!Q

"Q

Figure 26.5  (Example 26.2) 
A spherical capacitor consists of 
an inner sphere of radius a sur-
rounded by a concentric spherical 
shell of radius b. The electric field 
between the spheres is directed 
radially outward when the inner 
sphere is positively charged.

capacitor C
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Categorize  Because of the spherical symmetry of the sys-
tem, we can use results from previous studies of spherical 
systems to find the capacitance.

Analyze  As shown in Chapter 24, the direction of the 
electric field outside a spherically symmetric charge 
distribution is radial and its magnitude is given by the 
expression E 5 keQ /r 2. In this case, this result applies to 
the field between the spheres (a , r , b).
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Figure 26.5  (Example 26.2) 
A spherical capacitor consists of 
an inner sphere of radius a sur-
rounded by a concentric spherical 
shell of radius b. The electric field 
between the spheres is directed 
radially outward when the inner 
sphere is positively charged.
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Categorize  Because of the spherical symmetry of the sys-
tem, we can use results from previous studies of spherical 
systems to find the capacitance.

Analyze  As shown in Chapter 24, the direction of the 
electric field outside a spherically symmetric charge 
distribution is radial and its magnitude is given by the 
expression E 5 keQ /r 2. In this case, this result applies to 
the field between the spheres (a , r , b).
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radially outward when the inner 
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 Today, thousands of superconductors are known, and as Table 27.3 illustrates, 
the critical temperatures of recently discovered superconductors are substantially 
higher than initially thought possible. Two kinds of superconductors are recog-
nized. The more recently identified ones are essentially ceramics with high criti-
cal temperatures, whereas superconducting materials such as those observed by 
Kamerlingh-Onnes are metals. If a room-temperature superconductor is ever iden-
tified, its effect on technology could be tremendous.
 The value of Tc is sensitive to chemical composition, pressure, and molecular 
structure. Copper, silver, and gold, which are excellent conductors, do not exhibit 
superconductivity.
 One truly remarkable feature of superconductors is that once a current is set up 
in them, it persists without any applied potential difference (because R 5 0). Steady cur-
rents have been observed to persist in superconducting loops for several years with 
no apparent decay!
 An important and useful application of superconductivity is in the development 
of superconducting magnets, in which the magnitudes of the magnetic field are 
approximately ten times greater than those produced by the best normal elec-
tromagnets. Such superconducting magnets are being considered as a means of 
storing energy. Superconducting magnets are currently used in medical magnetic 
resonance imaging, or MRI, units, which produce high-quality images of internal 
organs without the need for excessive exposure of patients to x-rays or other harm-
ful radiation.

27.6 Electrical Power
In typical electric circuits, energy TET is transferred by electrical transmission from 
a source such as a battery to some device such as a lightbulb or a radio receiver. 
Let’s determine an expression that will allow us to calculate the rate of this energy 
transfer. First, consider the simple circuit in Figure 27.11, where energy is delivered 
to a resistor. (Resistors are designated by the circuit symbol .) Because the 
connecting wires also have resistance, some energy is delivered to the wires and 
some to the resistor. Unless noted otherwise, we shall assume the resistance of the 
wires is small compared with the resistance of the circuit element so that the energy 
delivered to the wires is negligible.
 Imagine following a positive quantity of charge Q moving clockwise around the 
circuit in Figure 27.11 from point a through the battery and resistor back to point a. 
We identify the entire circuit as our system. As the charge moves from a to b through 
the battery, the electric potential energy of the system increases by an amount Q DV 

Table 27.3 Critical Temperatures 
for Various Superconductors
Material Tc  (K)

HgBa2Ca2Cu3O8 134
Tl—Ba—Ca—Cu—O 125
Bi—Sr—Ca—Cu—O 105
YBa2Cu3O7 92
Nb3Ge 23.2
Nb3Sn 18.05
Nb 9.46
Pb 7.18
Hg 4.15
Sn 3.72
Al 1.19
Zn 0.88

A small permanent magnet levi-
tated above a disk of the super-
conductor YBa2Cu3O7, which is in 
liquid nitrogen at 77 K.
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The direction of the 
effective flow of positive 
charge is clockwise.

Figure 27.11 A circuit consist-
ing of a resistor of resistance R 
and a battery having a potential 
difference DV across its terminals.
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32.5 Oscillations in an LC Circuit
When a capacitor is connected to an inductor as illustrated in Figure 32.10, the 
combination is an LC circuit. If the capacitor is initially charged and the switch is 
then closed, both the current in the circuit and the charge on the capacitor oscil-
late between maximum positive and negative values. If the resistance of the cir-
cuit is zero, no energy is transformed to internal energy. In the following analysis, 
the resistance in the circuit is neglected. We also assume an idealized situation in 
which energy is not radiated away from the circuit. This radiation mechanism is 
discussed in Chapter 34.
 Assume the capacitor has an initial charge Q max (the maximum charge) and 
the switch is open for t , 0 and then closed at t 5 0. Let’s investigate what happens 
from an energy viewpoint.
 When the capacitor is fully charged, the energy U in the circuit is stored in 
the capacitor’s electric field and is equal to Q 2

max/2C (Eq. 26.11). At this time, the 
current in the circuit is zero; therefore, no energy is stored in the inductor. After 
the switch is closed, the rate at which charges leave or enter the capacitor plates 
(which is also the rate at which the charge on the capacitor changes) is equal to 
the current in the circuit. After the switch is closed and the capacitor begins to 
discharge, the energy stored in its electric field decreases. The capacitor’s dis-
charge represents a current in the circuit, and some energy is now stored in the 
magnetic field of the inductor. Therefore, energy is transferred from the electric 
field of the capacitor to the magnetic field of the inductor. When the capacitor 
is fully discharged, it stores no energy. At this time, the current reaches its maxi-
mum value and all the energy in the circuit is stored in the inductor. The cur-
rent continues in the same direction, decreasing in magnitude, with the capacitor 
eventually becoming fully charged again but with the polarity of its plates now 
opposite the initial polarity. This process is followed by another discharge until 
the circuit returns to its original state of maximum charge Q max and the plate 
polarity shown in Figure 32.10. The energy continues to oscillate between induc-
tor and capacitor.
 The oscillations of the LC circuit are an electromagnetic analog to the mechani-
cal oscillations of the particle in simple harmonic motion studied in Chapter 15. 
Much of what was discussed there is applicable to LC oscillations. For example, we 
investigated the effect of driving a mechanical oscillator with an external force, 

S

LC
Q max

!

"

Figure 32.10  A simple LC cir-
cuit. The capacitor has an initial 
charge Q max, and the switch is 
open for t , 0 and then closed at 
t 5 0.

Find the mutual inductance, noting that the magnetic 
flux FBH through the handle’s coil caused by the mag-
netic field of the base coil is BA:

M 5
NHFBH

i
5

NH BA
i

5 m0 
NBNH

,
 A

Use Equation 30.17 to express the magnetic field in the 
interior of the base solenoid:

B 5 m0 
NB

,
 i

Wireless charging is used in a number of other “cordless” devices. One significant example is the inductive charging 
used by some manufacturers of electric cars that avoids direct metal-to-metal contact between the car and the charg-
ing apparatus.

Conceptualize  Be sure you can identify the two coils in the situation and understand that a changing current in one 
coil induces a current in the second coil.

Categorize  We will determine the result using concepts discussed in this section, so we categorize this example as a 
substitution problem.

S O L U T I O N

 

▸ 32.5 c o n t i n u e d



Inductance

Just like capacitors have a capacitance that depends on the
geometry of the capacitor, inductors have an inductance that
depends on their structure.

For a solenoid inductor:

L = µ0n
2A`

where n is the number of turns per unit length, A is the cross
sectional area, and ` is the length of the inductor.

Units: henries, H.

1 henry = 1 H = 1 T m2 / A



Value of µ0: New units

The magnetic permeability of free space µ0 is a constant.

µ0 = 4π× 10−7 T m / A

It can also be written in terms of henries:

µ0 = 4π× 10−7 H / m

(Remember, 1 H = 1 T m2 / A)



Inductance

However, capacitance is defined as being the constant of
proportionality relating the charge on the plates to the potential
difference across the plates q = C (∆V ). Inductance also is
formally defined this way.

inductance

the constant of proportionality relating the magnetic flux linkage
(NΦB) to the current:

NΦB = L I ; L =
NΦB

I

ΦB is the magnetic flux through the coil, and I is the current in
the coil.



Summary

• applications of Faraday’s law

• inductance

• self-induction

• RL Circuits

Homework Halliday, Resnick, Walker:

• PREV: Ch 29, Questions: 7; Problems: 35, 43, 45, 51, 53

• PREV: Ch 30, Questions: 1, 3; Problems: 1, 3, 4.

• NEW: Ch 30, onward from page 816. Problems: 29, 31, 35,
37


