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Last time

• charge

• charge interactions

• charge induction



Warm Up: Worksheet
3. Do both balloons A and B have a charge?

Static Electricity  Name:   
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Charge Interactions 
 

Read from Lesson 1 of the Static Electricity chapter at The Physics Classroom: 
 

http://www.physicsclassroom.com/Class/estatics/u8l1c.html 
 

MOP Connection: Static Electricity:  sublevel 2 
 
1. Review:  Fill in the following blanks with the words electrons or protons. 
 

____________________ are negatively charged and ____________________ are 
positively charged.  As an object begins to gain or lose electrons from its atoms, it 
becomes positively or negatively charged.  A negatively charged object has more 
____________________ than ____________________ .  A positively charged object has 
more ____________________ than ____________________ . 

 
2. Charged objects interact with one another. One can observe the interactions and infer information 

about the type of charge present on an object.  Complete the following statements to illustrate your 
understanding of the three types of charge interactions: 

 

 a.  Oppositely-charged objects  . 

 b.  Like-charged objects  . 

 c.  A charged object and a neutral object will  . 

 
3. Your physics teacher has prepared the room for the class's entry by 

suspending several inflated balloons from the ceiling.  Upon entering the 
physics room, you observe two balloons being drawn towards each other 
as shown at the right.  The attraction of these balloons for one another 
provides evidence that ______. 
a.  both balloons are charged with the same type of charge 
b.   both balloons are charged with the opposite type of charge 
c. both balloons are charged - either with the same type or opposite type 

of charge 
d. only one of the balloons is charged;  the other is neutral 
e. at least one of the balloons is charged;  the other is either charged or 

neutral 

 

 
4. As you look around the room, you observe two other balloons being 

pushed away from each other as shown at the right.  The repulsion of 
these balloons from one another provides evidence that ______. 
a.  both balloons are charged with the same type of charge 
b.   both balloons are charged with the opposite type of charge 
c. both balloons are charged - either with the same type or opposite type 

of charge 
d. only one of the balloons is charged;  the other is neutral 
e. at least one of the balloons is charged;  the other is either charged or 

neutral 

 

 
5. In one part of the room, there are two balloons - one hanging straight 

down and the other being attracted to it.  This is evidence that _____. 
a.  balloon A is charged and balloon B is neutral 
b.   balloon B is charged and balloon A is neutral 
c. balloon A is neutral and balloon B is negative 
d. balloon A is neutral and balloon B is positive 
e. … nonsense!  This would never happen if the balloons are identical 

and simply suspended by strings. They will attract each other and both 
be deflected from a vertical orientation.  

 

(A) yes

(B) no, neither is charged

(C) at least 1 is charged.
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MOP Connection: Static Electricity:  sublevel 2 
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positively charged.  As an object begins to gain or lose electrons from its atoms, it 
becomes positively or negatively charged.  A negatively charged object has more 
____________________ than ____________________ .  A positively charged object has 
more ____________________ than ____________________ . 

 
2. Charged objects interact with one another. One can observe the interactions and infer information 

about the type of charge present on an object.  Complete the following statements to illustrate your 
understanding of the three types of charge interactions: 

 

 a.  Oppositely-charged objects  . 

 b.  Like-charged objects  . 

 c.  A charged object and a neutral object will  . 

 
3. Your physics teacher has prepared the room for the class's entry by 

suspending several inflated balloons from the ceiling.  Upon entering the 
physics room, you observe two balloons being drawn towards each other 
as shown at the right.  The attraction of these balloons for one another 
provides evidence that ______. 
a.  both balloons are charged with the same type of charge 
b.   both balloons are charged with the opposite type of charge 
c. both balloons are charged - either with the same type or opposite type 

of charge 
d. only one of the balloons is charged;  the other is neutral 
e. at least one of the balloons is charged;  the other is either charged or 
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4. As you look around the room, you observe two other balloons being 

pushed away from each other as shown at the right.  The repulsion of 
these balloons from one another provides evidence that ______. 
a.  both balloons are charged with the same type of charge 
b.   both balloons are charged with the opposite type of charge 
c. both balloons are charged - either with the same type or opposite type 

of charge 
d. only one of the balloons is charged;  the other is neutral 
e. at least one of the balloons is charged;  the other is either charged or 
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5. In one part of the room, there are two balloons - one hanging straight 

down and the other being attracted to it.  This is evidence that _____. 
a.  balloon A is charged and balloon B is neutral 
b.   balloon B is charged and balloon A is neutral 
c. balloon A is neutral and balloon B is negative 
d. balloon A is neutral and balloon B is positive 
e. … nonsense!  This would never happen if the balloons are identical 

and simply suspended by strings. They will attract each other and both 
be deflected from a vertical orientation.  

 

(A) yes

(B) no, neither is charged

(C) at least 1 is charged. ←
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Charge Interactions 
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MOP Connection: Static Electricity:  sublevel 2 
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____________________ than ____________________ .  A positively charged object has 
more ____________________ than ____________________ . 

 
2. Charged objects interact with one another. One can observe the interactions and infer information 

about the type of charge present on an object.  Complete the following statements to illustrate your 
understanding of the three types of charge interactions: 
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 b.  Like-charged objects  . 
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physics room, you observe two balloons being drawn towards each other 
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b.   both balloons are charged with the opposite type of charge 
c. both balloons are charged - either with the same type or opposite type 

of charge 
d. only one of the balloons is charged;  the other is neutral 
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(A) yes

(B) no
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Read from Lesson 1 of the Static Electricity chapter at The Physics Classroom: 
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MOP Connection: Static Electricity:  sublevel 2 
 
1. Review:  Fill in the following blanks with the words electrons or protons. 
 

____________________ are negatively charged and ____________________ are 
positively charged.  As an object begins to gain or lose electrons from its atoms, it 
becomes positively or negatively charged.  A negatively charged object has more 
____________________ than ____________________ .  A positively charged object has 
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2. Charged objects interact with one another. One can observe the interactions and infer information 

about the type of charge present on an object.  Complete the following statements to illustrate your 
understanding of the three types of charge interactions: 

 

 a.  Oppositely-charged objects  . 

 b.  Like-charged objects  . 

 c.  A charged object and a neutral object will  . 

 
3. Your physics teacher has prepared the room for the class's entry by 

suspending several inflated balloons from the ceiling.  Upon entering the 
physics room, you observe two balloons being drawn towards each other 
as shown at the right.  The attraction of these balloons for one another 
provides evidence that ______. 
a.  both balloons are charged with the same type of charge 
b.   both balloons are charged with the opposite type of charge 
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of charge 
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4. As you look around the room, you observe two other balloons being 

pushed away from each other as shown at the right.  The repulsion of 
these balloons from one another provides evidence that ______. 
a.  both balloons are charged with the same type of charge 
b.   both balloons are charged with the opposite type of charge 
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of charge 
d. only one of the balloons is charged;  the other is neutral 
e. at least one of the balloons is charged;  the other is either charged or 
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5. In one part of the room, there are two balloons - one hanging straight 

down and the other being attracted to it.  This is evidence that _____. 
a.  balloon A is charged and balloon B is neutral 
b.   balloon B is charged and balloon A is neutral 
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d. balloon A is neutral and balloon B is positive 
e. … nonsense!  This would never happen if the balloons are identical 

and simply suspended by strings. They will attract each other and both 
be deflected from a vertical orientation.  

 

(A) yes

(B) no← consider Newton’s 3rd law



Overview
• Coulomb’s Law

• The net force of several charges

• Vector review

• Charge quantization

• Charge conservation

• Current

• Forces at a fundamental level

• Electric field

• Conductors and electric fields



Electrostatic Forces

Charged objects interact via the electrostatic force.

The force that one charge exerts on another can be attractive or
repulsive, depending on the signs of the charges.

• Charges with the same electrical sign repel each other.

• Charges with opposite electrical signs attract each other.

Charge is written with the symbol q or Q.



Electrostatic Forces

For a pair of point-particles with charges q1 and q2, the magnitude
of the force on each particle is given by Coulomb’s Law:

F1,2 =
k |q1q2|

r2

k is the electrostatic constant and r is the distance between the
two charged particles.

k = 1
4πε0

= 8.99× 109 N m2/C2



Electrostatic Forces: Coulomb’s Law

F1,2 =
k |q1q2|

r2

Remember however, forces are vectors. The vector version of the
law is:

F1→2 =
k q1q2
r2

r̂1→2

where F1→2 is the force that particle 1 exerts on particle 2, and
r̂1→2 is a unit vector pointing from particle 1 to particle 2.



Coulomb’s Law

Coulomb’s Law:

F1→2 =
k q1q2
r2

r̂1→2

Does this look a bit familiar?

Similar to this?

F1→2 = −
G m1m2

r2
r̂1→2
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Coulomb’s Law:

F1→2 =
k q1q2
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F1→2 = −
G m1m2

r2
r̂1→2



Coulomb’s Law

F1→2 =
k q1q2
r2

r̂1→2696 Chapter 23 Electric Fields

same sign as in Figure 23.6a, the product q1q2 is positive and the electric force on one 
particle is directed away from the other particle. If q1 and q2 are of opposite sign as 
shown in Figure 23.6b, the product q1q2 is negative and the electric force on one par-
ticle is directed toward the other particle. These signs describe the relative direction 
of the force but not the absolute direction. A negative product indicates an attractive 
force, and a positive product indicates a repulsive force. The absolute direction of the 
force on a charge depends on the location of the other charge. For example, if an x 
axis lies along the two charges in Figure 23.6a, the product q1q2 is positive, but F

S
12  

points in the positive x direction and F
S

21  points in the negative x direction.
 When more than two charges are present, the force between any pair of them is 
given by Equation 23.6. Therefore, the resultant force on any one of them equals the 
vector sum of the forces exerted by the other individual charges. For example, if four 
charges are present, the resultant force exerted by particles 2, 3, and 4 on particle 1 is

F
S

1 5 F
S

21 1 F
S

31 1 F
S

41

Q uick Quiz 23.3  Object A has a charge of 12 mC, and object B has a charge  
of 16 mC. Which statement is true about the electric forces on the objects?  
(a) F

S
AB 5 23 F

S
BA  (b) F

S
AB 5 2 F

S
BA  (c) 3 F

S
AB 5 2 F

S
BA  (d) F

S
AB 5 3 F

S
BA  

(e)  F
S

AB 5 F
S

BA   (f) 3 F
S

AB 5 F
S

BA

Example 23.2   Find the Resultant Force

Consider three point charges located at the corners of a right triangle as shown in 
Figure 23.7, where q1 5 q3 5 5.00 mC, q2 5 22.00 mC, and a 5 0.100 m. Find the 
resultant force exerted on q3.

Conceptualize  Think about the net force on q3. Because charge q3 is near two 
other charges, it will experience two electric forces. These forces are exerted in dif-
ferent directions as shown in Figure 23.7. Based on the forces shown in the figure, 
estimate the direction of the net force vector.

Categorize  Because two forces are exerted on charge q3, we categorize this exam-
ple as a vector addition problem.

Analyze  The directions of the individual forces exerted by q1 and q2 on q3 are 
shown in Figure 23.7. The force F

S
23  exerted by q2 on q3 is attractive because q2  

and q3 have opposite signs. In the coordinate system shown in Figure 23.7, the 
attractive force F

S
23  is to the left (in the negative x direction).

 The force F
S

13  exerted by q1 on q3 is repulsive because both charges are positive. The repulsive force F
S

13  makes an 
angle of 45.08 with the x axis.

S O L U T I O N

Figure 23.6 Two point charges 
separated by a distance r exert a 
force on each other that is given 
by Coulomb’s law. The force F

S
21 

exerted by q2 on q1 is equal in mag-
nitude and opposite in direction to 
the force F

S
12 exerted by q1 on q2.

r

q1

q2

r12ˆ

When the charges are of the 
same sign, the force is repulsive.

a b

F12
S

F21
S

!

!

q1

q2

When the charges are of opposite 
signs, the force is attractive.

F12
S

F21
S

!

"

!

!

"

F13
S

F23
S

q3

q1

q2

a

a

y

x

2a!

Figure 23.7  (Example 23.2) The 
force exerted by q1 on q3 is F

S
13. The 

force exerted by q2 on q3 is F
S

23.  
The resultant force F

S
3 exerted on q3 

is the vector sum F
S

13 1 F
S

23.

1Figure from Serway & Jewett, Physics for Scientists and Engineers, 9th ed.



Electrostatic Constant

The electrostatic constant is: k = 1
4πε0

= 8.99× 109 N m2 C−2

ε0 is called the permittivity constant or the electrical
permittivity of free space.

ε0 = 8.85× 10−12 C2 N−1 m−2



Example

56721-4 COU LOM B’S LAW
PART 3

HALLIDAY REVISED

Sample Problem

(b) Figure 21-8c is identical to Fig. 21-8a except that particle
3 now lies on the x axis between particles 1 and 2. Particle 3
has charge q3 ! "3.20 # 10"19 C and is at a distance from
particle 1. What is the net electrostatic force on particle
1 due to particles 2 and 3?

The presence of particle 3 does not alter the electrostatic
force on particle 1 from particle 2. Thus, force still acts onF

:
12

F
:

1,net

3
4 R

Finding the net force due to two other particles

(a) Figure 21-8a shows two positively charged particles fixed in
place on an x axis.The charges are q1 ! 1.60 # 10"19 C and q2 !
3.20 # 10"19 C, and the particle separation is R ! 0.0200 m.
What are the magnitude and direction of the electrostatic force

on particle 1 from particle 2?

Because both particles are positively charged, particle 1 is re-
pelled by particle 2, with a force magnitude given by Eq. 21-4.
Thus, the direction of force on particle 1 is away from parti-
cle 2, in the negative direction of the x axis, as indicated in the
free-body diagram of Fig. 21-8b.

Two particles: Using Eq. 21-4 with separation R substituted
for r, we can write the magnitude F12 of this force as

Thus, force has the following magnitude and direction
(relative to the positive direction of the x axis):

1.15 # 10"24 N and 180°. (Answer)

We can also write in unit-vector notation as

. (Answer)F
:

12 ! "(1.15 # 10 "24 N)î

F
:

12

F
:

12

 ! 1.15 # 10 "24 N.

  #
(1.60 # 10 "19 C)(3.20 # 10 "19 C)

(0.0200 m)2

 ! (8.99 # 10 9 N $m2/C2)

 F12 !
1

4%&0
 

!q1!!q2!
R2

F
:

12

F
:

12

KEY I DEAS KEY I DEA

R
x

q2q1

(a)

x
(b)

F12

R3__
4

x
q2q3q1

(c)

x
(d)

F12 F13

This is the first
arrangement.

This is the second
arrangement.

This is the third
arrangement.

This is the particle
of interest.

This is still the
particle of interest.

It is pushed away
from particle 2.

It is pushed away
from particle 2.

It is pulled toward
particle 3.

It is pushed away
from particle 2.

It is pulled toward
particle 4.

This is still the
particle of interest.

x

y

q2q1

q4

3__
4 R

(e)

( f )

θ

x

y

θF12

F14

Fig. 21-8 (a)
Two charged parti-
cles of charges q1

and q2 are fixed in
place on an x axis.
(b) The free-body
diagram for particle
1, showing the elec-
trostatic force on it
from particle 2. (c)
Particle 3 included.
(d) Free-body dia-
gram for particle 1.
(e) Particle 4
included. (f ) Free-
body diagram for
particle 1.

particle 1. Similarly, the force that acts on particle 1 due
to particle 3 is not affected by the presence of particle 2.
Because particles 1 and 3 have charge of opposite signs,
particle 1 is attracted to particle 3. Thus, force is di-
rected toward particle 3, as indicated in the free-body dia-
gram of Fig. 21-8d.

Three particles: To find the magnitude of , we can
rewrite Eq. 21-4 as

We can also write in unit-vector notation:

F
:

13 ! (2.05 # 10 "24 N)î .

F
:

13

  ! 2.05 # 10 "24 N.

 #
(1.60 # 10 "19 C)(3.20 # 10 "19 C)

(3
4)

2(0.0200 m)2

  ! (8.99 # 10 9 N $m2/C2)

F13 !
1

4%&0
 

!q1!!q3!

(3
4R)2

F
:

13

F
:

13

F
:

13

A
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particle 1. Similarly, the force that acts on particle 1 due
to particle 3 is not affected by the presence of particle 2.
Because particles 1 and 3 have charge of opposite signs,
particle 1 is attracted to particle 3. Thus, force is di-
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k = 8.99× 109 N m2 C−2 or ε0 = 8.85× 10−12 C2 N−1 m−2
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Two charged parti-
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particle 1. Similarly, the force that acts on particle 1 due
to particle 3 is not affected by the presence of particle 2.
Because particles 1 and 3 have charge of opposite signs,
particle 1 is attracted to particle 3. Thus, force is di-
rected toward particle 3, as indicated in the free-body dia-
gram of Fig. 21-8d.

Three particles: To find the magnitude of , we can
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Sample Problem

(b) Figure 21-8c is identical to Fig. 21-8a except that particle
3 now lies on the x axis between particles 1 and 2. Particle 3
has charge q3 ! "3.20 # 10"19 C and is at a distance from
particle 1. What is the net electrostatic force on particle
1 due to particles 2 and 3?
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force on particle 1 from particle 2. Thus, force still acts onF

:
12

F
:

1,net

3
4 R
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Answer: F2→1 = −1.15× 10−24 i N



Force from many charges

Forces from many charges add up to give a net force

This is (very grandly) called the “principle of superposition”.

The net force on particle 1 from particles 2, 3, ... n is:

Fnet,1 = F2→1 + F3→1 + ... + Fn→1



Example

Consider three point charges located at the corners of a right
triangle as shown, where q1 = q3 = 5.00 µC, q2 = −2.00 µC, and
a = 0.100 m. Find the resultant force exerted on q3.
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same sign as in Figure 23.6a, the product q1q2 is positive and the electric force on one 
particle is directed away from the other particle. If q1 and q2 are of opposite sign as 
shown in Figure 23.6b, the product q1q2 is negative and the electric force on one par-
ticle is directed toward the other particle. These signs describe the relative direction 
of the force but not the absolute direction. A negative product indicates an attractive 
force, and a positive product indicates a repulsive force. The absolute direction of the 
force on a charge depends on the location of the other charge. For example, if an x 
axis lies along the two charges in Figure 23.6a, the product q1q2 is positive, but F

S
12  

points in the positive x direction and F
S

21  points in the negative x direction.
 When more than two charges are present, the force between any pair of them is 
given by Equation 23.6. Therefore, the resultant force on any one of them equals the 
vector sum of the forces exerted by the other individual charges. For example, if four 
charges are present, the resultant force exerted by particles 2, 3, and 4 on particle 1 is

F
S

1 5 F
S

21 1 F
S

31 1 F
S

41

Q uick Quiz 23.3  Object A has a charge of 12 mC, and object B has a charge  
of 16 mC. Which statement is true about the electric forces on the objects?  
(a) F

S
AB 5 23 F

S
BA  (b) F

S
AB 5 2 F

S
BA  (c) 3 F

S
AB 5 2 F

S
BA  (d) F

S
AB 5 3 F

S
BA  

(e)  F
S

AB 5 F
S

BA   (f) 3 F
S

AB 5 F
S

BA

Example 23.2   Find the Resultant Force

Consider three point charges located at the corners of a right triangle as shown in 
Figure 23.7, where q1 5 q3 5 5.00 mC, q2 5 22.00 mC, and a 5 0.100 m. Find the 
resultant force exerted on q3.

Conceptualize  Think about the net force on q3. Because charge q3 is near two 
other charges, it will experience two electric forces. These forces are exerted in dif-
ferent directions as shown in Figure 23.7. Based on the forces shown in the figure, 
estimate the direction of the net force vector.

Categorize  Because two forces are exerted on charge q3, we categorize this exam-
ple as a vector addition problem.

Analyze  The directions of the individual forces exerted by q1 and q2 on q3 are 
shown in Figure 23.7. The force F

S
23  exerted by q2 on q3 is attractive because q2  

and q3 have opposite signs. In the coordinate system shown in Figure 23.7, the 
attractive force F

S
23  is to the left (in the negative x direction).

 The force F
S

13  exerted by q1 on q3 is repulsive because both charges are positive. The repulsive force F
S

13  makes an 
angle of 45.08 with the x axis.

S O L U T I O N

Figure 23.6 Two point charges 
separated by a distance r exert a 
force on each other that is given 
by Coulomb’s law. The force F

S
21 

exerted by q2 on q1 is equal in mag-
nitude and opposite in direction to 
the force F

S
12 exerted by q1 on q2.

r

q1

q2

r12ˆ

When the charges are of the 
same sign, the force is repulsive.

a b

F12
S

F21
S

!

!

q1

q2

When the charges are of opposite 
signs, the force is attractive.
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!

"
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Figure 23.7  (Example 23.2) The 
force exerted by q1 on q3 is F

S
13. The 

force exerted by q2 on q3 is F
S

23.  
The resultant force F

S
3 exerted on q3 

is the vector sum F
S

13 1 F
S

23.

1Figure from Serway & Jewett, Physics for Scientists and Engineers, 9th ed.
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13 1 F
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Step 1: What is the force considering ONLY particles 2 and 3?

1Figure from Serway & Jewett, Physics for Scientists and Engineers, 9th ed.
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S
13. The 

force exerted by q2 on q3 is F
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The resultant force F
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3 exerted on q3 

is the vector sum F
S

13 1 F
S

23.

Step 2: What is the force from particle 1 on particle 3? It has 2
components.

1Figure from Serway & Jewett, Physics for Scientists and Engineers, 9th ed.



Reminder about Vectors

scalar

A scalar quantity indicates an amount. It is represented by a real
number. (Assuming it is a physical quantity.)

vector

A vector quantity indicates both an amount and a direction. It is
represented more than one real number. (Assuming it is a physical
quantity.)

There are many ways to represent a vector.

• a magnitude and (an) angle(s)

• magnitudes in several perpendicular directions
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Representing Vectors: Angles
Bearing angles
Example, a plane flies at a bearing of 70◦

Reference angles x-axis, CCW
A baseball is thrown at 10ms−1 30◦ above the horizontal.

N

E



Representing Vectors: Unit Vectors

Another useful way to represent vectors is in terms of unit vectors.

Unit vectors have a magnitude of one unit.

In this course, a unit vector r̂ is a one-unit-long vector parallel to
the vector r.

In two dimensions, a pair of perpendicular unit vectors are usually
denoted i and j (or sometimes x̂, ŷ).

A generic 2 dimensional vector can be written as v = ai + bj,
where a and b are numbers.
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Components

Consider the 2 dimensional vector A = Ax i + Ay j, where a and b
are numbers.

We then say that Ax is the i-component (or x-component) of A
and Ay is the j-component (or y -component) of A.

 3.4 Components of a Vector and Unit Vectors 65

3.4 Components of a Vector and Unit Vectors
The graphical method of adding vectors is not recommended whenever high 
accuracy is required or in three-dimensional problems. In this section, we 
describe a method of adding vectors that makes use of the projections of vectors 
along coordinate axes. These projections are called the components of the vec-
tor or its rectangular components. Any vector can be completely described by its 
components.
 Consider a vector A

S
 lying in the xy plane and making an arbitrary angle u  

with the positive x axis as shown in Figure 3.12a. This vector can be expressed as the 
sum of two other component vectors A

S
x , which is parallel to the x axis, and A

S
y , which  

is parallel to the y axis. From Figure 3.12b, we see that the three vectors form a 
right triangle and that A

S
5 A

S
x 1 A

S
y. We shall often refer to the “components  

of a vector A
S

,” written Ax and Ay (without the boldface notation). The compo-
nent Ax represents the projection of A

S
 along the x axis, and the component Ay  

represents the projection of A
S

 along the y axis. These components can be positive 
or negative. The component Ax is positive if the component vector A

S
x points in 

the positive x direction and is negative if A
S

x points in the negative x direction. A 
similar statement is made for the component Ay.

Use the law of sines (Appendix B.4) to find the direction 
of R

S
 measured from the northerly direction:

sin b
B

5
sin u

R

sin b 5
B
R

  sin u 5
35.0 km
48.2 km

  sin 1208 5 0.629

b 5   38.9°

The resultant displacement of the car is 48.2 km in a direction 38.9° west of north.

Finalize Does the angle b that we calculated agree with an 
estimate made by looking at Figure 3.11a or with an actual 
angle measured from the diagram using the graphical 
method? Is it reasonable that the magnitude of R

S
 is larger 

than that of both A
S

 and B
S

? Are the units of R
S

 correct?
 Although the head to tail method of adding vectors 
works well, it suffers from two disadvantages. First, some 

people find using the laws of cosines and sines to be awk-
ward. Second, a triangle only results if you are adding 
two vectors. If you are adding three or more vectors, the 
resulting geometric shape is usually not a triangle. In Sec-
tion 3.4, we explore a new method of adding vectors that 
will address both of these disadvantages.

Suppose the trip were taken with the two vectors in reverse order: 35.0 km at 60.0° west of north first and 
then 20.0 km due north. How would the magnitude and the direction of the resultant vector change?

Answer They would not change. The commutative law for vector addition tells us that the order of vectors in an 
addition is irrelevant. Graphically, Figure 3.11b shows that the vectors added in the reverse order give us the same 
resultant vector.

WHAT IF ?

Figure 3.12  (a) A vector A
S

  
lying in the xy plane can be rep-
resented by its component vectors 
A
S

x and A
S

y. (b) The y component 
vector A

S
y can be moved to the 

right so that it adds to A
S

x. The 
vector sum of the component 
vectors is A

S
. These three vectors 

form a right triangle.
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y

x
O
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S

 

A
S

 
a b

▸ 3.2 c o n t i n u e d

 

Notice that Ax = A cos θ and Ay = A sin θ.



Vectors Properties and Operations

Equality
Vectors A = B if and only if the magnitudes and directions are the
same. (Each component is the same.)

Addition
A + B

62 Chapter 3 Vectors

Q uick Quiz 3.1  Which of the following are vector quantities and which are scalar 
quantities? (a) your age (b) acceleration (c) velocity (d) speed (e) mass

3.3 Some Properties of Vectors
In this section, we shall investigate general properties of vectors representing physi-
cal quantities. We also discuss how to add and subtract vectors using both algebraic 
and geometric methods.

Equality of Two Vectors
For many purposes, two vectors A

S
 and B

S
 may be defined to be equal if they have 

the same magnitude and if they point in the same direction. That is, A
S

5 B
S

 only if  
A ! B and if A

S
 and B

S
 point in the same direction along parallel lines. For exam-

ple, all the vectors in Figure 3.5 are equal even though they have different starting 
points. This property allows us to move a vector to a position parallel to itself in a 
diagram without affecting the vector.

Adding Vectors
The rules for adding vectors are conveniently described by a graphical method. 
To add vector B

S
 to vector A

S
, first draw vector A

S
 on graph paper, with its magni-

tude represented by a convenient length scale, and then draw vector B
S

 to the same 
scale, with its tail starting from the tip of A

S
, as shown in Figure 3.6. The resultant 

vector R
S

5 A
S

1 B
S

 is the vector drawn from the tail of A
S

 to the tip of B
S

.
 A geometric construction can also be used to add more than two vectors as  
shown in Figure 3.7 for the case of four vectors. The resultant vector R

S
 5 A

S
 1 B

S
 1  

C
S

 1 D
S

 is the vector that completes the polygon. In other words, R
S

 is the vector 
drawn from the tail of the first vector to the tip of the last vector. This technique for 
adding vectors is often called the “head to tail method.”
 When two vectors are added, the sum is independent of the order of the addi-
tion. (This fact may seem trivial, but as you will see in Chapter 11, the order is 
important when vectors are multiplied. Procedures for multiplying vectors are dis-
cussed in Chapters 7 and 11.) This property, which can be seen from the geometric 
construction in Figure 3.8, is known as the commutative law of addition:
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Figure 3.8 This construction 
shows that A
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1 B
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5 B

S
1 A

S
 or, in 

other words, that vector addition is 
commutative.

Pitfall Prevention 3.1
Vector Addition Versus  
Scalar Addition Notice that 
A
S

1 B
S

5 C
S

 is very different 
from A " B ! C. The first equa-
tion is a vector sum, which must 
be handled carefully, such as  
with the graphical method. The 
second equation is a simple alge-
braic addition of numbers that  
is handled with the normal rules 
of arithmetic.

Figure 3.6 When vector B
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added to vector A
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, the resultant R
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the vector that runs from the tail of 
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A Property of Addition

A + B = B + A (commutative)

62 Chapter 3 Vectors

Q uick Quiz 3.1  Which of the following are vector quantities and which are scalar 
quantities? (a) your age (b) acceleration (c) velocity (d) speed (e) mass

3.3 Some Properties of Vectors
In this section, we shall investigate general properties of vectors representing physi-
cal quantities. We also discuss how to add and subtract vectors using both algebraic 
and geometric methods.

Equality of Two Vectors
For many purposes, two vectors A

S
 and B

S
 may be defined to be equal if they have 

the same magnitude and if they point in the same direction. That is, A
S

5 B
S

 only if  
A ! B and if A

S
 and B

S
 point in the same direction along parallel lines. For exam-

ple, all the vectors in Figure 3.5 are equal even though they have different starting 
points. This property allows us to move a vector to a position parallel to itself in a 
diagram without affecting the vector.

Adding Vectors
The rules for adding vectors are conveniently described by a graphical method. 
To add vector B

S
 to vector A

S
, first draw vector A

S
 on graph paper, with its magni-

tude represented by a convenient length scale, and then draw vector B
S

 to the same 
scale, with its tail starting from the tip of A

S
, as shown in Figure 3.6. The resultant 

vector R
S

5 A
S

1 B
S

 is the vector drawn from the tail of A
S

 to the tip of B
S

.
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Doing addition:
Almost always the right answer is to break each vector into
components and sum each component independently.

 3.4 Components of a Vector and Unit Vectors 67

which lies on the x axis and has magnitude 0Ax 0 . Likewise, A
S

y 5 Ay j
S

 is the com-
ponent vector of magnitude 0Ay 0  lying on the y axis. Therefore, the unit-vector 
 notation for the vector A

S
 is

 A
S

5 Ax î 1 Ay ĵ (3.12)

For example, consider a point lying in the xy plane and having Cartesian coordi-
nates (x, y) as in Figure 3.15. The point can be specified by the position vector rS, 
which in unit-vector form is given by

 rS 5 x î 1 y ĵ (3.13)

This notation tells us that the components of rS are the coordinates x and y.
 Now let us see how to use components to add vectors when the graphical method 
is not sufficiently accurate. Suppose we wish to add vector B

S
 to vector A

S
 in Equa-

tion 3.12, where vector B
S

 has components Bx and By. Because of the bookkeeping 
convenience of the unit vectors, all we do is add the x and y components separately. 
The resultant vector R

S
5 A

S
1 B

S
 is

R
S

5 1Ax î 1 Ay  ĵ 2 1 1Bx î 1 By  ĵ 2
or

 R
S

5 1Ax 1 Bx 2  î 1 1Ay 1 By 2  ĵ (3.14)

Because R
S

5 Rx  î 1 Ry  ĵ, we see that the components of the resultant vector are

Rx 5 Ax 1 Bx

 Ry 5 Ay 1 By 
(3.15)

Therefore, we see that in the component method of adding vectors, we add all the 
x components together to find the x component of the resultant vector and use the 
same process for the y components. We can check this addition by components with 
a geometric construction as shown in Figure 3.16.
 The magnitude of R

S
 and the angle it makes with the x axis are obtained from its 

components using the relationships

    R 5 "Rx
2 1 Ry

2 5 "1Ax 1 Bx 22 1 1Ay 1 By 22 (3.16)

 tan u 5
Ry

Rx
5

Ay 1 By

Ax 1 Bx
 (3.17)

 At times, we need to consider situations involving motion in three component 
directions. The extension of our methods to three-dimensional vectors is straight-
forward. If A

S
 and B

S
 both have x, y, and z components, they can be expressed in 

the form

 A
S

5 Ax î 1 Ay  ĵ 1 Az k̂ (3.18)

 B
S

5 Bx î 1 By  ĵ 1 Bz k̂ (3.19)

The sum of A
S

 and B
S

 is

 R
S

5 1Ax 1 Bx 2  î 1 1Ay 1 By 2  ĵ 1 1Az 1 Bz 2  k̂ (3.20)

Notice that Equation 3.20 differs from Equation 3.14: in Equation 3.20, the resul-
tant vector also has a z component Rz ! Az " Bz. If a vector R

S
 has x, y, and z com-

ponents, the magnitude of the vector is R 5 !Rx
2 1 Ry

2 1 Rz
2. The angle ux  

that R
S

 makes with the x axis is found from the expression cos ux ! Rx/R, with simi-
lar expressions for the angles with respect to the y and z axes.
 The extension of our method to adding more than two vectors is also straight-
forward. For example, A

S
1 B

S
1 C

S
5 1Ax 1 Bx 1 Cx 2  î 1 1Ay 1 By 1 Cy 2  ĵ 11Az 1 Bz 1 Cz 2  k̂. We have described adding displacement vectors in this section 

because these types of vectors are easy to visualize. We can also add other types of 

y

x
O

(x, y)

y

x

ĵ
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rS 

Figure 3.15  The point whose 
Cartesian coordinates are (x, y) 
can be represented by the position 
vector rS 5 x  î 1 y  ĵ.
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Figure 3.16 This geometric 
construction for the sum of two 
vectors shows the relationship 
between the components of the 
resultant R

S
 and the components 

of the individual vectors.

Pitfall Prevention 3.3
Tangents on Calculators Equa-
tion 3.17 involves the calculation 
of an angle by means of a tangent 
function. Generally, the inverse 
tangent function on calculators 
provides an angle between #90° 
and "90°. As a consequence, if 
the vector you are studying lies in 
the second or third quadrant, the 
angle measured from the positive 
x axis will be the angle your calcu-
lator returns plus 180°.



Example

Consider three point charges located at the corners of a right
triangle as shown, where q1 = q3 = 5.00 µC, q2 = −2.00 µC, and
a = 0.100 m. Find the resultant force exerted on q3.
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same sign as in Figure 23.6a, the product q1q2 is positive and the electric force on one 
particle is directed away from the other particle. If q1 and q2 are of opposite sign as 
shown in Figure 23.6b, the product q1q2 is negative and the electric force on one par-
ticle is directed toward the other particle. These signs describe the relative direction 
of the force but not the absolute direction. A negative product indicates an attractive 
force, and a positive product indicates a repulsive force. The absolute direction of the 
force on a charge depends on the location of the other charge. For example, if an x 
axis lies along the two charges in Figure 23.6a, the product q1q2 is positive, but F

S
12  

points in the positive x direction and F
S

21  points in the negative x direction.
 When more than two charges are present, the force between any pair of them is 
given by Equation 23.6. Therefore, the resultant force on any one of them equals the 
vector sum of the forces exerted by the other individual charges. For example, if four 
charges are present, the resultant force exerted by particles 2, 3, and 4 on particle 1 is

F
S

1 5 F
S

21 1 F
S

31 1 F
S

41

Q uick Quiz 23.3  Object A has a charge of 12 mC, and object B has a charge  
of 16 mC. Which statement is true about the electric forces on the objects?  
(a) F

S
AB 5 23 F

S
BA  (b) F

S
AB 5 2 F

S
BA  (c) 3 F

S
AB 5 2 F

S
BA  (d) F

S
AB 5 3 F

S
BA  

(e)  F
S

AB 5 F
S

BA   (f) 3 F
S

AB 5 F
S

BA

Example 23.2   Find the Resultant Force

Consider three point charges located at the corners of a right triangle as shown in 
Figure 23.7, where q1 5 q3 5 5.00 mC, q2 5 22.00 mC, and a 5 0.100 m. Find the 
resultant force exerted on q3.

Conceptualize  Think about the net force on q3. Because charge q3 is near two 
other charges, it will experience two electric forces. These forces are exerted in dif-
ferent directions as shown in Figure 23.7. Based on the forces shown in the figure, 
estimate the direction of the net force vector.

Categorize  Because two forces are exerted on charge q3, we categorize this exam-
ple as a vector addition problem.

Analyze  The directions of the individual forces exerted by q1 and q2 on q3 are 
shown in Figure 23.7. The force F

S
23  exerted by q2 on q3 is attractive because q2  

and q3 have opposite signs. In the coordinate system shown in Figure 23.7, the 
attractive force F

S
23  is to the left (in the negative x direction).

 The force F
S

13  exerted by q1 on q3 is repulsive because both charges are positive. The repulsive force F
S

13  makes an 
angle of 45.08 with the x axis.

S O L U T I O N

Figure 23.6 Two point charges 
separated by a distance r exert a 
force on each other that is given 
by Coulomb’s law. The force F

S
21 

exerted by q2 on q1 is equal in mag-
nitude and opposite in direction to 
the force F

S
12 exerted by q1 on q2.

r

q1

q2

r12ˆ

When the charges are of the 
same sign, the force is repulsive.

a b

F12
S

F21
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!

q1

q2

When the charges are of opposite 
signs, the force is attractive.
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!
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Figure 23.7  (Example 23.2) The 
force exerted by q1 on q3 is F

S
13. The 

force exerted by q2 on q3 is F
S

23.  
The resultant force F

S
3 exerted on q3 

is the vector sum F
S

13 1 F
S

23.

1Figure from Serway & Jewett, Physics for Scientists and Engineers, 9th ed.
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Answer: Fnet,3 = (−1.04 i + 7.94 j) N
1Figure from Serway & Jewett, Physics for Scientists and Engineers, 9th ed.



Charge is Quantized

quantization

A physical quantity is said to be quantized if if can only take
discrete values.

Originally, charge was thought to be a continuous fluid.

It is not.

Just like water has a smallest unit, the H2O molecule, charge has a
smallest unit, written e, the elementary charge.

e = 1.602× 10−19 C
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Charge is Quantized

quantization

A physical quantity is said to be quantized if if can only take
discrete values.

Originally, charge was thought to be a continuous fluid.

It is not.

Just like water has a smallest unit, the H2O molecule, charge has a
smallest unit, written e, the elementary charge.

e = 1.602× 10−19 C



Basic Unit of Charge

The elementary charge.

e = 1.602× 10−19 C

Any charge must be

q = ne , n ∈ Z

The charge of an electron is −e and the proton has a charge +e.



Question

Initially, sphere A has a charge of −50e and sphere B has a charge
of 20e. The spheres are made of conducting material and are
identical in size. If the spheres then touch, what is the resulting
charge on sphere A?

(A) −50e

(B) −30e

(C) −15e

(D) 20e
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Initially, sphere A has a charge of −50e and sphere B has a charge
of 20e. The spheres are made of conducting material and are
identical in size. If the spheres then touch, what is the resulting
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Conservation of Charge

Charge can move from one body to another but the net charge of
an isolated system never changes.

This is called charge conservation.

What other quantities are conserved?
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Conservation of Charge

One interesting phenomenon that shows the conservation of charge
is pair production.

A gamma ray (very high energy photon) converts into an electron
and a positron (anti-electron):

γ→ e− + e+

New mass is created out of light, but charge is still conserved!



Current

Current is the the rate of flow of charge.

Current is written with the symbol I or i .

i =
∆q

∆t

(If you like calculus, use i = dq
dt .)



Coulombs and Ampères

The unit for current is the Ampère, or more commonly, “Amp”.

Using the definition for current, 1 A = 1 C / 1 s.

Therefore, we can formally define the unit of charge in terms of the
unit of current:

1 C = (1 A)(1 s)
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pg 574, #4
574 CHAPTE R 21 E LECTR IC CHARG E

HALLIDAY REVISED

4 Figure 21-15 shows two charged
particles on an axis. The charges are
free to move. However, a third
charged particle can be placed at a
certain point such that all three particles are then in equilibrium. (a)
Is that point to the left of the first two particles, to their right, or be-
tween them? (b) Should the third particle be positively or negatively
charged? (c) Is the equilibrium stable or unstable?

5 In Fig. 21-16, a central particle of
charge !q is surrounded by two cir-
cular rings of charged particles.What
are the magnitude and direction of
the net electrostatic force on the cen-
tral particle due to the other parti-
cles? (Hint: Consider symmetry.)

6 A positively charged ball is
brought close to an electrically neu-
tral isolated conductor. The conduc-
tor is then grounded while the ball
is kept close. Is the conductor
charged positively, charged nega-
tively, or neutral if (a) the ball is first
taken away and then the ground connection is removed and (b)
the ground connection is first removed and then the ball is taken
away?

7 Figure 21-17 shows three situations involving a charged parti-
cle and a uniformly charged spherical shell. The charges are given,
and the radii of the shells are indicated. Rank the situations ac-
cording to the magnitude of the force on the particle due to the
presence of the shell, greatest first.

–3q –q

Fig. 21-15 Question 4.

+4q

+2q

+q

–2q

r

R

–2q

–7q –7q

–2q–2q

+4q

+q

Fig. 21-16 Question 5.

R
2R R/2

+8Q

–q+2q

+6q

–4Q
+5Q

(a) (b) (c)

d

Fig. 21-17 Question 7.

+Q
p

p

d

2d
(a)

+Q
e

p

d

2d
(b)

+Q
p

e

d

2d
(c)

+Q
e

e

d

2d
(d)

Fig. 21-18 Question 8.

Rank the arrangements according to the magnitude of the net
electrostatic force on the particle with charge "Q, greatest
first.

9 Figure 21-19 shows four situations in which particles of
charge "q or !q are fixed in place. In each situation, the parti-
cles on the x axis are equidistant from the y axis. First, consider
the middle particle in situation 1; the middle particle experiences
an electrostatic force from each of the other two particles. (a)
Are the magnitudes F of those forces the same or different? (b)
Is the magnitude of the net force on the middle particle equal to,
greater than, or less than 2F? (c) Do the x components of the
two forces add or cancel? (d) Do their y components add or can-
cel? (e) Is the direction of the net force on the middle particle
that of the canceling components or the adding components? (f )
What is the direction of that net force? Now consider the re-
maining situations: What is the direction of the net force on the
middle particle in (g) situation 2, (h) situation 3, and (i) situation
4? (In each situation, consider the symmetry of the charge distri-
bution and determine the canceling components and the adding
components.)

Fig. 21-19 Question 9.

x

y

+q

+q+q

(1)

x

y

–q

+q+q

(2)

x

y

+q

–q+q

(3)

x

y
–q

–q+q

(4)

8 Figure 21-18 shows four arrangements of charged particles.

10 In Fig. 21-20, a central particle of charge !2q is surrounded by a
square array of charged particles, separated by either distance d or d/2
along the perimeter of the square. What are the magnitude and direc-
tion of the net electrostatic force on the central particle due to the
other particles? (Hint: Consideration of symmetry can greatly reduce
the amount of work required here.)

+2q

–5q

+3q

–3q

+4q
–7q
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–7q
+4q

–3q
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+2q

Fig. 21-20 Question 10.
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4 Figure 21-15 shows two charged
particles on an axis. The charges are
free to move. However, a third
charged particle can be placed at a
certain point such that all three particles are then in equilibrium. (a)
Is that point to the left of the first two particles, to their right, or be-
tween them? (b) Should the third particle be positively or negatively
charged? (c) Is the equilibrium stable or unstable?

5 In Fig. 21-16, a central particle of
charge !q is surrounded by two cir-
cular rings of charged particles.What
are the magnitude and direction of
the net electrostatic force on the cen-
tral particle due to the other parti-
cles? (Hint: Consider symmetry.)

6 A positively charged ball is
brought close to an electrically neu-
tral isolated conductor. The conduc-
tor is then grounded while the ball
is kept close. Is the conductor
charged positively, charged nega-
tively, or neutral if (a) the ball is first
taken away and then the ground connection is removed and (b)
the ground connection is first removed and then the ball is taken
away?

7 Figure 21-17 shows three situations involving a charged parti-
cle and a uniformly charged spherical shell. The charges are given,
and the radii of the shells are indicated. Rank the situations ac-
cording to the magnitude of the force on the particle due to the
presence of the shell, greatest first.
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Fig. 21-18 Question 8.

Rank the arrangements according to the magnitude of the net
electrostatic force on the particle with charge "Q, greatest
first.

9 Figure 21-19 shows four situations in which particles of
charge "q or !q are fixed in place. In each situation, the parti-
cles on the x axis are equidistant from the y axis. First, consider
the middle particle in situation 1; the middle particle experiences
an electrostatic force from each of the other two particles. (a)
Are the magnitudes F of those forces the same or different? (b)
Is the magnitude of the net force on the middle particle equal to,
greater than, or less than 2F? (c) Do the x components of the
two forces add or cancel? (d) Do their y components add or can-
cel? (e) Is the direction of the net force on the middle particle
that of the canceling components or the adding components? (f )
What is the direction of that net force? Now consider the re-
maining situations: What is the direction of the net force on the
middle particle in (g) situation 2, (h) situation 3, and (i) situation
4? (In each situation, consider the symmetry of the charge distri-
bution and determine the canceling components and the adding
components.)

Fig. 21-19 Question 9.
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8 Figure 21-18 shows four arrangements of charged particles.

10 In Fig. 21-20, a central particle of charge !2q is surrounded by a
square array of charged particles, separated by either distance d or d/2
along the perimeter of the square. What are the magnitude and direc-
tion of the net electrostatic force on the central particle due to the
other particles? (Hint: Consideration of symmetry can greatly reduce
the amount of work required here.)
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sec. 21-4 Coulomb’s Law
•1 Of the charge Q initially on a tiny sphere, a portion
q is to be transferred to a second, nearby sphere. Both spheres can
be treated as particles. For what value of q/Q will the electrostatic
force between the two spheres be maximized?

•2 Identical isolated conducting spheres 1 and 2 have equal
charges and are separated by a distance that is large compared with
their diameters (Fig. 21-21a). The electrostatic force acting on
sphere 2 due to sphere 1 is . Suppose now that a third identical
sphere 3, having an insulating handle and initially neutral, is
touched first to sphere 1 (Fig. 21-21b), then to sphere 2 (Fig. 21-21c),
and finally removed (Fig. 21-21d). The electrostatic force that now
acts on sphere 2 has magnitude F!.What is the ratio F!/F?

F
:

ILWSSM

electrostatic force on it from parti-
cles 1 and 2 happens to be zero. If
L23 " L12, what is the ratio q1/q2?

••8 In Fig. 21-23, three identical
conducting spheres initially have
the following charges: sphere A, 4Q;
sphere B, #6Q; and sphere C, 0.
Spheres A and B are fixed in place,
with a center-to-center separation
that is much larger than the spheres.
Two experiments are conducted. In experiment 1, sphere C is
touched to sphere A and then (separately) to sphere B, and then it is
removed. In experiment 2, starting with the same initial states, the
procedure is reversed: Sphere C is touched to sphere B and then
(separately) to sphere A, and then it is removed. What is the ratio of
the electrostatic force between A and B at the end of experiment 2 to
that at the end of experiment 1?

••9 Two identical conducting spheres, fixed in
place, attract each other with an electrostatic force of 0.108 N when
their center-to-center separation is 50.0 cm. The spheres are then
connected by a thin conducting wire. When the wire is removed,
the spheres repel each other with an electrostatic force of 0.0360 N.
Of the initial charges on the spheres,
with a positive net charge, what was (a)
the negative charge on one of them
and (b) the positive charge on the
other?

••10 In Fig. 21-24, four particles
form a square. The charges are q1 "
q4 " Q and q2 " q3 " q. (a) What is
Q/q if the net electrostatic force on
particles 1 and 4 is zero? (b) Is there
any value of q that makes the net elec-
trostatic force on each of the four parti-
cles zero? Explain.

••11 In Fig. 21-24, the particles have charges q1 " #q2 " 100 nC
and q3 " #q4 " 200 nC, and distance a " 5.0 cm. What are the (a) x
and (b) y components of the net electrostatic force on particle 3?

••12 Two particles are fixed on an x axis. Particle 1 of charge 40 mC is
located at x " #2.0 cm; particle 2 of charge Q is located at x " 3.0 cm.
Particle 3 of charge magnitude 20 mC is released from rest on the y
axis at y " 2.0 cm. What is the value of Q if the initial acceleration of
particle 3 is in the positive direction of (a) the x axis and (b) the y axis?

••13 In Fig. 21-25, particle 1 of charge $1.0 mC and particle 2
of charge #3.0 mC are held at separa-
tion L " 10.0 cm on an x axis. If particle
3 of unknown charge q3 is to be located
such that the net electrostatic force on
it from particles 1 and 2 is zero, what
must be the (a) x and (b) y coordinates
of particle 3?

ILW

WWWSSM

(a)

1 2

(b)

1 2
3

(c)

1 2

(d)

1 2
3

F

F'

–F

–F'

Fig. 21-21 Problem 2.

•3 What must be the distance between point charge q1 "
26.0 mC and point charge q2 " #47.0 mC for the electrostatic force
between them to have a magnitude of 5.70 N?

•4 In the return stroke of a typical lightning bolt, a current
of 2.5 % 104 A exists for 20 ms. How much charge is transferred in
this event?

•5 A particle of charge $3.00 % 10#6 C is 12.0 cm distant from a
second particle of charge #1.50 % 10#6 C. Calculate the magni-
tude of the electrostatic force between the particles.

•6 Two equally charged particles are held 3.2 % 10#3 m
apart and then released from rest. The initial acceleration of the
first particle is observed to be 7.0 m/s2 and that of the second to
be 9.0 m/s2. If the mass of the first particle is 6.3 % 10#7 kg, what
are (a) the mass of the second particle and (b) the magnitude of
the charge of each particle?

••7 In Fig. 21-22, three charged particles lie on an x axis. Particles
1 and 2 are fixed in place. Particle 3 is free to move, but the net

ILW

SSM

L12 L23

1 2 3
x

Fig. 21-22 Problems 7 and 40.

Fig. 21-24
Problems 10, 11, and 70.

3 4

1 2a

a

a a

x

y

x

y

1 2

L

Fig. 21-25 Problems
13, 19, 30, 58, and 67.

Fig. 21-23
Problems 8 and 65.

C
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Forces at a Fundamental Level

Often people think about two kinds of forces: contact forces and
field forces (ie. forces that act at a distance).

In mechanics problems, all forces except gravity are from direct
contact.

Gravity is a field force.

The electric and magnetic forces are also field forces.

And actually, at a fundamental level, all forces that we know of are
field forces.
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Forces at a Fundamental Level

Contact forces are a result of electrostatic repulsion at very small
scales.

Fundamental forces:

Force ∼ Rel. strength Range (m) Attract/Repel Carrier

Gravitational 10−38 ∞ attractive graviton
Electromagnetic 10−2 ∞ attr. & rep. photon
Weak Nuclear 10−13 < 10−18 attr. & rep. W+,W−,Z 0

Strong Nuclear 1 < 10−15 attr. & rep. gluons

Gravity is actually quite a weak force, but it is the only one that
(typically) matters on large scales - charges cancel out!
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Fields

field

A field is any kind of physical quantity that has values specified at
every point in space and time.



Fields

In EM we have vector fields. The electrostatic force is mediated by
a vector field.

vector field

A field is any kind of physical quantity that has values specified as
vectors at every point in space and time.



Fields

Fields were first introduced as a calculation tool.

A force-field can be used to identify the force a particular particle
will feel at a certain point in space and time based on the other
objects in its environment that it will interact with.

Imagine a charge q0. We want to know the force it would feel if we
put it at a specific location.

The electric field E at that point will tell us that!

F = q0E
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Fields

The source of the field could be another charge.

We do not need a description of the sources of the field to describe
what their effect is on our particle. All we need to know if the
field!

This is also true for gravity. We do not need the mass of the Earth
to know something’s weight:

FG = m0g FE = q0E
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Fig. 22-1 (a) A positive test charge
q0 placed at point P near a charged ob-
ject.An electrostatic force acts on the
test charge. (b) The electric field at
point P produced by the charged object.
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Some Electric Fields

Field Location 
or Situation Value (N/C)

At the surface of a 
uranium nucleus 3 ! 1021

Within a hydrogen 
atom, at a radius 
of 5.29 ! 10"11 m 5 ! 1011

Electric breakdown 
occurs in air 3 ! 106

Near the charged 
drum of a photocopier 105

Near a charged comb 103

In the lower atmosphere 102

Inside the copper wire 
of household circuits 10"2

Table 22-1

22-1 The physics of the preceding chapter tells us how to find the electric
force on a particle 1 of charge #q1 when the particle is placed near a particle 2 of
charge #q2.A nagging question remains: How does particle 1 “know” of the pres-
ence of particle 2? That is, since the particles do not touch, how can particle
2 push on particle 1—how can there be such an action at a distance?

One purpose of physics is to record observations about our world, such as the
magnitude and direction of the push on particle 1. Another purpose is to provide a
deeper explanation of what is recorded. One purpose of this chapter is to provide
such a deeper explanation to our nagging questions about electric force at a dis-
tance. We can answer those questions by saying that particle 2 sets up an electric
field in the space surrounding itself. If we place particle 1 at any given point in that
space, the particle “knows” of the presence of particle 2 because it is affected by the
electric field that particle 2 has already set up at that point.Thus, particle 2 pushes on
particle 1 not by touching it but by means of the electric field produced by particle 2.

Our goal in this chapter is to define electric field and discuss how to calculate
it for various arrangements of charged particles.

22-2 The Electric Field
The temperature at every point in a room has a definite value. You can measure
the temperature at any given point or combination of points by putting a ther-
mometer there. We call the resulting distribution of temperatures a temperature
field. In much the same way, you can imagine a pressure field in the atmosphere;
it consists of the distribution of air pressure values, one for each point in the
atmosphere. These two examples are of scalar fields because temperature and air
pressure are scalar quantities.

The electric field is a vector field; it consists of a distribution of vectors, one for
each point in the region around a charged object, such as a charged rod. In princi-
ple, we can define the electric field at some point near the charged object, such as
point P in Fig. 22-1a, as follows: We first place a positive charge q0, called a test
charge, at the point. We then measure the electrostatic force that acts on the test
charge. Finally, we define the electric field at point P due to the charged object as

(electric field). (22-1)

Thus, the magnitude of the electric field at point P is E $ F/q0, and the direction of
is that of the force that acts on the positive test charge. As shown in Fig. 22-1b,

we represent the electric field at P with a vector whose tail is at P.To define the elec-
tric field within some region, we must similarly define it at all points in the region.

The SI unit for the electric field is the newton per coulomb (N/C). Table 22-1
shows the electric fields that occur in a few physical situations.
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Fig. 22-1 (a) A positive test charge
q0 placed at point P near a charged ob-
ject.An electrostatic force acts on the
test charge. (b) The electric field at
point P produced by the charged object.
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Field Location 
or Situation Value (N/C)
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of household circuits 10"2

Table 22-1

22-1 The physics of the preceding chapter tells us how to find the electric
force on a particle 1 of charge #q1 when the particle is placed near a particle 2 of
charge #q2.A nagging question remains: How does particle 1 “know” of the pres-
ence of particle 2? That is, since the particles do not touch, how can particle
2 push on particle 1—how can there be such an action at a distance?

One purpose of physics is to record observations about our world, such as the
magnitude and direction of the push on particle 1. Another purpose is to provide a
deeper explanation of what is recorded. One purpose of this chapter is to provide
such a deeper explanation to our nagging questions about electric force at a dis-
tance. We can answer those questions by saying that particle 2 sets up an electric
field in the space surrounding itself. If we place particle 1 at any given point in that
space, the particle “knows” of the presence of particle 2 because it is affected by the
electric field that particle 2 has already set up at that point.Thus, particle 2 pushes on
particle 1 not by touching it but by means of the electric field produced by particle 2.

Our goal in this chapter is to define electric field and discuss how to calculate
it for various arrangements of charged particles.

22-2 The Electric Field
The temperature at every point in a room has a definite value. You can measure
the temperature at any given point or combination of points by putting a ther-
mometer there. We call the resulting distribution of temperatures a temperature
field. In much the same way, you can imagine a pressure field in the atmosphere;
it consists of the distribution of air pressure values, one for each point in the
atmosphere. These two examples are of scalar fields because temperature and air
pressure are scalar quantities.

The electric field is a vector field; it consists of a distribution of vectors, one for
each point in the region around a charged object, such as a charged rod. In princi-
ple, we can define the electric field at some point near the charged object, such as
point P in Fig. 22-1a, as follows: We first place a positive charge q0, called a test
charge, at the point. We then measure the electrostatic force that acts on the test
charge. Finally, we define the electric field at point P due to the charged object as

(electric field). (22-1)

Thus, the magnitude of the electric field at point P is E $ F/q0, and the direction of
is that of the force that acts on the positive test charge. As shown in Fig. 22-1b,

we represent the electric field at P with a vector whose tail is at P.To define the elec-
tric field within some region, we must similarly define it at all points in the region.

The SI unit for the electric field is the newton per coulomb (N/C). Table 22-1
shows the electric fields that occur in a few physical situations.
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1Figure from Halliday, Resnick, Walker.



Field Lines
Fields are drawn with lines showing the direction of force that a
test particle will feel at that point. The density of the lines at that
point in the diagram indicates the approximate magnitude of the
force at that point.
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Although we use a positive test charge to define the electric field of a charged
object, that field exists independently of the test charge. The field at point P in
Figure 22-1b existed both before and after the test charge of Fig. 22-1a was put
there. (We assume that in our defining procedure, the presence of the test charge
does not affect the charge distribution on the charged object, and thus does not
alter the electric field we are defining.)

To examine the role of an electric field in the interaction between charged
objects, we have two tasks: (1) calculating the electric field produced by a given
distribution of charge and (2) calculating the force that a given field exerts on a
charge placed in it. We perform the first task in Sections 22-4 through 22-7 for
several charge distributions. We perform the second task in Sections 22-8 and
22-9 by considering a point charge and a pair of point charges in an electric field.
First, however, we discuss a way to visualize electric fields.

22-3 Electric Field Lines
Michael Faraday, who introduced the idea of electric fields in the 19th century,
thought of the space around a charged body as filled with lines of force. Although
we no longer attach much reality to these lines, now usually called electric field
lines, they still provide a nice way to visualize patterns in electric fields.

The relation between the field lines and electric field vectors is this: (1) At
any point, the direction of a straight field line or the direction of the tangent to a
curved field line gives the direction of at that point, and (2) the field lines are
drawn so that the number of lines per unit area, measured in a plane that is
perpendicular to the lines, is proportional to the magnitude of . Thus, E is large
where field lines are close together and small where they are far apart.

Figure 22-2a shows a sphere of uniform negative charge. If we place a positive
test charge anywhere near the sphere, an electrostatic force pointing toward the
center of the sphere will act on the test charge as shown. In other words, the elec-
tric field vectors at all points near the sphere are directed radially toward the
sphere. This pattern of vectors is neatly displayed by the field lines in Fig. 22-2b,
which point in the same directions as the force and field vectors. Moreover, the
spreading of the field lines with distance from the sphere tells us that the magni-
tude of the electric field decreases with distance from the sphere.

If the sphere of Fig. 22-2 were of uniform positive charge, the electric field
vectors at all points near the sphere would be directed radially away from
the sphere. Thus, the electric field lines would also extend radially away from the
sphere.We then have the following rule:

E
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Fig. 22-2 (a) The electrostatic force
acting on a positive test charge near a

sphere of uniform negative charge. (b)
The electric field vector at the loca-
tion of the test charge, and the electric
field lines in the space near the sphere.
The field lines extend toward the nega-
tively charged sphere. (They originate
on distant positive charges.)
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Electric field lines extend away from positive charge (where they originate) and
toward negative charge (where they terminate).
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Figure 22-3a shows part of an infinitely large, nonconducting sheet (or plane)
with a uniform distribution of positive charge on one side. If we were to place a

Fig. 22-3 (a) The electrostatic force
on a positive test charge near a very

large, nonconducting sheet with uni-
formly distributed positive charge on
one side. (b) The electric field vector 
at the location of the test charge, and
the electric field lines in the space
near the sheet.The field lines extend
away from the positively charged
sheet. (c) Side view of (b).
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Field Lines

The electrostatic field caused by an electric dipole system looks
something like:

 25.4 Obtaining the Value of the Electric Field from the Electric Potential 755

25.4  Obtaining the Value of the Electric Field  
from the Electric Potential

The electric field E
S

 and the electric potential V are related as shown in Equation 
25.3, which tells us how to find DV if the electric field E

S
 is known. What if the situ-

ation is reversed? How do we calculate the value of the electric field if the electric 
potential is known in a certain region?
 From Equation 25.3, the potential difference dV between two points a distance 
ds apart can be expressed as

 dV 5 2 E
S

? d sS  (25.15)

If the electric field has only one component Ex, then E
S

? d sS 5 Ex dx . Therefore, 
Equation 25.15 becomes dV 5 2Ex dx, or

 Ex 5 2
dV
dx

 (25.16)

That is, the x component of the electric field is equal to the negative of the deriv-
ative of the electric potential with respect to x. Similar statements can be made 
about the y and z components. Equation 25.16 is the mathematical statement of 
the electric field being a measure of the rate of change with position of the electric 
potential as mentioned in Section 25.1.
 Experimentally, electric potential and position can be measured easily with a 
voltmeter (a device for measuring potential difference) and a meterstick. Conse-
quently, an electric field can be determined by measuring the electric potential at 
several positions in the field and making a graph of the results. According to Equa-
tion 25.16, the slope of a graph of V versus x at a given point provides the magnitude 
of the electric field at that point.
 Imagine starting at a point and then moving through a displacement d sS along 
an equipotential surface. For this motion, dV 5 0 because the potential is constant 
along an equipotential surface. From Equation 25.15, we see that dV 5 2 E

S
? d sS 5 0; 

therefore, because the dot product is zero, E
S

 must be perpendicular to the displace-
ment along the equipotential surface. This result shows that the equipotential sur-
faces must always be perpendicular to the electric field lines passing through them.
 As mentioned at the end of Section 25.2, the equipotential surfaces associated 
with a uniform electric field consist of a family of planes perpendicular to the 
field lines. Figure 25.11a shows some representative equipotential surfaces for this 
situation.

Figure 25.11 Equipotential surfaces (the dashed blue lines are intersections of these surfaces with the page) and elec-
tric field lines. In all cases, the equipotential surfaces are perpendicular to the electric field lines at every point.
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A uniform electric field produced 
by an infinite sheet of charge

A spherically symmetric electric 
field produced by a point charge

An electric field produced by an 
electric dipole

a b c
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Notice that the lines point outward from a positive charge and
inward toward a negative charge.

1Figure from Serway & Jewett



Field Lines

Compare the electrostatic fields for two like charges and two
opposite charges:

+

Fig. 22-6 The electric field vectors at
various points around a positive point
charge.
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Fig. 22-4 Field lines for two equal positive
point charges.The charges repel each other.
(The lines terminate on distant negative
charges.) To “see”the actual three-dimen-
sional pattern of field lines,mentally rotate
the pattern shown here about an axis passing
through both charges in the plane of the page.
The three-dimensional pattern and the elec-
tric field it represents are said to have rota-
tional symmetry about that axis.The electric
field vector at one point is shown;note that it
is tangent to the field line through that point.

Fig. 22-5 Field lines for a positive point
charge and a nearby negative point charge
that are equal in magnitude.The charges at-
tract each other.The pattern of field lines and
the electric field it represents have rotational
symmetry about an axis passing through both
charges in the plane of the page.The electric
field vector at one point is shown; the vector
is tangent to the field line through the point.

positive test charge at any point near the sheet
of Fig. 22-3a, the net electrostatic force acting on
the test charge would be perpendicular to the
sheet, because forces acting in all other direc-
tions would cancel one another as a result of
the symmetry. Moreover, the net force on the
test charge would point away from the sheet as
shown.Thus, the electric field vector at any point
in the space on either side of the sheet is also
perpendicular to the sheet and directed away
from it (Figs. 22-3b and c). Because the charge is
uniformly distributed along the sheet, all the

field vectors have the same magnitude. Such an electric field, with the same mag-
nitude and direction at every point, is a uniform electric field.

Of course, no real nonconducting sheet (such as a flat expanse of plastic) is infi-
nitely large, but if we consider a region that is near the middle of a real sheet and not
near its edges, the field lines through that region are arranged as in Figs. 22-3b and c.

Figure 22-4 shows the field lines for two equal positive charges. Figure 22-5
shows the pattern for two charges that are equal in magnitude but of opposite
sign, a configuration that we call an electric dipole. Although we do not often use
field lines quantitatively, they are very useful to visualize what is going on.

22-4 The Electric Field Due to a Point Charge
To find the electric field due to a point charge q (or charged particle) at any point
a distance r from the point charge, we put a positive test charge q0 at that point.
From Coulomb’s law (Eq. 21-1), the electrostatic force acting on q0 is

(22-2)

The direction of is directly away from the point charge if q is positive, and directly
toward the point charge if q is negative.The electric field vector is, from Eq.22-1,

(point charge). (22-3)

The direction of is the same as that of the force on the positive test charge:
directly away from the point charge if q is positive, and toward it if q is negative.

Because there is nothing special about the point we chose for q0, Eq. 22-3
gives the field at every point around the point charge q. The field for a positive
point charge is shown in Fig. 22-6 in vector form (not as field lines).

We can quickly find the net,or resultant,electric field due to more than one point
charge. If we place a positive test charge q0 near n point charges q1, q2, . . . , qn, then,
from Eq.21-7, the net force from the n point charges acting on the test charge is

Therefore, from Eq. 22-1, the net electric field at the position of the test charge is

(22-4)

Here is the electric field that would be set up by point charge i acting alone.
Equation 22-4 shows us that the principle of superposition applies to electric
fields as well as to electrostatic forces.

E
:

i

! E
:

1 " E
:

2 " # # # " E
:

n.

E
:

!
F
:

0

q0
!

F
:

01

q0
"

F
:

02

q0
" # # # "

F
:

0n

q0

F
:

0 ! F
:

01 " F
:

02 " # # # " F
:

0n.

F
:

0

E
:

E
:

!
F
:

q0
!

1
4$%0

 
q
r2 r̂

F
:

F
:

!
1

4$%0
 
qq0

r2 r̂ .

+

–
E

E

+

+

halliday_c22_580-604hr.qxd  7-12-2009  14:16  Page 582

+

Fig. 22-6 The electric field vectors at
various points around a positive point
charge.
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Fig. 22-4 Field lines for two equal positive
point charges.The charges repel each other.
(The lines terminate on distant negative
charges.) To “see”the actual three-dimen-
sional pattern of field lines,mentally rotate
the pattern shown here about an axis passing
through both charges in the plane of the page.
The three-dimensional pattern and the elec-
tric field it represents are said to have rota-
tional symmetry about that axis.The electric
field vector at one point is shown;note that it
is tangent to the field line through that point.

Fig. 22-5 Field lines for a positive point
charge and a nearby negative point charge
that are equal in magnitude.The charges at-
tract each other.The pattern of field lines and
the electric field it represents have rotational
symmetry about an axis passing through both
charges in the plane of the page.The electric
field vector at one point is shown; the vector
is tangent to the field line through the point.

positive test charge at any point near the sheet
of Fig. 22-3a, the net electrostatic force acting on
the test charge would be perpendicular to the
sheet, because forces acting in all other direc-
tions would cancel one another as a result of
the symmetry. Moreover, the net force on the
test charge would point away from the sheet as
shown.Thus, the electric field vector at any point
in the space on either side of the sheet is also
perpendicular to the sheet and directed away
from it (Figs. 22-3b and c). Because the charge is
uniformly distributed along the sheet, all the

field vectors have the same magnitude. Such an electric field, with the same mag-
nitude and direction at every point, is a uniform electric field.

Of course, no real nonconducting sheet (such as a flat expanse of plastic) is infi-
nitely large, but if we consider a region that is near the middle of a real sheet and not
near its edges, the field lines through that region are arranged as in Figs. 22-3b and c.

Figure 22-4 shows the field lines for two equal positive charges. Figure 22-5
shows the pattern for two charges that are equal in magnitude but of opposite
sign, a configuration that we call an electric dipole. Although we do not often use
field lines quantitatively, they are very useful to visualize what is going on.

22-4 The Electric Field Due to a Point Charge
To find the electric field due to a point charge q (or charged particle) at any point
a distance r from the point charge, we put a positive test charge q0 at that point.
From Coulomb’s law (Eq. 21-1), the electrostatic force acting on q0 is

(22-2)

The direction of is directly away from the point charge if q is positive, and directly
toward the point charge if q is negative.The electric field vector is, from Eq.22-1,

(point charge). (22-3)

The direction of is the same as that of the force on the positive test charge:
directly away from the point charge if q is positive, and toward it if q is negative.

Because there is nothing special about the point we chose for q0, Eq. 22-3
gives the field at every point around the point charge q. The field for a positive
point charge is shown in Fig. 22-6 in vector form (not as field lines).

We can quickly find the net,or resultant,electric field due to more than one point
charge. If we place a positive test charge q0 near n point charges q1, q2, . . . , qn, then,
from Eq.21-7, the net force from the n point charges acting on the test charge is

Therefore, from Eq. 22-1, the net electric field at the position of the test charge is

(22-4)

Here is the electric field that would be set up by point charge i acting alone.
Equation 22-4 shows us that the principle of superposition applies to electric
fields as well as to electrostatic forces.
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Field Lines

Compare the fields for gravity in an Earth-Sun system and
electrostatic repulsion of two charges:

+
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Field Lines

Imagine an infinite sheet of charge. The lines point outward from
the positively charged sheet.
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PART 3

Although we use a positive test charge to define the electric field of a charged
object, that field exists independently of the test charge. The field at point P in
Figure 22-1b existed both before and after the test charge of Fig. 22-1a was put
there. (We assume that in our defining procedure, the presence of the test charge
does not affect the charge distribution on the charged object, and thus does not
alter the electric field we are defining.)

To examine the role of an electric field in the interaction between charged
objects, we have two tasks: (1) calculating the electric field produced by a given
distribution of charge and (2) calculating the force that a given field exerts on a
charge placed in it. We perform the first task in Sections 22-4 through 22-7 for
several charge distributions. We perform the second task in Sections 22-8 and
22-9 by considering a point charge and a pair of point charges in an electric field.
First, however, we discuss a way to visualize electric fields.

22-3 Electric Field Lines
Michael Faraday, who introduced the idea of electric fields in the 19th century,
thought of the space around a charged body as filled with lines of force. Although
we no longer attach much reality to these lines, now usually called electric field
lines, they still provide a nice way to visualize patterns in electric fields.

The relation between the field lines and electric field vectors is this: (1) At
any point, the direction of a straight field line or the direction of the tangent to a
curved field line gives the direction of at that point, and (2) the field lines are
drawn so that the number of lines per unit area, measured in a plane that is
perpendicular to the lines, is proportional to the magnitude of . Thus, E is large
where field lines are close together and small where they are far apart.

Figure 22-2a shows a sphere of uniform negative charge. If we place a positive
test charge anywhere near the sphere, an electrostatic force pointing toward the
center of the sphere will act on the test charge as shown. In other words, the elec-
tric field vectors at all points near the sphere are directed radially toward the
sphere. This pattern of vectors is neatly displayed by the field lines in Fig. 22-2b,
which point in the same directions as the force and field vectors. Moreover, the
spreading of the field lines with distance from the sphere tells us that the magni-
tude of the electric field decreases with distance from the sphere.

If the sphere of Fig. 22-2 were of uniform positive charge, the electric field
vectors at all points near the sphere would be directed radially away from
the sphere. Thus, the electric field lines would also extend radially away from the
sphere.We then have the following rule:

E
:

E
:

Fig. 22-2 (a) The electrostatic force
acting on a positive test charge near a

sphere of uniform negative charge. (b)
The electric field vector at the loca-
tion of the test charge, and the electric
field lines in the space near the sphere.
The field lines extend toward the nega-
tively charged sphere. (They originate
on distant positive charges.)
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F
:

Electric field lines extend away from positive charge (where they originate) and
toward negative charge (where they terminate).
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Figure 22-3a shows part of an infinitely large, nonconducting sheet (or plane)
with a uniform distribution of positive charge on one side. If we were to place a

Fig. 22-3 (a) The electrostatic force
on a positive test charge near a very

large, nonconducting sheet with uni-
formly distributed positive charge on
one side. (b) The electric field vector 
at the location of the test charge, and
the electric field lines in the space
near the sheet.The field lines extend
away from the positively charged
sheet. (c) Side view of (b).
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:
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Field from a Point Charge

We want an expression for the electric field from a point charge, q.

Using Coulomb’s Law the force on the test particle is
F→0 =

k qq0
r2

r̂.

E =
F

q0
=

(
1

��q0

)
k q��q0
r2

r̂

The field at a displacement r from a charge q is:

E =
k q

r2
r̂



Field from a Point Charge

The field at a displacement r from a charge q is:

E =
k q

r2
r̂

This is a vector field:

+

Fig. 22-6 The electric field vectors at
various points around a positive point
charge.
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Fig. 22-4 Field lines for two equal positive
point charges.The charges repel each other.
(The lines terminate on distant negative
charges.) To “see”the actual three-dimen-
sional pattern of field lines,mentally rotate
the pattern shown here about an axis passing
through both charges in the plane of the page.
The three-dimensional pattern and the elec-
tric field it represents are said to have rota-
tional symmetry about that axis.The electric
field vector at one point is shown;note that it
is tangent to the field line through that point.

Fig. 22-5 Field lines for a positive point
charge and a nearby negative point charge
that are equal in magnitude.The charges at-
tract each other.The pattern of field lines and
the electric field it represents have rotational
symmetry about an axis passing through both
charges in the plane of the page.The electric
field vector at one point is shown; the vector
is tangent to the field line through the point.

positive test charge at any point near the sheet
of Fig. 22-3a, the net electrostatic force acting on
the test charge would be perpendicular to the
sheet, because forces acting in all other direc-
tions would cancel one another as a result of
the symmetry. Moreover, the net force on the
test charge would point away from the sheet as
shown.Thus, the electric field vector at any point
in the space on either side of the sheet is also
perpendicular to the sheet and directed away
from it (Figs. 22-3b and c). Because the charge is
uniformly distributed along the sheet, all the

field vectors have the same magnitude. Such an electric field, with the same mag-
nitude and direction at every point, is a uniform electric field.

Of course, no real nonconducting sheet (such as a flat expanse of plastic) is infi-
nitely large, but if we consider a region that is near the middle of a real sheet and not
near its edges, the field lines through that region are arranged as in Figs. 22-3b and c.

Figure 22-4 shows the field lines for two equal positive charges. Figure 22-5
shows the pattern for two charges that are equal in magnitude but of opposite
sign, a configuration that we call an electric dipole. Although we do not often use
field lines quantitatively, they are very useful to visualize what is going on.

22-4 The Electric Field Due to a Point Charge
To find the electric field due to a point charge q (or charged particle) at any point
a distance r from the point charge, we put a positive test charge q0 at that point.
From Coulomb’s law (Eq. 21-1), the electrostatic force acting on q0 is

(22-2)

The direction of is directly away from the point charge if q is positive, and directly
toward the point charge if q is negative.The electric field vector is, from Eq.22-1,

(point charge). (22-3)

The direction of is the same as that of the force on the positive test charge:
directly away from the point charge if q is positive, and toward it if q is negative.

Because there is nothing special about the point we chose for q0, Eq. 22-3
gives the field at every point around the point charge q. The field for a positive
point charge is shown in Fig. 22-6 in vector form (not as field lines).

We can quickly find the net,or resultant,electric field due to more than one point
charge. If we place a positive test charge q0 near n point charges q1, q2, . . . , qn, then,
from Eq.21-7, the net force from the n point charges acting on the test charge is

Therefore, from Eq. 22-1, the net electric field at the position of the test charge is

(22-4)

Here is the electric field that would be set up by point charge i acting alone.
Equation 22-4 shows us that the principle of superposition applies to electric
fields as well as to electrostatic forces.
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Charges and Conductors

Excess charge sits on the outside surface of a conductor.

The electric field lines are perpendicular to the surface.

1Figure from OpenStax College Physics.



Conductors and Electric fields

Consider a neutral conductor placed in an electric field:

64524-12 POTE NTIAL OF A CHARG E D I SOLATE D CON DUCTOR
PART 3
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Fig. 24-18 (a) A plot of V(r) both
inside and outside a charged spheri-
cal shell of radius 1.0 m. (b) A plot of
E(r) for the same shell.Fig. 24-19 A large spark

jumps to a car’s body and then
exits by moving across the
insulating left front tire (note
the flash there), leaving the per-
son inside unharmed. (Courtesy
Westinghouse Electric
Corporation)

Figure 24-18a is a plot of potential against radial distance r from the center
for an isolated spherical conducting shell of 1.0 m radius, having a charge of
1.0 mC. For points outside the shell, we can calculate V(r) from Eq. 24-26 because
the charge q behaves for such external points as if it were concentrated at the
center of the shell. That equation holds right up to the surface of the shell. Now
let us push a small test charge through the shell—assuming a small hole exists—
to its center. No extra work is needed to do this because no net electric force acts
on the test charge once it is inside the shell. Thus, the potential at all points inside
the shell has the same value as that on the surface, as Fig. 24-18a shows.

Figure 24-18b shows the variation of electric field with radial distance for the
same shell. Note that E ! 0 everywhere inside the shell.The curves of Fig. 24-18b
can be derived from the curve of Fig. 24-18a by differentiating with respect to r,
using Eq. 24-40 (recall that the derivative of any constant is zero). The curve of
Fig. 24-18a can be derived from the curves of Fig. 24-18b by integrating with
respect to r, using Eq. 24-19.

Fig. 24-20 An uncharged conduc-
tor is suspended in an external elec-
tric field.The free electrons in the
conductor distribute themselves on
the surface as shown, so as to reduce
the net electric field inside the con-
ductor to zero and make the net field
at the surface perpendicular to the
surface.
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Spark Discharge from a Charged Conductor
On nonspherical conductors, a surface charge does not distribute itself uniformly
over the surface of the conductor.At sharp points or sharp edges, the surface charge
density—and thus the external electric field, which is proportional to it—may reach
very high values.The air around such sharp points or edges may become ionized, pro-
ducing the corona discharge that golfers and mountaineers see on the tips of bushes,
golf clubs, and rock hammers when thunderstorms threaten. Such corona discharges,
like hair that stands on end, are often the precursors of lightning strikes. In such cir-
cumstances, it is wise to enclose yourself in a cavity inside a conducting shell, where
the electric field is guaranteed to be zero. A car (unless it is a convertible or made
with a plastic body) is almost ideal (Fig.24-19).

Isolated Conductor in an External Electric Field
If an isolated conductor is placed in an external electric field, as in Fig. 24-20, all
points of the conductor still come to a single potential regardless of whether the
conductor has an excess charge. The free conduction electrons distribute them-
selves on the surface in such a way that the electric field they produce at interior
points cancels the external electric field that would otherwise be there.
Furthermore, the electron distribution causes the net electric field at all points on
the surface to be perpendicular to the surface. If the conductor in Fig. 24-20 could
be somehow removed, leaving the surface charges frozen in place, the internal
and external electric field would remain absolutely unchanged.
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Conductors and Electric fields

Electric fields exert forces on free charges in conductors.

Each charge keeps moving until:

1 the charges reaches the edge of the conductor and can move
no further OR

2 the field is cancelled out!

Inside a conducting object, the electric field is zero!



Faraday Cages
A conducting shell can shield the interior from even very strong
electric fields.
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Fig. 24-18 (a) A plot of V(r) both
inside and outside a charged spheri-
cal shell of radius 1.0 m. (b) A plot of
E(r) for the same shell.Fig. 24-19 A large spark

jumps to a car’s body and then
exits by moving across the
insulating left front tire (note
the flash there), leaving the per-
son inside unharmed. (Courtesy
Westinghouse Electric
Corporation)

Figure 24-18a is a plot of potential against radial distance r from the center
for an isolated spherical conducting shell of 1.0 m radius, having a charge of
1.0 mC. For points outside the shell, we can calculate V(r) from Eq. 24-26 because
the charge q behaves for such external points as if it were concentrated at the
center of the shell. That equation holds right up to the surface of the shell. Now
let us push a small test charge through the shell—assuming a small hole exists—
to its center. No extra work is needed to do this because no net electric force acts
on the test charge once it is inside the shell. Thus, the potential at all points inside
the shell has the same value as that on the surface, as Fig. 24-18a shows.

Figure 24-18b shows the variation of electric field with radial distance for the
same shell. Note that E ! 0 everywhere inside the shell.The curves of Fig. 24-18b
can be derived from the curve of Fig. 24-18a by differentiating with respect to r,
using Eq. 24-40 (recall that the derivative of any constant is zero). The curve of
Fig. 24-18a can be derived from the curves of Fig. 24-18b by integrating with
respect to r, using Eq. 24-19.

Fig. 24-20 An uncharged conduc-
tor is suspended in an external elec-
tric field.The free electrons in the
conductor distribute themselves on
the surface as shown, so as to reduce
the net electric field inside the con-
ductor to zero and make the net field
at the surface perpendicular to the
surface.
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Spark Discharge from a Charged Conductor
On nonspherical conductors, a surface charge does not distribute itself uniformly
over the surface of the conductor.At sharp points or sharp edges, the surface charge
density—and thus the external electric field, which is proportional to it—may reach
very high values.The air around such sharp points or edges may become ionized, pro-
ducing the corona discharge that golfers and mountaineers see on the tips of bushes,
golf clubs, and rock hammers when thunderstorms threaten. Such corona discharges,
like hair that stands on end, are often the precursors of lightning strikes. In such cir-
cumstances, it is wise to enclose yourself in a cavity inside a conducting shell, where
the electric field is guaranteed to be zero. A car (unless it is a convertible or made
with a plastic body) is almost ideal (Fig.24-19).

Isolated Conductor in an External Electric Field
If an isolated conductor is placed in an external electric field, as in Fig. 24-20, all
points of the conductor still come to a single potential regardless of whether the
conductor has an excess charge. The free conduction electrons distribute them-
selves on the surface in such a way that the electric field they produce at interior
points cancels the external electric field that would otherwise be there.
Furthermore, the electron distribution causes the net electric field at all points on
the surface to be perpendicular to the surface. If the conductor in Fig. 24-20 could
be somehow removed, leaving the surface charges frozen in place, the internal
and external electric field would remain absolutely unchanged.
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Faraday Cages

1Photo found on TheDailySheeple, credits unknown.



Charges Inside Conductors: The Faraday Ice Pail

61523-7 APPLYI NG GAUSS’ LAW: CYLI N DR ICAL SYM M ETRY
PART 3

HALLIDAY REVISED

Fig. 23-12 A Gaussian surface in the
form of a closed cylinder surrounds a section
of a very long, uniformly charged, cylindrical
plastic rod.

Additional examples, video, and practice available at WileyPLUS

23-7 Applying Gauss’ Law: Cylindrical Symmetry
Figure 23-12 shows a section of an infinitely long cylindrical plastic rod with
a uniform positive linear charge density l. Let us find an expression for the mag-
nitude of the electric field at a distance r from the axis of the rod.

Our Gaussian surface should match the symmetry of the problem, which is
cylindrical.We choose a circular cylinder of radius r and length h, coaxial with the
rod. Because the Gaussian surface must be closed, we include two end caps as
part of the surface.

Imagine now that, while you are not watching, someone rotates the plastic rod
about its longitudinal axis or turns it end for end. When you look again at the rod,
you will not be able to detect any change.We conclude from this symmetry that the
only uniquely specified direction in this problem is along a radial line.Thus, at every
point on the cylindrical part of the Gaussian surface, must have the same magni-
tude E and (for a positively charged rod) must be directed radially outward.

Since 2pr is the cylinder’s circumference and h is its height, the area A of the
cylindrical surface is 2prh.The flux of through this cylindrical surface is then

! " EA cos u " E(2prh) cos 0 " E(2prh).

There is no flux through the end caps because , being radially directed, is paral-
lel to the end caps at every point.

The charge enclosed by the surface is lh, which means Gauss’ law,

#0! " qenc,

reduces to #0E(2prh) " lh,

yielding (line of charge). (23-12)

This is the electric field due to an infinitely long, straight line of charge, at a point
that is a radial distance r from the line. The direction of is radially outward
from the line of charge if the charge is positive, and radially inward if it is nega-
tive. Equation 23-12 also approximates the field of a finite line of charge at points
that are not too near the ends (compared with the distance from the line).
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Fig. 23-11 (a) A negative point charge is located within a
spherical metal shell that is electrically neutral. (b) As a result,
positive charge is nonuniformly distributed on the inner wall
of the shell, and an equal amount of negative charge is uni-
formly distributed on the outer wall.
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charge of &5.0 mC, leave the inner wall and move to the
outer wall. There they spread out uniformly, as is also sug-
gested by Fig. 23-11b. This distribution of negative charge is
uniform because the shell is spherical and because the
skewed distribution of positive charge on the inner wall can-
not produce an electric field in the shell to affect the distrib-
ution of charge on the outer wall. Furthermore, these nega-
tive charges repel one another.

The field lines inside and outside the shell are shown
approximately in Fig. 23-11b. All the field lines intersect
the shell and the point charge perpendicularly. Inside the
shell the pattern of field lines is skewed because of the
skew of the positive charge distribution. Outside the shell
the pattern is the same as if the point charge were centered
and the shell were missing. In fact, this would be true no
matter where inside the shell the point charge happened to
be located.
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Summary
• Coulomb’s law

• Quantization of charge

• Charge conservation

• Current

• electric field

• field of a point charge

Homework
worksheets:
physicsclassroom.com/getattachment/curriculum/estatics/...

• ...static5.pdf

• ...static7.pdf

Halliday, Resnick, Walker:

• Ch 21, onward from page 573. Questions: 1; Sec Qs: 3, 9, 27,
42 & 43


