
Electricity and Magnetism
Inductance

Transformers
Maxwell’s Laws

Lana Sheridan

De Anza College

Dec 1, 2015



Last time

• Ampere’s law

• Faraday’s law

• Lenz’s law



Overview

• induction and energy transfer

• induced electric fields

• inductance

• self-induction

• RL Circuits



Inductors
A capacitor is a device that stores an electric field as a component
of a circuit.

inductor

a device that stores a magnetic field in a circuit

It is typically a coil of wire.



Circuit component symbols

battery V
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26.3 Combinations of Capacitors
Two or more capacitors often are combined in electric circuits. We can calculate 
the equivalent capacitance of certain combinations using methods described in 
this section. Throughout this section, we assume the capacitors to be combined are 
initially uncharged.
 In studying electric circuits, we use a simplified pictorial representation called a 
circuit diagram. Such a diagram uses circuit symbols to represent various circuit 
elements. The circuit symbols are connected by straight lines that represent the 
wires between the circuit elements. The circuit symbols for capacitors, batteries, 
and switches as well as the color codes used for them in this text are given in Fig-
ure 26.6. The symbol for the capacitor reflects the geometry of the most common 
model for a capacitor, a pair of parallel plates. The positive terminal of the battery 
is at the higher potential and is represented in the circuit symbol by the longer line.

Parallel Combination
Two capacitors connected as shown in Figure 26.7a are known as a parallel combi-
nation of capacitors. Figure 26.7b shows a circuit diagram for this combination of 
capacitors. The left plates of the capacitors are connected to the positive terminal of 
the battery by a conducting wire and are therefore both at the same electric potential 

Substitute the absolute value of DV into Equation 26.1: C 5
Q

DV
5

Q0 Vb 2 Va 0 5
ab

ke 1b 2 a 2  (26.6)

Apply the result of Example 24.3 for the electric field 
outside a spherically symmetric charge distribution  
and note that E

S
 is parallel to d sS along a radial line:
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Write an expression for the potential difference between 
the two conductors from Equation 25.3:

Vb 2 Va 5 2 3
b

a
E
S

? d sS

Finalize  The capacitance depends on a and b as expected. The potential difference between the spheres in Equation 
(1) is negative because Q is positive and b . a. Therefore, in Equation 26.6, when we take the absolute value, we change 
a 2 b to b 2 a. The result is a positive number.

 If the radius b of the outer sphere approaches infinity, what does the capacitance become?

Answer  In Equation 26.6, we let b S `:

C 5 lim
b S `

  ab
ke 1b 2 a 2 5

ab
ke 1b 2 5

a
ke

5 4pP0a

Notice that this expression is the same as Equation 26.2, the capacitance of an isolated spherical conductor.

WHAT IF ?
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Figure 26.6  Circuit symbols for 
capacitors, batteries, and switches. 
Notice that capacitors are in 
blue, batteries are in green, and 
switches are in red. The closed 
switch can carry current, whereas 
the open one cannot.

 

▸ 26.2 c o n t i n u e d

Categorize  Because of the spherical symmetry of the sys-
tem, we can use results from previous studies of spherical 
systems to find the capacitance.

Analyze  As shown in Chapter 24, the direction of the 
electric field outside a spherically symmetric charge 
distribution is radial and its magnitude is given by the 
expression E 5 keQ /r 2. In this case, this result applies to 
the field between the spheres (a , r , b).

a

b

!Q

"Q

Figure 26.5  (Example 26.2) 
A spherical capacitor consists of 
an inner sphere of radius a sur-
rounded by a concentric spherical 
shell of radius b. The electric field 
between the spheres is directed 
radially outward when the inner 
sphere is positively charged.

capacitor C
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 Today, thousands of superconductors are known, and as Table 27.3 illustrates, 
the critical temperatures of recently discovered superconductors are substantially 
higher than initially thought possible. Two kinds of superconductors are recog-
nized. The more recently identified ones are essentially ceramics with high criti-
cal temperatures, whereas superconducting materials such as those observed by 
Kamerlingh-Onnes are metals. If a room-temperature superconductor is ever iden-
tified, its effect on technology could be tremendous.
 The value of Tc is sensitive to chemical composition, pressure, and molecular 
structure. Copper, silver, and gold, which are excellent conductors, do not exhibit 
superconductivity.
 One truly remarkable feature of superconductors is that once a current is set up 
in them, it persists without any applied potential difference (because R 5 0). Steady cur-
rents have been observed to persist in superconducting loops for several years with 
no apparent decay!
 An important and useful application of superconductivity is in the development 
of superconducting magnets, in which the magnitudes of the magnetic field are 
approximately ten times greater than those produced by the best normal elec-
tromagnets. Such superconducting magnets are being considered as a means of 
storing energy. Superconducting magnets are currently used in medical magnetic 
resonance imaging, or MRI, units, which produce high-quality images of internal 
organs without the need for excessive exposure of patients to x-rays or other harm-
ful radiation.

27.6 Electrical Power
In typical electric circuits, energy TET is transferred by electrical transmission from 
a source such as a battery to some device such as a lightbulb or a radio receiver. 
Let’s determine an expression that will allow us to calculate the rate of this energy 
transfer. First, consider the simple circuit in Figure 27.11, where energy is delivered 
to a resistor. (Resistors are designated by the circuit symbol .) Because the 
connecting wires also have resistance, some energy is delivered to the wires and 
some to the resistor. Unless noted otherwise, we shall assume the resistance of the 
wires is small compared with the resistance of the circuit element so that the energy 
delivered to the wires is negligible.
 Imagine following a positive quantity of charge Q moving clockwise around the 
circuit in Figure 27.11 from point a through the battery and resistor back to point a. 
We identify the entire circuit as our system. As the charge moves from a to b through 
the battery, the electric potential energy of the system increases by an amount Q DV 

Table 27.3 Critical Temperatures 
for Various Superconductors
Material Tc  (K)

HgBa2Ca2Cu3O8 134
Tl—Ba—Ca—Cu—O 125
Bi—Sr—Ca—Cu—O 105
YBa2Cu3O7 92
Nb3Ge 23.2
Nb3Sn 18.05
Nb 9.46
Pb 7.18
Hg 4.15
Sn 3.72
Al 1.19
Zn 0.88

A small permanent magnet levi-
tated above a disk of the super-
conductor YBa2Cu3O7, which is in 
liquid nitrogen at 77 K.
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The direction of the 
effective flow of positive 
charge is clockwise.

Figure 27.11 A circuit consist-
ing of a resistor of resistance R 
and a battery having a potential 
difference DV across its terminals.
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32.5 Oscillations in an LC Circuit
When a capacitor is connected to an inductor as illustrated in Figure 32.10, the 
combination is an LC circuit. If the capacitor is initially charged and the switch is 
then closed, both the current in the circuit and the charge on the capacitor oscil-
late between maximum positive and negative values. If the resistance of the cir-
cuit is zero, no energy is transformed to internal energy. In the following analysis, 
the resistance in the circuit is neglected. We also assume an idealized situation in 
which energy is not radiated away from the circuit. This radiation mechanism is 
discussed in Chapter 34.
 Assume the capacitor has an initial charge Q max (the maximum charge) and 
the switch is open for t , 0 and then closed at t 5 0. Let’s investigate what happens 
from an energy viewpoint.
 When the capacitor is fully charged, the energy U in the circuit is stored in 
the capacitor’s electric field and is equal to Q 2

max/2C (Eq. 26.11). At this time, the 
current in the circuit is zero; therefore, no energy is stored in the inductor. After 
the switch is closed, the rate at which charges leave or enter the capacitor plates 
(which is also the rate at which the charge on the capacitor changes) is equal to 
the current in the circuit. After the switch is closed and the capacitor begins to 
discharge, the energy stored in its electric field decreases. The capacitor’s dis-
charge represents a current in the circuit, and some energy is now stored in the 
magnetic field of the inductor. Therefore, energy is transferred from the electric 
field of the capacitor to the magnetic field of the inductor. When the capacitor 
is fully discharged, it stores no energy. At this time, the current reaches its maxi-
mum value and all the energy in the circuit is stored in the inductor. The cur-
rent continues in the same direction, decreasing in magnitude, with the capacitor 
eventually becoming fully charged again but with the polarity of its plates now 
opposite the initial polarity. This process is followed by another discharge until 
the circuit returns to its original state of maximum charge Q max and the plate 
polarity shown in Figure 32.10. The energy continues to oscillate between induc-
tor and capacitor.
 The oscillations of the LC circuit are an electromagnetic analog to the mechani-
cal oscillations of the particle in simple harmonic motion studied in Chapter 15. 
Much of what was discussed there is applicable to LC oscillations. For example, we 
investigated the effect of driving a mechanical oscillator with an external force, 

S

LC
Q max

!

"

Figure 32.10  A simple LC cir-
cuit. The capacitor has an initial 
charge Q max, and the switch is 
open for t , 0 and then closed at 
t 5 0.

Find the mutual inductance, noting that the magnetic 
flux FBH through the handle’s coil caused by the mag-
netic field of the base coil is BA:

M 5
NHFBH

i
5

NH BA
i

5 m0 
NBNH

,
 A

Use Equation 30.17 to express the magnetic field in the 
interior of the base solenoid:

B 5 m0 
NB

,
 i

Wireless charging is used in a number of other “cordless” devices. One significant example is the inductive charging 
used by some manufacturers of electric cars that avoids direct metal-to-metal contact between the car and the charg-
ing apparatus.

Conceptualize  Be sure you can identify the two coils in the situation and understand that a changing current in one 
coil induces a current in the second coil.

Categorize  We will determine the result using concepts discussed in this section, so we categorize this example as a 
substitution problem.

S O L U T I O N

 

▸ 32.5 c o n t i n u e d



Inductance

Just like capacitors have a capacitance that depends on the
geometry of the capacitor, inductors have an inductance that
depends on their structure.

For a solenoid inductor:

L = µ0n
2A`

where n is the number of turns per unit length, A is the cross
sectional area, and ` is the length of the inductor.

Units: henries, H.

1 henry = 1 H = 1 T m2 / A



Value of µ0: New units

The magnetic permeability of free space µ0 is a constant.

µ0 = 4π× 10−7 T m / A

It can also be written in terms of henries:

µ0 = 4π× 10−7 H / m

(Remember, 1 H = 1 T m2 / A)



Inductance

However, capacitance is defined as being the constant of
proportionality relating the charge on the plates to the potential
difference across the plates q = C (∆V ). Inductance also is
formally defined this way.

inductance

the constant of proportionality relating the magnetic flux linkage
(NΦB) to the current:

NΦB = L I ; L =
NΦB

I

ΦB is the magnetic flux through the coil, and I is the current in
the coil.



Inductance of Solenoid Inductors

Suppose now that the only source of magnetic flux in the solenoid
is the flux produced by a current in the wire.

Then the field produced within the solenoid is:

B = µ0In

where n is the number of turns per unit length.

That means the flux will be:

ΦB = BA cos(0◦) = BA = µ0InA

where A is the cross sectional area of the solenoid.



Inductance of Solenoid Inductors

L =
NΦB

I

Replacing N = n`, ΦB = µ0InA:

L =
n`(µ0In)A

I

So we confirm our expression for a solenoid inductor:

L = µ0n
2A`



Induction from an external flux vs Self-Induction

So far we have thought about the effect of a changing magnetic
flux on the E-field and emf produced in some region.

We also defined induction by acknowledging that a current in a
solenoid will produce a magnetic flux, and relating that to the
current in the coil:

NΦB = L I

In general, the magnetic flux ΦB = B ·A, could be due not only to
the B-field produced by the current in the wire, but also have an
additional external source.

If it does not, we say L is the self-inductance of the inductor. (This
is usually how the symbol L is used.)



Self-Induction

When the current in the solenoid circuit is changing there is a
(self-) induced emf in the coil.

From Faraday’s Law, we have

E = −
∆(NΦB)

∆t

Since L is a constant for a particular inductor,

EL = −L
∆i

∆t

(Derivative form:)

EL = −L
di

dt

The emf opposes the change in current.



Inductors vs. Resistors

Inductors are a bit similar to resistors.

Resistors resist the flow of current.

Inductors resist any change in current.

If the current is high and lowered, the emf acts to keep the current
flowing. If the current is low and increased, the emf acts to resist
the increase.



Self-Induction

 32.1 Self-Induction and Inductance 971

 Consider a circuit consisting of a switch, a resistor, and a source of emf as shown 
in Figure 32.1. The circuit diagram is represented in perspective to show the orien-
tations of some of the magnetic field lines due to the current in the circuit. When 
the switch is thrown to its closed position, the current does not immediately jump 
from zero to its maximum value e/R. Faraday’s law of electromagnetic induction 
(Eq. 31.1) can be used to describe this effect as follows. As the current increases 
with time, the magnetic field lines surrounding the wires pass through the loop 
represented by the circuit itself. This magnetic field passing through the loop 
causes a magnetic flux through the loop. This increasing flux creates an induced 
emf in the circuit. The direction of the induced emf is such that it would cause an 
induced current in the loop (if the loop did not already carry a current), which 
would establish a magnetic field opposing the change in the original magnetic 
field. Therefore, the direction of the induced emf is opposite the direction of the 
emf of the battery, which results in a gradual rather than instantaneous increase in 
the current to its final equilibrium value. Because of the direction of the induced 
emf, it is also called a back emf, similar to that in a motor as discussed in Chapter 31. 
This effect is called self-induction because the changing flux through the circuit 
and the resultant induced emf arise from the circuit itself. The emf eL set up in this 
case is called a self-induced emf.
 To obtain a quantitative description of self-induction, recall from Faraday’s law 
that the induced emf is equal to the negative of the time rate of change of the mag-
netic flux. The magnetic flux is proportional to the magnetic field, which in turn 
is proportional to the current in the circuit. Therefore, a self-induced emf is always 
proportional to the time rate of change of the current. For any loop of wire, we can 
write this proportionality as

 eL 5 2L 
di
dt

 (32.1)

where L is a proportionality constant—called the inductance of the loop—that 
depends on the geometry of the loop and other physical characteristics. If we  
consider a closely spaced coil of N turns (a toroid or an ideal solenoid) carrying a 
current i and containing N turns, Faraday’s law tells us that eL 5 2N dFB /dt. Com-
bining this expression with Equation 32.1 gives

 L 5
NFB

i
 (32.2)

where it is assumed the same magnetic flux passes through each turn and L is the 
inductance of the entire coil.
 From Equation 32.1, we can also write the inductance as the ratio

 L 5 2
eL

di/dt
 (32.3)

Recall that resistance is a measure of the opposition to current as given by Equa-
tion 27.7, R 5 DV/I ; in comparison, Equation 32.3, being of the same mathematical 
form as Equation 27.7, shows us that inductance is a measure of the opposition to a 
change in current.
 The SI unit of inductance is the henry (H), which as we can see from Equation 
32.3 is 1 volt-second per ampere: 1 H 5 1 V ? s/A.
 As shown in Example 32.1, the inductance of a coil depends on its geometry. This 
dependence is analogous to the capacitance of a capacitor depending on the geome-
try of its plates as we found in Equation 26.3 and the resistance of a resistor depend-
ing on the length and area of the conducting material in Equation 27.10. Inductance 
calculations can be quite difficult to perform for complicated geometries, but the 
examples below involve simple situations for which inductances are easily evaluated.

�W Inductance of an N-turn coil

Joseph Henry
American Physicist (1797–1878)
Henry became the first director of 
the Smithsonian Institution and first 
president of the Academy of Natural 
Science. He improved the design of the 
electromagnet and constructed one of 
the first motors. He also discovered the 
phenomenon of self-induction, but he 
failed to publish his findings. The unit 
of inductance, the henry, is named in 
his honor.

Br
ad

y-
Ha

nd
y C

ol
le

ct
io

n,
 L

ib
ra

ry
 o

f C
on

gr
es

s P
rin

ts
 a

nd
 

Ph
ot

og
ra

ph
s D

iv
is

io
n 

[L
C-

BH
83

-9
97

]

R

S
i

i

After the switch is closed, the 
current produces a magnetic flux 
through the area enclosed by the 
loop. As the current increases 
toward its equilibrium value, this 
magnetic flux changes in time
and induces an emf in the loop.
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Figure 32.1  Self-induction in a 
simple circuit.



Self-Induction
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This means that when a self-induced emf is produced in the inductor of Fig. 30-13,
we cannot define an electric potential within the inductor itself, where the flux
is changing. However, potentials can still be defined at points of the circuit that
are not within the inductor—points where the electric fields are due to charge
distributions and their associated electric potentials.

Moreover, we can define a self-induced potential difference VL across an
inductor (between its terminals, which we assume to be outside the region of
changing flux). For an ideal inductor (its wire has negligible resistance), the mag-
nitude of VL is equal to the magnitude of the self-induced emf !L.

If, instead, the wire in the inductor has resistance r, we mentally separate the
inductor into a resistance r (which we take to be outside the region of changing
flux) and an ideal inductor of self-induced emf !L. As with a real battery of emf
! and internal resistance r, the potential difference across the terminals of a real
inductor then differs from the emf. Unless otherwise indicated, we assume here
that inductors are ideal.

Fig. 30-14 (a) The current i is increasing,
and the self-induced emf !L appears along
the coil in a direction such that it opposes
the increase.The arrow representing !L can
be drawn along a turn of the coil or along-
side the coil. Both are shown. (b) The cur-
rent i is decreasing, and the self-induced emf
appears in a direction such that it opposes
the decrease.

CHECKPOINT 5

The figure shows an emf !L induced in a coil. Which of 
the following can describe the current through the coil: (a)
constant and rightward, (b) constant and leftward, (c) in-
creasing and rightward, (d) decreasing and rightward,
(e) increasing and leftward, (f) decreasing and leftward?

 L

30-9 RL Circuits
In Section 27-9 we saw that if we suddenly introduce an emf ! into a single-loop
circuit containing a resistor R and a capacitor C, the charge on the capacitor does
not build up immediately to its final equilibrium value C! but approaches it in an
exponential fashion:

(30-36)

The rate at which the charge builds up is determined by the capacitive time
constant tC, defined in Eq. 27-36 as

tC ! RC. (30-37)

If we suddenly remove the emf from this same circuit, the charge does not
immediately fall to zero but approaches zero in an exponential fashion:

(30-38)

The time constant tC describes the fall of the charge as well as its rise.
An analogous slowing of the rise (or fall) of the current occurs if we introduce

an emf ! into (or remove it from) a single-loop circuit containing a resistor R and
an inductor L. When the switch S in Fig. 30-15 is closed on a, for example, the cur-
rent in the resistor starts to rise. If the inductor were not present, the current
would rise rapidly to a steady value !/R. Because of the inductor, however, a self-
induced emf !L appears in the circuit; from Lenz’s law, this emf opposes the rise of
the current, which means that it opposes the battery emf ! in polarity. Thus, the
current in the resistor responds to the difference between two emfs, a constant !
due to the battery and a variable !L (! "L di/dt) due to self-induction.As long as
!L is present, the current will be less than !/R.

As time goes on, the rate at which the current increases becomes less rapid
and the magnitude of the self-induced emf, which is proportional to di/dt,
becomes smaller. Thus, the current in the circuit approaches !/R asymptotically.

q ! q0e"t/#C.

q ! C!(1 " e"t/#C).

i (increasing) 

(a) 

i (decreasing) 

(b) 

 L 

 L 

 L 

 L 

The changing 
current changes 
the flux, which
creates an emf 
that opposes 
the change.

Fig. 30-15 An RL circuit.When switch
S is closed on a, the current rises and ap-
proaches a limiting value !/R.
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This means that when a self-induced emf is produced in the inductor of Fig. 30-13,
we cannot define an electric potential within the inductor itself, where the flux
is changing. However, potentials can still be defined at points of the circuit that
are not within the inductor—points where the electric fields are due to charge
distributions and their associated electric potentials.

Moreover, we can define a self-induced potential difference VL across an
inductor (between its terminals, which we assume to be outside the region of
changing flux). For an ideal inductor (its wire has negligible resistance), the mag-
nitude of VL is equal to the magnitude of the self-induced emf !L.

If, instead, the wire in the inductor has resistance r, we mentally separate the
inductor into a resistance r (which we take to be outside the region of changing
flux) and an ideal inductor of self-induced emf !L. As with a real battery of emf
! and internal resistance r, the potential difference across the terminals of a real
inductor then differs from the emf. Unless otherwise indicated, we assume here
that inductors are ideal.

Fig. 30-14 (a) The current i is increasing,
and the self-induced emf !L appears along
the coil in a direction such that it opposes
the increase.The arrow representing !L can
be drawn along a turn of the coil or along-
side the coil. Both are shown. (b) The cur-
rent i is decreasing, and the self-induced emf
appears in a direction such that it opposes
the decrease.

CHECKPOINT 5

The figure shows an emf !L induced in a coil. Which of 
the following can describe the current through the coil: (a)
constant and rightward, (b) constant and leftward, (c) in-
creasing and rightward, (d) decreasing and rightward,
(e) increasing and leftward, (f) decreasing and leftward?

 L

30-9 RL Circuits
In Section 27-9 we saw that if we suddenly introduce an emf ! into a single-loop
circuit containing a resistor R and a capacitor C, the charge on the capacitor does
not build up immediately to its final equilibrium value C! but approaches it in an
exponential fashion:

(30-36)

The rate at which the charge builds up is determined by the capacitive time
constant tC, defined in Eq. 27-36 as

tC ! RC. (30-37)

If we suddenly remove the emf from this same circuit, the charge does not
immediately fall to zero but approaches zero in an exponential fashion:

(30-38)

The time constant tC describes the fall of the charge as well as its rise.
An analogous slowing of the rise (or fall) of the current occurs if we introduce

an emf ! into (or remove it from) a single-loop circuit containing a resistor R and
an inductor L. When the switch S in Fig. 30-15 is closed on a, for example, the cur-
rent in the resistor starts to rise. If the inductor were not present, the current
would rise rapidly to a steady value !/R. Because of the inductor, however, a self-
induced emf !L appears in the circuit; from Lenz’s law, this emf opposes the rise of
the current, which means that it opposes the battery emf ! in polarity. Thus, the
current in the resistor responds to the difference between two emfs, a constant !
due to the battery and a variable !L (! "L di/dt) due to self-induction.As long as
!L is present, the current will be less than !/R.

As time goes on, the rate at which the current increases becomes less rapid
and the magnitude of the self-induced emf, which is proportional to di/dt,
becomes smaller. Thus, the current in the circuit approaches !/R asymptotically.

q ! q0e"t/#C.

q ! C!(1 " e"t/#C).

i (increasing) 

(a) 

i (decreasing) 

(b) 
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The changing 
current changes 
the flux, which
creates an emf 
that opposes 
the change.

Fig. 30-15 An RL circuit.When switch
S is closed on a, the current rises and ap-
proaches a limiting value !/R.
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Self-inductance question

The figure shows an emf EL induced in a coil.

80730-9 RL CI RCU ITS
PART 3

This means that when a self-induced emf is produced in the inductor of Fig. 30-13,
we cannot define an electric potential within the inductor itself, where the flux
is changing. However, potentials can still be defined at points of the circuit that
are not within the inductor—points where the electric fields are due to charge
distributions and their associated electric potentials.

Moreover, we can define a self-induced potential difference VL across an
inductor (between its terminals, which we assume to be outside the region of
changing flux). For an ideal inductor (its wire has negligible resistance), the mag-
nitude of VL is equal to the magnitude of the self-induced emf !L.

If, instead, the wire in the inductor has resistance r, we mentally separate the
inductor into a resistance r (which we take to be outside the region of changing
flux) and an ideal inductor of self-induced emf !L. As with a real battery of emf
! and internal resistance r, the potential difference across the terminals of a real
inductor then differs from the emf. Unless otherwise indicated, we assume here
that inductors are ideal.

Fig. 30-14 (a) The current i is increasing,
and the self-induced emf !L appears along
the coil in a direction such that it opposes
the increase.The arrow representing !L can
be drawn along a turn of the coil or along-
side the coil. Both are shown. (b) The cur-
rent i is decreasing, and the self-induced emf
appears in a direction such that it opposes
the decrease.

CHECKPOINT 5

The figure shows an emf !L induced in a coil. Which of 
the following can describe the current through the coil: (a)
constant and rightward, (b) constant and leftward, (c) in-
creasing and rightward, (d) decreasing and rightward,
(e) increasing and leftward, (f) decreasing and leftward?

 L

30-9 RL Circuits
In Section 27-9 we saw that if we suddenly introduce an emf ! into a single-loop
circuit containing a resistor R and a capacitor C, the charge on the capacitor does
not build up immediately to its final equilibrium value C! but approaches it in an
exponential fashion:

(30-36)

The rate at which the charge builds up is determined by the capacitive time
constant tC, defined in Eq. 27-36 as

tC ! RC. (30-37)

If we suddenly remove the emf from this same circuit, the charge does not
immediately fall to zero but approaches zero in an exponential fashion:

(30-38)

The time constant tC describes the fall of the charge as well as its rise.
An analogous slowing of the rise (or fall) of the current occurs if we introduce

an emf ! into (or remove it from) a single-loop circuit containing a resistor R and
an inductor L. When the switch S in Fig. 30-15 is closed on a, for example, the cur-
rent in the resistor starts to rise. If the inductor were not present, the current
would rise rapidly to a steady value !/R. Because of the inductor, however, a self-
induced emf !L appears in the circuit; from Lenz’s law, this emf opposes the rise of
the current, which means that it opposes the battery emf ! in polarity. Thus, the
current in the resistor responds to the difference between two emfs, a constant !
due to the battery and a variable !L (! "L di/dt) due to self-induction.As long as
!L is present, the current will be less than !/R.

As time goes on, the rate at which the current increases becomes less rapid
and the magnitude of the self-induced emf, which is proportional to di/dt,
becomes smaller. Thus, the current in the circuit approaches !/R asymptotically.

q ! q0e"t/#C.

q ! C!(1 " e"t/#C).

i (increasing) 

(a) 

i (decreasing) 

(b) 
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The changing 
current changes 
the flux, which
creates an emf 
that opposes 
the change.

Fig. 30-15 An RL circuit.When switch
S is closed on a, the current rises and ap-
proaches a limiting value !/R.

Sa

b R

L–
+

halliday_c30_791-825hr.qxd  11-12-2009  12:19  Page 807

Which of the following can describe the current through the coil:

(A) constant and rightward

(B) increasing and rightward

(C) decreasing and rightward

(D) decreasing and leftward



Self-inductance question

The figure shows an emf EL induced in a coil.
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This means that when a self-induced emf is produced in the inductor of Fig. 30-13,
we cannot define an electric potential within the inductor itself, where the flux
is changing. However, potentials can still be defined at points of the circuit that
are not within the inductor—points where the electric fields are due to charge
distributions and their associated electric potentials.

Moreover, we can define a self-induced potential difference VL across an
inductor (between its terminals, which we assume to be outside the region of
changing flux). For an ideal inductor (its wire has negligible resistance), the mag-
nitude of VL is equal to the magnitude of the self-induced emf !L.

If, instead, the wire in the inductor has resistance r, we mentally separate the
inductor into a resistance r (which we take to be outside the region of changing
flux) and an ideal inductor of self-induced emf !L. As with a real battery of emf
! and internal resistance r, the potential difference across the terminals of a real
inductor then differs from the emf. Unless otherwise indicated, we assume here
that inductors are ideal.

Fig. 30-14 (a) The current i is increasing,
and the self-induced emf !L appears along
the coil in a direction such that it opposes
the increase.The arrow representing !L can
be drawn along a turn of the coil or along-
side the coil. Both are shown. (b) The cur-
rent i is decreasing, and the self-induced emf
appears in a direction such that it opposes
the decrease.

CHECKPOINT 5

The figure shows an emf !L induced in a coil. Which of 
the following can describe the current through the coil: (a)
constant and rightward, (b) constant and leftward, (c) in-
creasing and rightward, (d) decreasing and rightward,
(e) increasing and leftward, (f) decreasing and leftward?
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30-9 RL Circuits
In Section 27-9 we saw that if we suddenly introduce an emf ! into a single-loop
circuit containing a resistor R and a capacitor C, the charge on the capacitor does
not build up immediately to its final equilibrium value C! but approaches it in an
exponential fashion:

(30-36)

The rate at which the charge builds up is determined by the capacitive time
constant tC, defined in Eq. 27-36 as

tC ! RC. (30-37)

If we suddenly remove the emf from this same circuit, the charge does not
immediately fall to zero but approaches zero in an exponential fashion:

(30-38)

The time constant tC describes the fall of the charge as well as its rise.
An analogous slowing of the rise (or fall) of the current occurs if we introduce

an emf ! into (or remove it from) a single-loop circuit containing a resistor R and
an inductor L. When the switch S in Fig. 30-15 is closed on a, for example, the cur-
rent in the resistor starts to rise. If the inductor were not present, the current
would rise rapidly to a steady value !/R. Because of the inductor, however, a self-
induced emf !L appears in the circuit; from Lenz’s law, this emf opposes the rise of
the current, which means that it opposes the battery emf ! in polarity. Thus, the
current in the resistor responds to the difference between two emfs, a constant !
due to the battery and a variable !L (! "L di/dt) due to self-induction.As long as
!L is present, the current will be less than !/R.

As time goes on, the rate at which the current increases becomes less rapid
and the magnitude of the self-induced emf, which is proportional to di/dt,
becomes smaller. Thus, the current in the circuit approaches !/R asymptotically.

q ! q0e"t/#C.

q ! C!(1 " e"t/#C).

i (increasing) 

(a) 

i (decreasing) 

(b) 
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The changing 
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creates an emf 
that opposes 
the change.

Fig. 30-15 An RL circuit.When switch
S is closed on a, the current rises and ap-
proaches a limiting value !/R.
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Which of the following can describe the current through the coil:

(A) constant and rightward

(B) increasing and rightward

(C) decreasing and rightward←
(D) decreasing and leftward



Energy Stored in an Inductor

UB =
1

2
Li2

Compare with UE = q
2C (or UE = 1

2CV
2) for the energy stored in a

capacitor.



Energy Density of a Magnetic Field

Energy is stored in a magnetic field!

uB =
B2

2µ0

Compare with uE = 1
2ε0E

2 for electric fields.



Mutual Inductance

An inductor can have an induced emf from its own changing
magnetic field.

It also can have an emf from an external changing field.

That external changing field could be another inductor.

For self-inductance on a coil labeled 1:

N1ΦB,1 = L1i1

For mutual inductance:

N1ΦB,12 = M i2

The flux is in coil 1, but the current that causes the flux is in coil 2.



Mutual Inductance

An inductor can have an induced emf from its own changing
magnetic field.

It also can have an emf from an external changing field.

That external changing field could be another inductor.

For self-inductance on a coil labeled 1:

N1ΦB,1 = L1i1

For mutual inductance:

N1ΦB,12 = M i2

The flux is in coil 1, but the current that causes the flux is in coil 2.



Mutual Inductance
For mutual inductance:

N1ΦB,12 = M i2

The flux is in coil 1, but the current that causes the flux is in coil 2.

which has the same form as Eq. 30-28,

L ! N"/i, (30-58)

the definition of inductance.We can recast Eq. 30-57 as

M21i1 ! N2"21. (30-59)

If we cause i1 to vary with time by varying R, we have

(30-60)

The right side of this equation is, according to Faraday’s law, just the magnitude
of the emf !2 appearing in coil 2 due to the changing current in coil 1.Thus, with a
minus sign to indicate direction,

(30-61)

which you should compare with Eq. 30-35 for self-induction (! ! #L di/dt).
Let us now interchange the roles of coils 1 and 2,as in Fig.30-19b; that is,we set up a

current i2 in coil 2 by means of a battery,and this produces a magnetic flux "12 that links
coil 1.If we change i2 with time by varying R,we then have,by the argument given above,

(30-62)

Thus, we see that the emf induced in either coil is proportional to the rate of
change of current in the other coil.The proportionality constants M21 and M12 seem to
be different. We assert, without proof, that they are in fact the same so that no sub-
scripts are needed.(This conclusion is true but is in no way obvious.) Thus,we have

M21 ! M12 ! M, (30-63)

and we can rewrite Eqs. 30-61 and 30-62 as

(30-64)

and (30-65)!1 ! #M 
di2

dt
.

!2 ! #M 
di1

dt

!1 ! #M12 
di2

dt
.

!2 ! #M21 
di1

dt
,

M21 
di1

dt
! N2 

d"21

dt
.

814 CHAPTE R 30 I N DUCTION AN D I N DUCTANCE

Fig. 30-19 Mutual induction. (a) The
magnetic field produced by current i1 in
coil 1 extends through coil 2. If i1 is varied
(by varying resistance R), an emf is induced
in coil 2 and current registers on the meter
connected to coil 2. (b) The roles of the
coils interchanged.
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Mutual Inductance

mutual inductance

M =
N1ΦB,12

i2
=

N2ΦB,21
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which has the same form as Eq. 30-28,
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the definition of inductance.We can recast Eq. 30-57 as
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If we cause i1 to vary with time by varying R, we have
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The right side of this equation is, according to Faraday’s law, just the magnitude
of the emf !2 appearing in coil 2 due to the changing current in coil 1.Thus, with a
minus sign to indicate direction,
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current i2 in coil 2 by means of a battery,and this produces a magnetic flux "12 that links
coil 1.If we change i2 with time by varying R,we then have,by the argument given above,
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change of current in the other coil.The proportionality constants M21 and M12 seem to
be different. We assert, without proof, that they are in fact the same so that no sub-
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Fig. 30-19 Mutual induction. (a) The
magnetic field produced by current i1 in
coil 1 extends through coil 2. If i1 is varied
(by varying resistance R), an emf is induced
in coil 2 and current registers on the meter
connected to coil 2. (b) The roles of the
coils interchanged.
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Mutual Inductance

N1ΦB,12 = M i2

Considering the rate of change of both sides with time, and using
Faraday’s Law E = −∆ΦB

∆t ,

E1 = −M
∆i2
∆t

and

E2 = −M
∆i1
∆t

A change of current in one coil causes a



Mutual Inductance Applications

If there is a changing current in one coil, an emf can be induced in
the other coil.

The current can be transferred to a whole different circuit that is
no directly connected.

This can be used for wireless charging.

It is also used in transformers: devices that change the voltage
and current of a power supply.

For either of those applications to work, there must be a
constantly changing current.



Alternating Current (AC)

Alternating current (AC) power supplies are the alternative to
direct current (DC) power supplies.

In an alternating current supply, the voltage and current vary
sinusoidally with time:

84731-10 POWE R I N ALTE R NATI NG- CU R R E NT CI RCU ITS
PART 3

31-10 Power in Alternating-Current Circuits
In the RLC circuit of Fig. 31-7, the source of energy is the alternating-current
generator. Some of the energy that it provides is stored in the electric field in the
capacitor, some is stored in the magnetic field in the inductor, and some is dis-
sipated as thermal energy in the resistor. In steady-state operation, the average
stored energy remains constant.The net transfer of energy is thus from the gener-
ator to the resistor, where energy is dissipated.

The instantaneous rate at which energy is dissipated in the resistor can be
written, with the help of Eqs. 26-27 and 31-29, as

P ! i2R ! [I sin(vdt " f)]2R ! I 2R sin2(vdt " f). (31-68)

The average rate at which energy is dissipated in the resistor, however, is the aver-
age of Eq. 31-68 over time. Over one complete cycle, the average value of sin u,
where u is any variable, is zero (Fig. 31-17a) but the average value of sin2 u is 
(Fig. 31-17b). (Note in Fig. 31-17b how the shaded areas under the curve but
above the horizontal line marked exactly fill in the unshaded spaces below
that line.) Thus, we can write, from Eq. 31-68,

(31-69)

The quantity is called the root-mean-square, or rms, value of the current i:

(rms current). (31-70)Irms !
I12

I/1 2

Pavg !
I 2R

2
! ! I12 "

2

R.

#1
2

1
2

Sample Problem

We then find

(Answer)

(b) What is the phase constant f of the current in the 
circuit relative to the driving emf?

The phase constant depends on the inductive reactance, the
capacitive reactance, and the resistance of the circuit,
according to Eq. 31-65.

Calculation: Solving Eq. 31-65 for f leads to

(Answer)

The negative phase constant is consistent with the fact that
the load is mainly capacitive; that is, XC $ XL. In the com-
mon mnemonic for driven series RLC circuits, this circuit is
an ICE circuit—the current leads the driving emf.

! "24.3% ! "0.424 rad.

& ! tan"1 
XL " XC

R
! tan"1 

86.7 ' " 177 '
200 '

I !
!m

Z
!

36.0 V
219 '

! 0.164 A.

Additional examples, video, and practice available at WileyPLUS

Current amplitude, impedance, and phase constant

In Fig. 31-7, let R ! 200 ', C ! 15.0 mF, L ! 230 mH,
fd ! 60.0 Hz, and !m ! 36.0 V. (These parameters are those
used in the earlier sample problems above.)

(a) What is the current amplitude I?

The current amplitude I depends on the amplitude !m of the
driving emf and on the impedance Z of the circuit, accord-
ing to Eq. 31-62 (I ! !m /Z).

Calculations: So, we need to find Z, which depends on resis-
tance R, capacitive reactance XC, and inductive reactance XL.
The circuit’s resistance is the given resistance R. Its capacitive
reactance is due to the given capacitance and, from an earlier
sample problem, XC ! 177 '. Its inductive reactance is due
to the given inductance and, from another sample problem,
XL ! 86.7 '.Thus, the circuit’s impedance is

! 219 '.

! 2(200 ')2 # (86.7 ' " 177 ')2

 Z ! 2R2 # (XL " XC)2

KEY I DEA

KEY I DEA

Fig. 31-17 (a) A plot of sin u versus u.
The average value over one cycle is zero. (b)
A plot of sin2 u versus u.The average value
over one cycle is .1
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31-10 Power in Alternating-Current Circuits
In the RLC circuit of Fig. 31-7, the source of energy is the alternating-current
generator. Some of the energy that it provides is stored in the electric field in the
capacitor, some is stored in the magnetic field in the inductor, and some is dis-
sipated as thermal energy in the resistor. In steady-state operation, the average
stored energy remains constant.The net transfer of energy is thus from the gener-
ator to the resistor, where energy is dissipated.

The instantaneous rate at which energy is dissipated in the resistor can be
written, with the help of Eqs. 26-27 and 31-29, as

P ! i2R ! [I sin(vdt " f)]2R ! I 2R sin2(vdt " f). (31-68)

The average rate at which energy is dissipated in the resistor, however, is the aver-
age of Eq. 31-68 over time. Over one complete cycle, the average value of sin u,
where u is any variable, is zero (Fig. 31-17a) but the average value of sin2 u is 
(Fig. 31-17b). (Note in Fig. 31-17b how the shaded areas under the curve but
above the horizontal line marked exactly fill in the unshaded spaces below
that line.) Thus, we can write, from Eq. 31-68,

(31-69)

The quantity is called the root-mean-square, or rms, value of the current i:

(rms current). (31-70)Irms !
I12

I/1 2

Pavg !
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Sample Problem

We then find

(Answer)

(b) What is the phase constant f of the current in the 
circuit relative to the driving emf?

The phase constant depends on the inductive reactance, the
capacitive reactance, and the resistance of the circuit,
according to Eq. 31-65.

Calculation: Solving Eq. 31-65 for f leads to

(Answer)

The negative phase constant is consistent with the fact that
the load is mainly capacitive; that is, XC $ XL. In the com-
mon mnemonic for driven series RLC circuits, this circuit is
an ICE circuit—the current leads the driving emf.

! "24.3% ! "0.424 rad.

& ! tan"1 
XL " XC

R
! tan"1 

86.7 ' " 177 '
200 '

I !
!m

Z
!

36.0 V
219 '

! 0.164 A.

Additional examples, video, and practice available at WileyPLUS

Current amplitude, impedance, and phase constant

In Fig. 31-7, let R ! 200 ', C ! 15.0 mF, L ! 230 mH,
fd ! 60.0 Hz, and !m ! 36.0 V. (These parameters are those
used in the earlier sample problems above.)

(a) What is the current amplitude I?

The current amplitude I depends on the amplitude !m of the
driving emf and on the impedance Z of the circuit, accord-
ing to Eq. 31-62 (I ! !m /Z).

Calculations: So, we need to find Z, which depends on resis-
tance R, capacitive reactance XC, and inductive reactance XL.
The circuit’s resistance is the given resistance R. Its capacitive
reactance is due to the given capacitance and, from an earlier
sample problem, XC ! 177 '. Its inductive reactance is due
to the given inductance and, from another sample problem,
XL ! 86.7 '.Thus, the circuit’s impedance is

! 219 '.

! 2(200 ')2 # (86.7 ' " 177 ')2

 Z ! 2R2 # (XL " XC)2

KEY I DEA

KEY I DEA

Fig. 31-17 (a) A plot of sin u versus u.
The average value over one cycle is zero. (b)
A plot of sin2 u versus u.The average value
over one cycle is .1
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i = i0 sin(ωt)

The power delivered to a load fluctuates as P = P0 sin2(ωt).



Alternating Current (AC)

Alternating current (AC) power supplies are the alternative to
direct current (DC) power supplies.

In an alternating current supply, the voltage and current vary
sinusoidally with time:
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31-10 Power in Alternating-Current Circuits
In the RLC circuit of Fig. 31-7, the source of energy is the alternating-current
generator. Some of the energy that it provides is stored in the electric field in the
capacitor, some is stored in the magnetic field in the inductor, and some is dis-
sipated as thermal energy in the resistor. In steady-state operation, the average
stored energy remains constant.The net transfer of energy is thus from the gener-
ator to the resistor, where energy is dissipated.

The instantaneous rate at which energy is dissipated in the resistor can be
written, with the help of Eqs. 26-27 and 31-29, as

P ! i2R ! [I sin(vdt " f)]2R ! I 2R sin2(vdt " f). (31-68)

The average rate at which energy is dissipated in the resistor, however, is the aver-
age of Eq. 31-68 over time. Over one complete cycle, the average value of sin u,
where u is any variable, is zero (Fig. 31-17a) but the average value of sin2 u is 
(Fig. 31-17b). (Note in Fig. 31-17b how the shaded areas under the curve but
above the horizontal line marked exactly fill in the unshaded spaces below
that line.) Thus, we can write, from Eq. 31-68,

(31-69)

The quantity is called the root-mean-square, or rms, value of the current i:

(rms current). (31-70)Irms !
I12

I/1 2

Pavg !
I 2R

2
! ! I12 "

2

R.

#1
2

1
2

Sample Problem

We then find

(Answer)

(b) What is the phase constant f of the current in the 
circuit relative to the driving emf?

The phase constant depends on the inductive reactance, the
capacitive reactance, and the resistance of the circuit,
according to Eq. 31-65.

Calculation: Solving Eq. 31-65 for f leads to

(Answer)

The negative phase constant is consistent with the fact that
the load is mainly capacitive; that is, XC $ XL. In the com-
mon mnemonic for driven series RLC circuits, this circuit is
an ICE circuit—the current leads the driving emf.

! "24.3% ! "0.424 rad.

& ! tan"1 
XL " XC

R
! tan"1 

86.7 ' " 177 '
200 '

I !
!m

Z
!

36.0 V
219 '

! 0.164 A.

Additional examples, video, and practice available at WileyPLUS

Current amplitude, impedance, and phase constant

In Fig. 31-7, let R ! 200 ', C ! 15.0 mF, L ! 230 mH,
fd ! 60.0 Hz, and !m ! 36.0 V. (These parameters are those
used in the earlier sample problems above.)

(a) What is the current amplitude I?

The current amplitude I depends on the amplitude !m of the
driving emf and on the impedance Z of the circuit, accord-
ing to Eq. 31-62 (I ! !m /Z).

Calculations: So, we need to find Z, which depends on resis-
tance R, capacitive reactance XC, and inductive reactance XL.
The circuit’s resistance is the given resistance R. Its capacitive
reactance is due to the given capacitance and, from an earlier
sample problem, XC ! 177 '. Its inductive reactance is due
to the given inductance and, from another sample problem,
XL ! 86.7 '.Thus, the circuit’s impedance is

! 219 '.

! 2(200 ')2 # (86.7 ' " 177 ')2

 Z ! 2R2 # (XL " XC)2

KEY I DEA

KEY I DEA

Fig. 31-17 (a) A plot of sin u versus u.
The average value over one cycle is zero. (b)
A plot of sin2 u versus u.The average value
over one cycle is .1
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In Fig. 31-7, let R ! 200 ', C ! 15.0 mF, L ! 230 mH,
fd ! 60.0 Hz, and !m ! 36.0 V. (These parameters are those
used in the earlier sample problems above.)

(a) What is the current amplitude I?

The current amplitude I depends on the amplitude !m of the
driving emf and on the impedance Z of the circuit, accord-
ing to Eq. 31-62 (I ! !m /Z).

Calculations: So, we need to find Z, which depends on resis-
tance R, capacitive reactance XC, and inductive reactance XL.
The circuit’s resistance is the given resistance R. Its capacitive
reactance is due to the given capacitance and, from an earlier
sample problem, XC ! 177 '. Its inductive reactance is due
to the given inductance and, from another sample problem,
XL ! 86.7 '.Thus, the circuit’s impedance is
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Fig. 31-17 (a) A plot of sin u versus u.
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i = i0 sin(ωt)

The power delivered to a load fluctuates as P = P0 sin2(ωt).



Transformers
Transformers change ∆Vrms and Irms simultaneously, while keeping
the average power:

Pavg = Irms(∆Vrms)

constant (conservation of energy).
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31-11 Transformers
Energy Transmission Requirements
When an ac circuit has only a resistive load, the power factor in Eq. 31-76 is 
cos 0° ! 1 and the applied rms emf !rms is equal to the rms voltage Vrms across the
load. Thus, with an rms current Irms in the load, energy is supplied and dissipated
at the average rate of

Pavg ! !I ! IV. (31-77)

(In Eq. 31-77 and the rest of this section, we follow conventional practice and drop
the subscripts identifying rms quantities. Engineers and scientists assume that all
time-varying currents and voltages are reported as rms values; that is what the me-
ters read.) Equation 31-77 tells us that, to satisfy a given power requirement, we
have a range of choices for I and V, provided only that the product IV is as required.

In electrical power distribution systems it is desirable for reasons of safety and
for efficient equipment design to deal with relatively low voltages at both the gener-
ating end (the electrical power plant) and the receiving end (the home or factory).
Nobody wants an electric toaster or a child’s electric train to operate at, say, 10 kV.
On the other hand, in the transmission of electrical energy from the generating plant
to the consumer, we want the lowest practical current (hence the largest practical
voltage) to minimize I2R losses (often called ohmic losses) in the transmission line.

As an example, consider the 735 kV line used to transmit electrical energy
from the La Grande 2 hydroelectric plant in Quebec to Montreal, 1000 km away.
Suppose that the current is 500 A and the power factor is close to unity. Then
from Eq. 31-77, energy is supplied at the average rate

Pavg ! !I ! (7.35 " 105 V)(500 A) ! 368 MW.

The resistance of the transmission line is about 0.220 #/km; thus, there is a total
resistance of about 220 # for the 1000 km stretch. Energy is dissipated due to that
resistance at a rate of about

Pavg ! I 2R ! (500 A)2(220 #) ! 55.0 MW,

which is nearly 15% of the supply rate.
Imagine what would happen if we doubled the current and halved the volt-

age. Energy would be supplied by the plant at the same average rate of 368 MW
as previously, but now energy would be dissipated at the rate of about

Pavg ! I 2R ! (1000 A)2(220 #) ! 220 MW,

which is almost 60% of the supply rate. Hence the general energy transmission
rule:Transmit at the highest possible voltage and the lowest possible current.

The Ideal Transformer
The transmission rule leads to a fundamental mismatch between the requirement
for efficient high-voltage transmission and the need for safe low-voltage generation
and consumption. We need a device with which we can raise (for transmission) and
lower (for use) the ac voltage in a circuit, keeping the product current " voltage es-
sentially constant.The transformer is such a device. It has no moving parts, operates
by Faraday’s law of induction, and has no simple direct-current counterpart.

The ideal transformer in Fig. 31-18 consists of two coils, with different num-
bers of turns, wound around an iron core. (The coils are insulated from the core.)
In use, the primary winding, of Np turns, is connected to an alternating-current
generator whose emf ! at any time t is given by

! ! !m sin vt. (31-78)

The secondary winding, of Ns turns, is connected to load resistance R, but its

Fig. 31-18 An ideal transformer (two
coils wound on an iron core) in a basic
transformer circuit.An ac generator pro-
duces current in the coil at the left (the pri-
mary).The coil at the right (the secondary)
is connected to the resistive load R when
switch S is closed.

RVp Vs

S

Np

Ns

ΦB

Primary Secondary
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This works via mutual inductance. If the current in the first coil
did not constantly change (AC) this would not work.

∆Vs = ∆Vp
Ns

Np



Transformers

The reason for the voltage relation is that the iron core ideally
contains all the magnetic flux lines produced.

Then the emf per turn Et = −∆Φ
∆t is the same in both solenoids.

∆Vp = −Np
∆Φ

∆t
and ∆Vs = −Ns

∆Φ

∆t

∆Vs = ∆Vp
Ns

Np



Maxwell’s Laws

Amazingly, we can summarize the majority of the relations that we
have talked about in this course in a set of just 4 equations.

These are together called Maxwell’s equations.

∮
E · dA =

qenc

ε∮
B · dA = 0∮

E · ds = −
dΦB

dt∮
B · ds = µ0ε0

dΦE

dt
+µ0ienc



Gauss’s Law for Magnetic Fields

The first of Maxwell’s equations is Gauss’s Law for E-fields:∮
E · dA =

qenc

ε

The second is for Gauss’s Law for B-fields:∮
B · dA = 0



Maxwell’s Law of Induction
Faraday’s Law of Induction is the third of Maxwell’s laws.∮

E · ds = −
dΦB

dt

This tells us that a changing magnetic field will induce an electric
field.

But what about the reverse? A changing electric field inducing a
magnetic field?

It does happen!

Maxwell’s Law of Induction∮
B · ds = µ0ε0

dΦE

dt
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Maxwell’s Law of Induction
Faraday’s Law of Induction is the third of Maxwell’s laws.∮

E · ds = −
dΦB

dt

This tells us that a changing magnetic field will induce an electric
field.

But what about the reverse? A changing electric field inducing a
magnetic field?
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Maxwell’s Law of Induction

∮
B · ds = µ0ε0

dΦE

dt
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a changing electric flux will always induce a magnetic field whenever it occurs.) We
assume that the charge on our capacitor (Fig. 32-5a) is being increased at a steady
rate by a constant current i in the connecting wires. Then the electric field magni-
tude between the plates must also be increasing at a steady rate.

Figure 32-5b is a view of the right-hand plate of Fig. 32-5a from between the
plates. The electric field is directed into the page. Let us consider a circular loop
through point 1 in Figs. 32-5a and b, a loop that is concentric with the capacitor plates
and has a radius smaller than that of the plates. Because the electric field through the
loop is changing, the electric flux through the loop must also be changing.According to
Eq.32-3, this changing electric flux induces a magnetic field around the loop.

Experiment proves that a magnetic field is indeed induced around such
a loop, directed as shown. This magnetic field has the same magnitude at every
point around the loop and thus has circular symmetry about the central axis of
the capacitor plates (the axis extending from one plate center to the other).

If we now consider a larger loop—say, through point 2 outside the plates
in Figs. 32-5a and b—we find that a magnetic field is induced around that loop
as well. Thus, while the electric field is changing, magnetic fields are induced
between the plates, both inside and outside the gap. When the electric field stops
changing, these induced magnetic fields disappear.

Although Eq. 32-3 is similar to Eq. 32-2, the equations differ in two ways.
First, Eq. 32-3 has the two extra symbols m 0 and !0, but they appear only because
we employ SI units. Second, Eq. 32-3 lacks the minus sign of Eq. 32-2, mean-
ing that the induced electric field and the induced magnetic field have
opposite directions when they are produced in otherwise similar situations. To
see this opposition, examine Fig. 32-6, in which an increasing magnetic field ,
directed into the page, induces an electric field . The induced field is counter-
clockwise, opposite the induced magnetic field in Fig. 32-5b.

Ampere–Maxwell Law
Now recall that the left side of Eq. 32-3, the integral of the dot product 
around a closed loop, appears in another equation—namely,Ampere’s law:

(Ampere’s law), (32-4)

where ienc is the current encircled by the closed loop.Thus, our two equations that
specify the magnetic field produced by means other than a magnetic material
(that is, by a current and by a changing electric field) give the field in exactly the
same form.We can combine the two equations into the single equation

(Ampere–Maxwell law). (32-5)! B
:

! ds: " #0!0 
d$E

dt
% #0 ienc

B
:

! B
:

! ds: " #0ienc

B
:

! ds:

B
:

E
:

E
:

B
:

B
:

E
:

B
:

Fig. 32-6 A uniform magnetic
field in a circular region.The field,
directed into the page, is increasing in
magnitude.The electric field in-
duced by the changing magnetic field
is shown at four points on a circle
concentric with the circular region.
Compare this situation with that of
Fig. 32-5b.

E
:

B
:

R r 

E 

E 

E 

E 

B 

B 

The induced E direction here is opposite the
induced B direction in the preceding figure.

Fig. 32-5 (a) A circular parallel-plate ca-
pacitor, shown in side view, is being charged
by a constant current i. (b) A view from
within the capacitor, looking toward the plate
at the right in (a).The electric field is uni-
form, is directed into the page (toward the
plate), and grows in magnitude as the charge
on the capacitor increases.The magnetic field

induced by this changing electric field is
shown at four points on a circle with a radius r
less than the plate radius R.

B
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(b) 

(a) 
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B 

The changing of the
electric field between
the plates creates a
magnetic field.
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Maxwell’s Law of Induction question
The figure shows graphs of the electric field magnitude E versus
time t for four uniform electric fields, all contained within identical
circular regions as in the circular-plate capacitor. Rank the E-fields
according to the magnitudes of the magnetic fields they induce at
the edge of the region, greatest first.
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The figure shows graphs of the electric field magnitude E
versus time t for four uniform electric fields, all contained
within identical circular regions as in Fig. 32-5b. Rank the
fields according to the magnitudes of the magnetic fields
they induce at the edge of the region, greatest first.

a

b

c

d
E

t

Sample Problem

Right side of Eq. 32-6: We assume that the electric field 
is uniform between the capacitor plates and directed per-

pendicular to the plates. Then the electric flux !E through
the Amperian loop is EA, where A is the area encircled by
the loop within the electric field. Thus, the right side of Eq.
32-6 is m0"0 d(EA)/dt.

Combining results: Substituting our results for the left
and right sides into Eq. 32-6, we get

Because A is a constant,we write d(EA) as A dE; so we have

(32-7)

The area A that is encircled by the Amperian loop within the
electric field is the full area pr2 of the loop because the loop’s
radius r is less than (or equal to) the plate radius R. Sub-
stituting pr2 for A in Eq.32-7 leads to, for r # R,

(Answer) (32-8)

This equation tells us that, inside the capacitor, B increases
linearly with increased radial distance r, from 0 at the cen-
tral axis to a maximum value at plate radius R.

(b) Evaluate the field magnitude B for r $ R/5 $ 11.0 mm
and dE/dt $ 1.50 % 1012 V/m & s.

Calculation: From the answer to (a), we have

(Answer) $ 9.18 % 10'8 T.
  % (11.0 % 10'3 m)(1.50 % 1012 V/m & s)

 $ 1
2 (4( % 10'7 T & m/A)(8.85 % 10'12 C2/N & m2)

  B $
1
2

 )0"0r 
dE
dt

B $
)0"0r

2
 

dE
dt

.

(B)(2(r) $ )0"0 A 
dE
dt

.

(B)(2(r) $ )0"0 
d(EA)

dt
.

E
:

Magnetic field induced by changing electric field

A parallel-plate capacitor with circular plates of radius R is
being charged as in Fig. 32-5a.

(a) Derive an expression for the magnetic field at radius r
for the case r # R.

A magnetic field can be set up by a current and by induction
due to a changing electric flux; both effects are included in
Eq. 32-5.There is no current between the capacitor plates of
Fig. 32-5, but the electric flux there is changing. Thus, Eq.
32-5 reduces to

(32-6)

We shall separately evaluate the left and right sides of this
equation.

Left side of Eq. 32-6: We choose a circular Amperian loop
with a radius r # R as shown in Fig. 32-5b because we want
to evaluate the magnetic field for r # R—that is, inside the
capacitor.The magnetic field at all points along the loop is
tangent to the loop, as is the path element . Thus, and

are either parallel or antiparallel at each point of the
loop. For simplicity, assume they are parallel (the choice
does not alter our outcome here).Then

Due to the circular symmetry of the plates, we can also as-
sume that has the same magnitude at every point around
the loop.Thus, B can be taken outside the integral on the right
side of the above equation. The integral that remains is ,
which simply gives the circumference 2pr of the loop.The left
side of Eq. 32-6 is then (B)(2pr).

! ds

B
:

" B
:

! ds: $ " B ds cos 0* $ " B ds.

ds:
B
:

ds:
B
:

" B
:

! ds: $ )0 "0 
d!E

dt
.

KEY I DEAS

When there is a current but no change in electric flux (such as with a wire
carrying a constant current), the first term on the right side of Eq. 32-5 is zero, and
so Eq. 32-5 reduces to Eq. 32-4, Ampere’s law. When there is a change in electric
flux but no current (such as inside or outside the gap of a charging capacitor), the
second term on the right side of Eq. 32-5 is zero, and so Eq. 32-5 reduces to
Eq. 32-3, Maxwell’s law of induction.
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A a, b, c, d

B a, c, b, d

C d, b, c, a

D d, c, a, b
1Halliday, Resnick, Walker, page 865.
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Right side of Eq. 32-6: We assume that the electric field 
is uniform between the capacitor plates and directed per-

pendicular to the plates. Then the electric flux !E through
the Amperian loop is EA, where A is the area encircled by
the loop within the electric field. Thus, the right side of Eq.
32-6 is m0"0 d(EA)/dt.

Combining results: Substituting our results for the left
and right sides into Eq. 32-6, we get

Because A is a constant,we write d(EA) as A dE; so we have

(32-7)

The area A that is encircled by the Amperian loop within the
electric field is the full area pr2 of the loop because the loop’s
radius r is less than (or equal to) the plate radius R. Sub-
stituting pr2 for A in Eq.32-7 leads to, for r # R,

(Answer) (32-8)

This equation tells us that, inside the capacitor, B increases
linearly with increased radial distance r, from 0 at the cen-
tral axis to a maximum value at plate radius R.

(b) Evaluate the field magnitude B for r $ R/5 $ 11.0 mm
and dE/dt $ 1.50 % 1012 V/m & s.

Calculation: From the answer to (a), we have

(Answer) $ 9.18 % 10'8 T.
  % (11.0 % 10'3 m)(1.50 % 1012 V/m & s)

 $ 1
2 (4( % 10'7 T & m/A)(8.85 % 10'12 C2/N & m2)

  B $
1
2

 )0"0r 
dE
dt

B $
)0"0r

2
 

dE
dt

.

(B)(2(r) $ )0"0 A 
dE
dt

.

(B)(2(r) $ )0"0 
d(EA)

dt
.

E
:

Magnetic field induced by changing electric field

A parallel-plate capacitor with circular plates of radius R is
being charged as in Fig. 32-5a.

(a) Derive an expression for the magnetic field at radius r
for the case r # R.

A magnetic field can be set up by a current and by induction
due to a changing electric flux; both effects are included in
Eq. 32-5.There is no current between the capacitor plates of
Fig. 32-5, but the electric flux there is changing. Thus, Eq.
32-5 reduces to

(32-6)

We shall separately evaluate the left and right sides of this
equation.

Left side of Eq. 32-6: We choose a circular Amperian loop
with a radius r # R as shown in Fig. 32-5b because we want
to evaluate the magnetic field for r # R—that is, inside the
capacitor.The magnetic field at all points along the loop is
tangent to the loop, as is the path element . Thus, and

are either parallel or antiparallel at each point of the
loop. For simplicity, assume they are parallel (the choice
does not alter our outcome here).Then

Due to the circular symmetry of the plates, we can also as-
sume that has the same magnitude at every point around
the loop.Thus, B can be taken outside the integral on the right
side of the above equation. The integral that remains is ,
which simply gives the circumference 2pr of the loop.The left
side of Eq. 32-6 is then (B)(2pr).

! ds

B
:

" B
:

! ds: $ " B ds cos 0* $ " B ds.

ds:
B
:

ds:
B
:

" B
:

! ds: $ )0 "0 
d!E

dt
.

KEY I DEAS

When there is a current but no change in electric flux (such as with a wire
carrying a constant current), the first term on the right side of Eq. 32-5 is zero, and
so Eq. 32-5 reduces to Eq. 32-4, Ampere’s law. When there is a change in electric
flux but no current (such as inside or outside the gap of a charging capacitor), the
second term on the right side of Eq. 32-5 is zero, and so Eq. 32-5 reduces to
Eq. 32-3, Maxwell’s law of induction.
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A a, b, c, d

B a, c, b, d←
C d, b, c, a

D d, c, a, b
1Halliday, Resnick, Walker, page 865.



Ampere-Maxwell Law

However, a changing electric field is not the only cause of a
magnetic field.

We know from Ampere’s Law:∮
B · ds = µ0ienc

that a moving charge (current) causes a magnetic field also.

Since we could have a situation with both a changing E-field and a
current, we can express it more generally with the Ampere-Maxwell
Law: ∮

B · ds = µ0ε0
dΦE

dt
+µ0ienc

We add up the contributions from the changing electric flux and
the current.



Ampere-Maxwell Law

However, a changing electric field is not the only cause of a
magnetic field.

We know from Ampere’s Law:∮
B · ds = µ0ienc

that a moving charge (current) causes a magnetic field also.

Since we could have a situation with both a changing E-field and a
current, we can express it more generally with the Ampere-Maxwell
Law: ∮

B · ds = µ0ε0
dΦE

dt
+µ0ienc

We add up the contributions from the changing electric flux and
the current.



Ampere-Maxwell Law

The Ampere-Maxwell Law is the fourth and last of Maxwell’s laws.

Ampere-Maxwell Law∮
B · ds = µ0ε0

dΦE

dt
+µ0ienc



Maxwell’s Equations

∮
E · dA =

qenc

ε∮
B · dA = 0∮

E · ds = −
dΦB

dt∮
B · ds = µ0ε0

dΦE

dt
+µ0ienc

1Strictly, these are Maxwell’s equations in a vacuum.



Ampere-Maxwell Law and Displacement “Current”
Ampere-Maxwell Law:∮

B · ds = µ0ε0
dΦE

dt
+µ0ienc

It can be convenient to imagine that even the part of the B-field
that is produced by a changing E-field is actually produced by
some kind of virtual current.

This works because the units of ε0
dΦE
dt are Amps.

displacement “current”

id = ε0
dΦE

dt

Note: The displacement “current” is not a current and has
nothing to do with displacement.
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It can be convenient to imagine that even the part of the B-field
that is produced by a changing E-field is actually produced by
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Ampere-Maxwell Law and Displacement “Current”

This lets us rewrite the Ampere-Maxwell law as:∮
B · ds = µ0id + µ0ienc

Looking at it this way can give us some insights.



B-field around a charging capacitor

Suppose a capacitor is being charged with a constant current, i .

86732-4 DI S PLACE M E NT CU R R E NT
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becomes

(32-14)

Comparing Eqs. 32-13 and 32-14, we see that the real current i charging the
capacitor and the fictitious displacement current id between the plates have the
same magnitude:

id ! i (displacement current in a capacitor). (32-15)

Thus, we can consider the fictitious displacement current id to be simply a con-
tinuation of the real current i from one plate, across the capacitor gap, to the
other plate. Because the electric field is uniformly spread over the plates, the
same is true of this fictitious displacement current id, as suggested by the spread
of current arrows in Fig. 32-7b.Although no charge actually moves across the gap
between the plates, the idea of the fictitious current id can help us to quickly find
the direction and magnitude of an induced magnetic field, as follows.

Finding the Induced Magnetic Field
In Chapter 29 we found the direction of the magnetic field produced by a real
current i by using the right-hand rule of Fig. 29-4. We can apply the same rule to
find the direction of an induced magnetic field produced by a fictitious displace-
ment current id, as is shown in the center of Fig. 32-7c for a capacitor.

We can also use id to find the magnitude of the magnetic field induced by
a charging capacitor with parallel circular plates of radius R. We simply consider
the space between the plates to be an imaginary circular wire of radius R carrying
the imaginary current id. Then, from Eq. 29-20, the magnitude of the magnetic

id ! "0
d#E

dt
! "0

d(EA)
dt

! "0A
dE
dt

.

Fig. 32-7 (a) Before and (d) after 
the plates are charged, there is no 
magnetic field. (b) During the charging,
magnetic field is created by both the real
current and the (fictional) displacement
current. (c) The same right-hand rule
works for both currents to give the direc-
tion of the magnetic field.

(b)

(c)

id

–

BB

+ –

i

i i

+

i

(d) –+

(a)

B

BB B

Before charging, there
is no magnetic field.

After charging, there
is no magnetic field.

During charging, magnetic 
field is created by both 
the real and fictional currents. 

During charging, the 
right-hand rule works for both 
the real and fictional currents.

A
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B-field around a charging capacitor

id = ε0
dΦE

dt
= ε0A

dE

dt

Gauss’s law allows us to relate q, the charge on the capacitor to
the flux:

q

ε0
=

∮
E · dA = EA

The current is the rate of flow of charge:

i =
dq

dt
= ε0A

dE

dt

So, id = i !

The B-field outside a circular capacitor looks the same as the
B-field around the wire leading up to the capacitor.



Magnetic Field around a circular capacitor

Can be calculated just like the field around a wire!

Outside the capacitor at radius r from the center:

B =
µ0id
2πr

Inside the capacitor (plates have radius R) at radius r from the
center:

B =
µ0id
2πR2

r

But remember: id is not a current. No current flows across the
gap between the plates.
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Another Implication of Maxwell’s Equations

Using all 4 equations (in their differential form) it is possible to
reach a pair of wave equations for the electric and magnetic fields:

∇2E =
1

c2

∂2E

∂t2

∇2B =
1

c2

∂2B

∂t2

with wave solutions:

E = E0 sin(k · r −ωt)

B = B0 sin(k · r −ωt)



Another Implication of Maxwell’s Equations

∇2E =
1

c2

∂2E

∂t2

The constant c appears as the wave speed and

c =
1

√
µ0ε0

c = 3.00× 108 m/s, is the speed of light.

The values of ε0 and µ0 together predict the speed of light!



Relation between Electric and Magnetic Fields

These oscillating electric and magnetic fields make up light.

Faraday’s Law of Induction

A changing magnetic field gives rise to an electric field.

Ampere-Maxwell Law of Induction

A changing electric field gives rise to an magnetic field.



Light

Faraday’s Law ⇒ a changing magnetic field causes an electric field.

Maxwell’s Law ⇒ a changing electric field causes a magnetic field.



Light (Electromagnetic Radiation)

All light waves in a vacuum travel at the same speed, the speed of
light, c = 3.00× 108 m s−1.

Maxwell’s equations possess the ‘wrong’ symmetry for Gallilean
transformations between observers; they are Lorentz-invariant.
This gave Einstein an important idea.

All observers, no matter how they move relative to one another all
agree that any light wave travels at that same speed.

Since light travels at this fixed speed and c = v = f λ, if the
frequency of the light is given, you also know the wavelength, and
vice versa.

λ =
c

f
; f =

c

λ



Electromagnetic spectrum



Electromagnetic spectrum



Summary

• applications of Faraday’s law

• inductance

• self-induction

• RL Circuits

Homework Halliday, Resnick, Walker:

• NEW: Ch 30, onward from page 816. Problems: 41, 45, 61,
63, 67, 69, 73

• NEW: Ch 31 onward from page 858. Problems: 62, 63

• NEW: Ch 32, onward from page 883. Questions: 1, 3;
Problems: 1, 5, 13


