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Overview

• Faraday’s law

• Lenz’s law

• magnetic field from a moving charge

• Gauss’s law



Reminder: Magnetic Flux

 30.5 Gauss’s Law in Magnetism 917

arbitrarily shaped surface as shown in Figure 30.19. If the magnetic field at this 
element is B

S
,  the magnetic flux through the element is B

S
? d A

S
, where d A

S
 is a vec-

tor that is perpendicular to the surface and has a magnitude equal to the area dA. 
Therefore, the total magnetic flux FB through the surface is

 FB ; 3  B
S

? d A
S

 (30.18)

 Consider the special case of a plane of area A in a uniform field B
S

 that makes an 
angle u with d A

S
. The magnetic flux through the plane in this case is

 FB 5 BA cos u  (30.19)

If the magnetic field is parallel to the plane as in Figure 30.20a, then u 5 908 and the 
flux through the plane is zero. If the field is perpendicular to the plane as in Figure 
30.20b, then u 5 0 and the flux through the plane is BA (the maximum value).
 The unit of magnetic flux is T ? m2, which is defined as a weber (Wb); 1 Wb 5  
1 T ? m2.

�W Definition of magnetic flux

Figure 30.20 Magnetic flux 
through a plane lying in a mag-
netic field.a

d

The flux through the plane is 
zero when the magnetic field is 
parallel to the plane surface.

A
S

B
S

b

dA
S

B
S

The flux through the plane is a 
maximum when the magnetic 
field is perpendicular to the plane.

Example 30.7   Magnetic Flux Through a Rectangular Loop

A rectangular loop of width a and length b is located near a long wire carrying a 
current I (Fig. 30.21). The distance between the wire and the closest side of the 
loop is c. The wire is parallel to the long side of the loop. Find the total magnetic 
flux through the loop due to the current in the wire.

Conceptualize  As we saw in Section 30.3, the magnetic field lines due to the wire 
will be circles, many of which will pass through the rectangular loop. We know that 
the magnetic field is a function of distance r from a long 
wire. Therefore, the magnetic field varies over the area of 
the rectangular loop.

Categorize  Because the magnetic field varies over the 
area of the loop, we must integrate over this area to find 
the total flux. That identifies this as an analysis problem.

S O L U T I O N

continued

b
r

I

c a

dr

Figure 30.21  (Example 
30.7) The magnetic field 
due to the wire carrying 
a current I is not uniform 
over the rectangular loop.

Analyze  Noting that B
S

 is parallel to d A
S

 at any point 
within the loop, find the magnetic flux through the rect-
angular area using Equation 30.18 and incorporate Equa-
tion 30.14 for the magnetic field:

FB 5 3 B
S

? d A
S

5 3 B dA 5  3 
m0I
2pr

 dA

B
S

 
u

d A 
S

Figure 30.19  The magnetic  
flux through an area element dA  
is B

S
? d A

S
5 B dA cos u, where  

d A
S

 is a vector perpendicular to 
the surface.

Magnetic flux

The magnetic flux of a magnetic field through a surface A is

ΦB =
∑

B · (∆A)

Units: Tm2

If the surface is a flat plane and B is uniform, that just reduces to:

ΦB = B · A



Changing flux and emf

When a magnet is at rest near a loop of wire there is no potential
difference across the ends of the wire.

936 Chapter 31 Faraday’s Law

is moved either toward or away from it, the reading changes from zero. From these 
observations, we conclude that the loop detects that the magnet is moving relative to 
it and we relate this detection to a change in magnetic field. Therefore, it seems that 
a relationship exists between a current and a changing magnetic field.
 These results are quite remarkable because a current is set up even though no 
batteries are present in the circuit! We call such a current an induced current and say 
that it is produced by an induced emf.
 Now let’s describe an experiment conducted by Faraday and illustrated in Figure 
31.2. A primary coil is wrapped around an iron ring and connected to a switch and 
a battery. A current in the coil produces a magnetic field when the switch is closed. 
A secondary coil also is wrapped around the ring and is connected to a sensitive 
ammeter. No battery is present in the secondary circuit, and the secondary coil is 
not electrically connected to the primary coil. Any current detected in the second-
ary circuit must be induced by some external agent.
 Initially, you might guess that no current is ever detected in the secondary cir-
cuit. Something quite amazing happens when the switch in the primary circuit is 
either opened or thrown closed, however. At the instant the switch is closed, the 
ammeter reading changes from zero momentarily and then returns to zero. At the 
instant the switch is opened, the ammeter changes to a reading with the opposite 
sign and again returns to zero. Finally, the ammeter reads zero when there is either 
a steady current or no current in the primary circuit. To understand what happens 
in this experiment, note that when the switch is closed, the current in the primary 
circuit produces a magnetic field that penetrates the secondary circuit. Further-
more, when the switch is thrown closed, the magnetic field produced by the cur-
rent in the primary circuit changes from zero to some value over some finite time, 
and this changing field induces a current in the secondary circuit. Notice that no 
current is induced in the secondary coil even when a steady current exists in the 
primary coil. It is a change in the current in the primary coil that induces a current 
in the secondary coil, not just the existence of a current.
 As a result of these observations, Faraday concluded that an electric current can 
be induced in a loop by a changing magnetic field. The induced current exists 
only while the magnetic field through the loop is changing. Once the magnetic 
field reaches a steady value, the current in the loop disappears. In effect, the loop 
behaves as though a source of emf were connected to it for a short time. It is cus-
tomary to say that an induced emf is produced in the loop by the changing mag-
netic field.

Michael Faraday
British Physicist and Chemist 
(1791–1867)
Faraday is often regarded as the great-
est experimental scientist of the 1800s. 
His many contributions to the study of 
electricity include the invention of the 
electric motor, electric generator, and 
transformer as well as the discovery 
of electromagnetic induction and the 
laws of electrolysis. Greatly influenced 
by religion, he refused to work on the 
development of poison gas for the Brit-
ish military.
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When a magnet is moved 
toward a loop of wire 
connected to a sensitive 
ammeter, the ammeter 
shows that a current is 
induced in the loop.

N S

When the magnet is held 
stationary, there is no 
induced current in the 
loop, even when the 
magnet is inside the loop.

a b

I

N S

c

When the magnet is 
moved away from the 
loop, the ammeter shows 
that the induced current 
is opposite that shown in 
part      .a

Figure 31.1 A simple experiment 
showing that a current is induced 
in a loop when a magnet is moved 
toward or away from the loop.



Changing flux and emf

When the north pole of the magnet is moved towards the loop, the
magnetic flux increases.
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is moved either toward or away from it, the reading changes from zero. From these 
observations, we conclude that the loop detects that the magnet is moving relative to 
it and we relate this detection to a change in magnetic field. Therefore, it seems that 
a relationship exists between a current and a changing magnetic field.
 These results are quite remarkable because a current is set up even though no 
batteries are present in the circuit! We call such a current an induced current and say 
that it is produced by an induced emf.
 Now let’s describe an experiment conducted by Faraday and illustrated in Figure 
31.2. A primary coil is wrapped around an iron ring and connected to a switch and 
a battery. A current in the coil produces a magnetic field when the switch is closed. 
A secondary coil also is wrapped around the ring and is connected to a sensitive 
ammeter. No battery is present in the secondary circuit, and the secondary coil is 
not electrically connected to the primary coil. Any current detected in the second-
ary circuit must be induced by some external agent.
 Initially, you might guess that no current is ever detected in the secondary cir-
cuit. Something quite amazing happens when the switch in the primary circuit is 
either opened or thrown closed, however. At the instant the switch is closed, the 
ammeter reading changes from zero momentarily and then returns to zero. At the 
instant the switch is opened, the ammeter changes to a reading with the opposite 
sign and again returns to zero. Finally, the ammeter reads zero when there is either 
a steady current or no current in the primary circuit. To understand what happens 
in this experiment, note that when the switch is closed, the current in the primary 
circuit produces a magnetic field that penetrates the secondary circuit. Further-
more, when the switch is thrown closed, the magnetic field produced by the cur-
rent in the primary circuit changes from zero to some value over some finite time, 
and this changing field induces a current in the secondary circuit. Notice that no 
current is induced in the secondary coil even when a steady current exists in the 
primary coil. It is a change in the current in the primary coil that induces a current 
in the secondary coil, not just the existence of a current.
 As a result of these observations, Faraday concluded that an electric current can 
be induced in a loop by a changing magnetic field. The induced current exists 
only while the magnetic field through the loop is changing. Once the magnetic 
field reaches a steady value, the current in the loop disappears. In effect, the loop 
behaves as though a source of emf were connected to it for a short time. It is cus-
tomary to say that an induced emf is produced in the loop by the changing mag-
netic field.

Michael Faraday
British Physicist and Chemist 
(1791–1867)
Faraday is often regarded as the great-
est experimental scientist of the 1800s. 
His many contributions to the study of 
electricity include the invention of the 
electric motor, electric generator, and 
transformer as well as the discovery 
of electromagnetic induction and the 
laws of electrolysis. Greatly influenced 
by religion, he refused to work on the 
development of poison gas for the Brit-
ish military.
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When a magnet is moved 
toward a loop of wire 
connected to a sensitive 
ammeter, the ammeter 
shows that a current is 
induced in the loop.

N S

When the magnet is held 
stationary, there is no 
induced current in the 
loop, even when the 
magnet is inside the loop.

a b

I

N S

c

When the magnet is 
moved away from the 
loop, the ammeter shows 
that the induced current 
is opposite that shown in 
part      .a

Figure 31.1 A simple experiment 
showing that a current is induced 
in a loop when a magnet is moved 
toward or away from the loop.

A current flows clockwise in the loop.



Changing flux and emf

When the north pole of the magnet is moved away from the loop,
the magnetic flux decreases.
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is moved either toward or away from it, the reading changes from zero. From these 
observations, we conclude that the loop detects that the magnet is moving relative to 
it and we relate this detection to a change in magnetic field. Therefore, it seems that 
a relationship exists between a current and a changing magnetic field.
 These results are quite remarkable because a current is set up even though no 
batteries are present in the circuit! We call such a current an induced current and say 
that it is produced by an induced emf.
 Now let’s describe an experiment conducted by Faraday and illustrated in Figure 
31.2. A primary coil is wrapped around an iron ring and connected to a switch and 
a battery. A current in the coil produces a magnetic field when the switch is closed. 
A secondary coil also is wrapped around the ring and is connected to a sensitive 
ammeter. No battery is present in the secondary circuit, and the secondary coil is 
not electrically connected to the primary coil. Any current detected in the second-
ary circuit must be induced by some external agent.
 Initially, you might guess that no current is ever detected in the secondary cir-
cuit. Something quite amazing happens when the switch in the primary circuit is 
either opened or thrown closed, however. At the instant the switch is closed, the 
ammeter reading changes from zero momentarily and then returns to zero. At the 
instant the switch is opened, the ammeter changes to a reading with the opposite 
sign and again returns to zero. Finally, the ammeter reads zero when there is either 
a steady current or no current in the primary circuit. To understand what happens 
in this experiment, note that when the switch is closed, the current in the primary 
circuit produces a magnetic field that penetrates the secondary circuit. Further-
more, when the switch is thrown closed, the magnetic field produced by the cur-
rent in the primary circuit changes from zero to some value over some finite time, 
and this changing field induces a current in the secondary circuit. Notice that no 
current is induced in the secondary coil even when a steady current exists in the 
primary coil. It is a change in the current in the primary coil that induces a current 
in the secondary coil, not just the existence of a current.
 As a result of these observations, Faraday concluded that an electric current can 
be induced in a loop by a changing magnetic field. The induced current exists 
only while the magnetic field through the loop is changing. Once the magnetic 
field reaches a steady value, the current in the loop disappears. In effect, the loop 
behaves as though a source of emf were connected to it for a short time. It is cus-
tomary to say that an induced emf is produced in the loop by the changing mag-
netic field.

Michael Faraday
British Physicist and Chemist 
(1791–1867)
Faraday is often regarded as the great-
est experimental scientist of the 1800s. 
His many contributions to the study of 
electricity include the invention of the 
electric motor, electric generator, and 
transformer as well as the discovery 
of electromagnetic induction and the 
laws of electrolysis. Greatly influenced 
by religion, he refused to work on the 
development of poison gas for the Brit-
ish military.
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When a magnet is moved 
toward a loop of wire 
connected to a sensitive 
ammeter, the ammeter 
shows that a current is 
induced in the loop.

N S

When the magnet is held 
stationary, there is no 
induced current in the 
loop, even when the 
magnet is inside the loop.

a b

I

N S

c

When the magnet is 
moved away from the 
loop, the ammeter shows 
that the induced current 
is opposite that shown in 
part      .a

Figure 31.1 A simple experiment 
showing that a current is induced 
in a loop when a magnet is moved 
toward or away from the loop.

A current flows counterclockwise in the loop.



Faraday’s Law

Faraday’s Law

If a conducting loop experiences a changing magnetic flux through
the area of the loop, an emf EF is induced in the loop that is
directly proportional to the rate of change of the flux, ΦB with
time.

Faraday’s Law for a conducting loop:

E = −
∆ΦB

∆t



Faraday’s Law

Faraday’s Law for a coil of N turns:

EF = −N
∆ΦB

∆t

if ΦB is the flux through a single loop.



Changing Magnetic Flux

The magnetic flux might change for any of several reasons:

• the magnitude of B can change with time,

• the area A enclosed by the loop can change with time, or

• the angle θ between the field and the normal to the loop can
change with time.



Lenz’s Law

794 CHAPTE R 30 I N DUCTION AN D I N DUCTANCE

30-4 Lenz’s Law
Soon after Faraday proposed his law of induction, Heinrich Friedrich Lenz
devised a rule for determining the direction of an induced current in a loop:

Additional examples, video, and practice available at WileyPLUS

Fig. 30-3 A coil C is located inside a solenoid S, which 
carries current i.

Axis

i

i

C

S

An induced current has a direction such that the magnetic field due to the current
opposes the change in the magnetic flux that induces the current.

Fig. 30-4 Lenz’s law at work.As the
magnet is moved toward the loop, a current
is induced in the loop.The current produces
its own magnetic field, with magnetic di-
pole moment oriented so as to oppose
the motion of the magnet.Thus, the in-
duced current must be counterclockwise 
as shown.

!:

N 

S 

i 

N 

S 

µ µ 

The magnet's motion
creates a magnetic
dipole that opposes
the motion.

Furthermore, the direction of an induced emf is that of the induced current. To get
a feel for Lenz’s law, let us apply it in two different but equivalent ways to Fig. 30-4,
where the north pole of a magnet is being moved toward a conducting loop.

1. Opposition to Pole Movement. The approach of the magnet’s north pole in
Fig. 30-4 increases the magnetic flux through the loop and thereby induces a
current in the loop. From Fig. 29-21, we know that the loop then acts as a mag-
netic dipole with a south pole and a north pole, and that its magnetic dipole
moment is directed from south to north. To oppose the magnetic flux
increase being caused by the approaching magnet, the loop’s north pole (and
thus ) must face toward the approaching north pole so as to repel it (Fig.
30-4). Then the curled–straight right-hand rule for (Fig. 29-21) tells us that
the current induced in the loop must be counterclockwise in Fig. 30-4.

If we next pull the magnet away from the loop, a current will again be
induced in the loop. Now, however, the loop will have a south pole facing
the retreating north pole of the magnet, so as to oppose the retreat. Thus, the
induced current will be clockwise.

2. Opposition to Flux Change. In Fig. 30-4, with the magnet initially distant, no
magnetic flux passes through the loop. As the north pole of the magnet then

!:
!:

!:

because the final current in the solenoid is zero. To find the
initial flux "B,i, we note that area A is pd2 (# 3.464 $ 10%41

4

4. The flux through each turn of coil C depends on the area
A and orientation of that turn in the solenoid’s magnetic
field . Because is uniform and directed perpendicular
to area A, the flux is given by Eq. 30-2 ("B # BA).

5. The magnitude B of the magnetic field in the interior of a so-
lenoid depends on the solenoid’s current i and its number n
of turns per unit length,according to Eq.29-23 (B # m0in).

Calculations: Because coil C consists of more than one
turn, we apply Faraday’s law in the form of Eq. 30-5
(! # %N d"B/dt), where the number of turns N is 130 and
d"B/dt is the rate at which the flux changes.

Because the current in the solenoid decreases at a
steady rate, flux "B also decreases at a steady rate, and so we
can write d"B/dt as &"B/&t. Then, to evaluate &"B, we need
the final and initial flux values. The final flux "B, f is zero 

B
:B

:

m2) and the number n is 220 turns/cm, or 22 000 turns/m.
Substituting Eq. 29-23 into Eq. 30-2 then leads to

Now we can write

We are interested only in magnitudes; so we ignore the mi-
nus signs here and in Eq. 30-5, writing

(Answer)# 7.5 $ 10 %2 V # 75 mV.

 ! # N 
d"B

dt
# (130 turns)(5.76 $ 10 %4 V)

 # %5.76 $ 10 %4 Wb/s # %5.76 $ 10 %4 V.

 #
(0 % 1.44 $ 10 %5 Wb)

25 $ 10 %3 s

 
d"B

dt
#

&"B

&t
 #

"B, f % "B,i

&t

 #  1.44 $ 10 %5 Wb.
  $ (3.464 $ 10 %4 m2)

 # (4' $ 10 %7 T (m/A)(1.5 A)(22 000 turns/m)

"B, i # BA # (!0 in)A

halliday_c30_791-825hr.qxd  11-12-2009  12:19  Page 794

Lenz’s Law

An induced current has a direction such that the
magnetic field due to the current opposes the
change in the magnetic flux that induces the
current.

Basically, Lenz’s law let’s us interpret the minus
sign in the equation we write to represent
Faraday’s Law.

E = −−−
∆ΦB

∆t

1Figure from Halliday, Resnick, Walker, 9th ed.



Lenz’s Law: Page 795 in Textbook

nears the loop with its magnetic field directed downward,
the flux through the loop increases. To oppose this increase in
flux, the induced current i must set up its own field di-
rected upward inside the loop, as shown in Fig. 30-5a; then the
upward flux of field opposes the increasing downward flux
of field . The curled–straight right-hand rule of Fig. 29-21
then tells us that i must be counterclockwise in Fig.30-5a.

Note carefully that the flux of always opposes the
change in the flux of , but that does not always mean that

points opposite . For example, if we next pull the mag-
net away from the loop in Fig. 30-4, the flux !B from the
magnet is still directed downward through the loop, but it is
now decreasing. The flux of must now be downward in-
side the loop, to oppose the decrease in !B, as shown in Fig.
30-5b.Thus, and are now in the same direction.

In Figs. 30-5c and d, the south pole of the magnet ap-
proaches and retreats from the loop, respectively.
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79530-4 LE NZ’S LAW
PART 3

CHECKPOINT 2

The figure shows three situations in which identical circular con-
ducting loops are in uniform magnetic fields that are either in-
creasing (Inc) or decreasing (Dec) in magnitude at identical
rates. In each, the dashed line coincides with a diameter. Rank
the situations according to the magnitude of the current in-
duced in the loops, greatest first.

Inc

Inc

Inc

Dec

Dec

Inc

(a) (b) (c)

Fig. 30-5 The direction of the current i induced in a loop is such that the current’s magnetic field opposes the change in the 
magnetic field inducing i.The field is always directed opposite an increasing field and in the same direction as a decreasing
field .The curled–straight right-hand rule gives the direction of the induced current based on the direction of the induced field.B

: 
(b, d)

B
: 

(a, c)B
:

indB
:

B
:

ind

i

Bind

B

i

BindB

i

BBind

B

Bind

i

i

Bind

B

i

BindB

i

B
Bind

B

Bind

i

i

Bind

B

i

BindB

i

BBindB

Bind

i

Increasing the external
field B induces a current
with a field Bind that
opposes the change.

The induced 
current creates 
this field, trying
to offset the 
change. 

The fingers are 
in the current's 
direction; the
thumb is in the 
induced field's 
direction.

Decreasing the external
field B induces a current
with a field Bind that
opposes the change.

Increasing the external
field B induces a current
with a field Bind that
opposes the change.

Decreasing the external
field B induces a current
with a field Bind that
opposes the change.

(a) (b) (c) (d)

A
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Faraday’s Law Question

The graph gives the magnitude B(t) of a uniform magnetic field
that exists throughout a conducting loop, with the direction of the
field perpendicular to the plane of the loop. Rank the five regions
of the graph according to the magnitude of the emf induced in the
loop, greatest first.

79330-3 FARADAY’S LAW OF I N DUCTION
PART 3

As a special case of Eq. 30-1, suppose that the loop lies in a plane and that the
magnetic field is perpendicular to the plane of the loop.Then we can write the dot
product in Eq. 30-1 as B dA cos 0° ! B dA. If the magnetic field is also uniform,
then B can be brought out in front of the integral sign. The remaining then
gives just the area A of the loop.Thus, Eq. 30-1 reduces to

(30-2)

From Eqs. 30-1 and 30-2, we see that the SI unit for magnetic flux is the 
tesla–square meter, which is called the weber (abbreviated Wb):

1 weber ! 1 Wb ! 1 T " m2. (30-3)

With the notion of magnetic flux, we can state Faraday’s law in a more 
quantitative and useful way:

(B
:

 ! area A, B
:

 uniform).#B ! BA

! dA

The magnitude of the emf ! induced in a conducting loop is equal to the rate at
which the magnetic flux #B through that loop changes with time.

As you will see in the next section, the induced emf ! tends to oppose the flux
change, so Faraday’s law is formally written as

(Faraday’s law), (30-4)

with the minus sign indicating that opposition. We often neglect the minus sign in
Eq. 30-4, seeking only the magnitude of the induced emf.

If we change the magnetic flux through a coil of N turns, an induced emf appears
in every turn and the total emf induced in the coil is the sum of these individual in-
duced emfs. If the coil is tightly wound (closely packed), so that the same magnetic flux
#B passes through all the turns, the total emf induced in the coil is

(coil of N turns). (30-5)

Here are the general means by which we can change the magnetic flux
through a coil:

1. Change the magnitude B of the magnetic field within the coil.
2. Change either the total area of the coil or the portion of that area that lies

within the magnetic field (for example, by expanding the coil or sliding it into
or out of the field).

3. Change the angle between the direction of the magnetic field and the plane
of the coil (for example, by rotating the coil so that field is first perpendicu-
lar to the plane of the coil and then is along that plane).

B
:

B
:

! ! $N 
d#B

dt

! ! $
d#B

dt

CHECKPOINT 1

The graph gives the magnitude B(t) of a
uniform magnetic field that exists
throughout a conducting loop,with the di-
rection of the field perpendicular to the
plane of the loop. Rank the five regions of
the graph according to the magnitude of
the emf induced in the loop, greatest first.

a b c d e
t

B

Sample Problem

1. Because it is located in the interior of the solenoid, coil C lies
within the magnetic field produced by current i in the 
solenoid;thus,there is a magnetic flux #B through coil C.

2. Because current i decreases, flux #B also decreases.
3. As #B decreases, emf ! is induced in coil C.

Induced emf in coil due to a solenoid

The long solenoid S shown (in cross section) in Fig. 30-3
has 220 turns/cm and carries a current i ! 1.5 A; its diam-
eter D is 3.2 cm. At its center we place a 130-turn closely
packed coil C of diameter d ! 2.1 cm. The current in the
solenoid is reduced to zero at a steady rate in 25 ms. What
is the magnitude of the emf that is induced in coil C while
the current in the solenoid is changing?

KEY I DEAS
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Faraday’s Law

The figure shows three situations in which identical circular
conducting loops are in uniform magnetic fields that are either
increasing (Inc) or decreasing (Dec) in magnitude at identical
rates. In each, the dashed line coincides with a diameter. Rank the
situations according to the magnitude of the current induced in the
loops, greatest first.

nears the loop with its magnetic field directed downward,
the flux through the loop increases. To oppose this increase in
flux, the induced current i must set up its own field di-
rected upward inside the loop, as shown in Fig. 30-5a; then the
upward flux of field opposes the increasing downward flux
of field . The curled–straight right-hand rule of Fig. 29-21
then tells us that i must be counterclockwise in Fig.30-5a.

Note carefully that the flux of always opposes the
change in the flux of , but that does not always mean that

points opposite . For example, if we next pull the mag-
net away from the loop in Fig. 30-4, the flux !B from the
magnet is still directed downward through the loop, but it is
now decreasing. The flux of must now be downward in-
side the loop, to oppose the decrease in !B, as shown in Fig.
30-5b.Thus, and are now in the same direction.

In Figs. 30-5c and d, the south pole of the magnet ap-
proaches and retreats from the loop, respectively.
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79530-4 LE NZ’S LAW
PART 3

CHECKPOINT 2

The figure shows three situations in which identical circular con-
ducting loops are in uniform magnetic fields that are either in-
creasing (Inc) or decreasing (Dec) in magnitude at identical
rates. In each, the dashed line coincides with a diameter. Rank
the situations according to the magnitude of the current in-
duced in the loops, greatest first.

Inc

Inc

Inc

Dec

Dec

Inc

(a) (b) (c)

Fig. 30-5 The direction of the current i induced in a loop is such that the current’s magnetic field opposes the change in the 
magnetic field inducing i.The field is always directed opposite an increasing field and in the same direction as a decreasing
field .The curled–straight right-hand rule gives the direction of the induced current based on the direction of the induced field.B

: 
(b, d)

B
: 

(a, c)B
:

indB
:

B
:

ind

i

Bind

B

i

BindB

i

BBind

B

Bind

i

i

Bind

B

i

BindB

i

B
Bind

B

Bind

i

i

Bind

B

i

BindB

i

BBindB

Bind

i

Increasing the external
field B induces a current
with a field Bind that
opposes the change.

The induced 
current creates 
this field, trying
to offset the 
change. 

The fingers are 
in the current's 
direction; the
thumb is in the 
induced field's 
direction.

Decreasing the external
field B induces a current
with a field Bind that
opposes the change.

Increasing the external
field B induces a current
with a field Bind that
opposes the change.

Decreasing the external
field B induces a current
with a field Bind that
opposes the change.

(a) (b) (c) (d)

A
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Magnetic fields from moving charges and currents

We are now moving into chapter 29.

Anything with a magnet moment creates a magnetic field.

This is a logical consequence of Newton’s third law.



Magnetic fields from moving charges

A moving charge will interact with other magnetic poles.

This is because it has a magnetic field of its own.

The field for a moving charge is given by the Biot-Savart Law:

B =
µ0

4π

q v × r̂

r2



Magnetic fields from moving charges

B =
µ0

4π

q v × r̂

r2

1Figure from rakeshkapoor.us.



Magnetic fields from currents

B =
µ0

4π

q v × r̂

r2

We can deduce from this what the magnetic field do to the current
in a small piece of wire is.

Current is made up of moving charges!

q v = q
∆s

∆t
=

q

∆t
∆s = I∆s

We can replace q v in the equation above.



Magnetic fields from currents

C H A P T E R

764

M A G N E T I C  F I E L D S  
D U E  T O  
C U R R E N T S29

W H AT  I S  P H YS I C S ?29-1 One basic observation of physics is that a moving charged particle
produces a magnetic field around itself. Thus a current of moving charged parti-
cles produces a magnetic field around the current. This feature of electromagnet-
ism, which is the combined study of electric and magnetic effects, came as a sur-
prise to the people who discovered it. Surprise or not, this feature has become
enormously important in everyday life because it is the basis of countless electro-
magnetic devices. For example, a magnetic field is produced in maglev trains and
other devices used to lift heavy loads.

Our first step in this chapter is to find the magnetic field due to the current in
a very small section of current-carrying wire.Then we shall find the magnetic field
due to the entire wire for several different arrangements of the wire.

29-2 Calculating the Magnetic Field 
Due to a Current

Figure 29-1 shows a wire of arbitrary shape carrying a current i. We want to find
the magnetic field at a nearby point P. We first mentally divide the wire into
differential elements ds and then define for each element a length vector that
has length ds and whose direction is the direction of the current in ds. We can
then define a differential current-length element to be i ; we wish to calculate
the field produced at P by a typical current-length element. From experiment
we find that magnetic fields, like electric fields, can be superimposed to find a net
field. Thus, we can calculate the net field at P by summing, via integration, theB

:

dB
:

ds:

ds:
B
:

Fig. 29-1 A current-length element 
i produces a differential magnetic
field at point P.The green (the
tail of an arrow) at the dot for point P
indicates that is directed into the
page there.

dB
:

!dB
:

ds:

d B (into 
page) 

Current 
distribution  

i 

P 

θ  
ds 

ids 

r 
ˆ r 

This element of current creates a 
magnetic field at P, into the page.
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This is another version of the Biot-Savart Law:

Bseg =
µ0

4π

I ∆s × r̂

r2

where Bseg is the magnetic field from a small segment of wire, of
length ∆s.



Magnetic fields from currents

Magnetic field around a wire segment, viewed end-on:

76529-2 CALCU LATI NG TH E MAG N ETIC F I E LD  DU E TO A CU R R E NT
PART 3

HALLIDAY REVISED

contributions from all the current-length elements. However, this summation
is more challenging than the process associated with electric fields because of
a complexity; whereas a charge element dq producing an electric field is a scalar,
a current-length element i producing a magnetic field is a vector, being the
product of a scalar and a vector.

The magnitude of the field produced at point P at distance r by a current-
length element i turns out to be

(29-1)

where u is the angle between the directions of and , a unit vector that points
from ds toward P. Symbol m 0 is a constant, called the permeability constant,
whose value is defined to be exactly

m 0 ! 4p " 10#7 T $ m/A ! 1.26 " 10#6 T $ m/A. (29-2)

The direction of , shown as being into the page in Fig. 29-1, is that of the cross
product .We can therefore write Eq. 29-1 in vector form as

(Biot–Savart law). (29-3)

This vector equation and its scalar form, Eq. 29-1, are known as the law of Biot
and Savart (rhymes with “Leo and bazaar”). The law, which is experimentally
deduced, is an inverse-square law. We shall use this law to calculate the net 
magnetic field produced at a point by various distributions of current.

Magnetic Field Due to a Current in a Long Straight Wire
Shortly we shall use the law of Biot and Savart to prove that the magnitude of the
magnetic field at a perpendicular distance R from a long (infinite) straight wire
carrying a current i is given by

(long straight wire). (29-4)

The field magnitude B in Eq. 29-4 depends only on the current and the per-
pendicular distance R of the point from the wire. We shall show in our derivation
that the field lines of form concentric circles around the wire, as Fig. 29-2 shows
and as the iron filings in Fig. 29-3 suggest. The increase in the spacing of the lines
in Fig. 29-2 with increasing distance from the wire represents the 1/R decrease in
the magnitude of predicted by Eq. 29-4. The lengths of the two vectors in the
figure also show the 1/R decrease.

B
:

B
:

B
:

B !
% 0 i
2&R

B
:

dB
:

!
% 0

4&
 

i ds: ! r̂
r2

ds: ! r̂
dB

:

r̂ds:

dB !
% 0

4&
 

i ds sin '
r2 ,

ds:
dB

:

ds:

dB
:

Fig. 29-2 The magnetic field lines pro-
duced by a current in a long straight wire
form concentric circles around the wire.
Here the current is into the page, as indi-
cated by the ".

Wire with current 
into the page 

B 

B 

The magnetic field vector
at any point is tangent to
a circle.

Fig. 29-3 Iron filings
that have been sprinkled
onto cardboard collect in
concentric circles when
current is sent through the
central wire.The align-
ment, which is along
magnetic field lines, is
caused by the magnetic
field produced by the cur-
rent. (Courtesy Education
Development Center)
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Magnetic fields from currents

How to determine the direction of the field lines (right-hand rule):766 CHAPTE R 29 MAG N ETIC F I E LDS DU E TO CU R R E NTS

HALLIDAY REVISED

Here is a simple right-hand rule for finding the direction of the magnetic field
set up by a current-length element, such as a section of a long wire:

Right-hand rule: Grasp the element in your right hand with your extended thumb
pointing in the direction of the current.Your fingers will then naturally curl around in
the direction of the magnetic field lines due to that element.

Fig. 29-5 Calculating the mag-
netic field produced by a current i in
a long straight wire.The field at P
associated with the current-length el-
ement i is directed into the page,
as shown.

ds:

dB
:

This element of current
creates a magnetic field
at P, into the page.

i 

θ  

d B  

P  
R  

s  r 

ds 

ˆ r 

The result of applying this right-hand rule to the current in the straight wire
of Fig. 29-2 is shown in a side view in Fig. 29-4a. To determine the direction of the
magnetic field set up at any particular point by this current, mentally wrap your
right hand around the wire with your thumb in the direction of the current. Let
your fingertips pass through the point; their direction is then the direction of the
magnetic field at that point. In the view of Fig. 29-2, at any point is tangent to
a magnetic field line; in the view of Fig. 29-4, it is perpendicular to a dashed radial
line connecting the point and the current.

Proof of Equation 29-4
Figure 29-5, which is just like Fig. 29-1 except that now the wire is straight and of
infinite length, illustrates the task at hand. We seek the field at point P, a per-
pendicular distance R from the wire. The magnitude of the differential magnetic
field produced at P by the current-length element i located a distance r from P
is given by Eq. 29-1:

The direction of in Fig. 29-5 is that of the vector  —namely, directly
into the page.

Note that at point P has this same direction for all the current-length
elements into which the wire can be divided. Thus, we can find the magnitude of
the magnetic field produced at P by the current-length elements in the upper half
of the infinitely long wire by integrating dB in Eq. 29-1 from 0 to !.

Now consider a current-length element in the lower half of the wire, one that
is as far below P as is above P. By Eq. 29-3, the magnetic field produced at P
by this current-length element has the same magnitude and direction as that from
element i in Fig. 29-5. Further, the magnetic field produced by the lower half
of the wire is exactly the same as that produced by the upper half. To find the
magnitude of the total magnetic field at P, we need only multiply the result of
our integration by 2.We get

(29-5)

The variables u, s, and r in this equation are not independent; Fig. 29-5 shows
that they are related by

r " 2s2 # R2

B " 2!!

0
 dB "

$ 0 i
2%

 !!

0
 

sin & ds
r2 .

B
:

ds:

ds:

dB
:

ds: ! r̂dB
:

dB "
$ 0

4%
 

i ds sin &
r2 .

ds:

B
:

B
:

B
:

Fig. 29-4 A right-hand rule gives the di-
rection of the magnetic field due to a cur-
rent in a wire. (a) The situation of Fig. 29-2,
seen from the side.The magnetic field at
any point to the left of the wire is perpen-
dicular to the dashed radial line and di-
rected into the page, in the direction of the
fingertips, as indicated by the '. (b) If the
current is reversed, at any point to the
left is still perpendicular to the dashed ra-
dial line but now is directed out of the page,
as indicated by the dot.

B
:

B
:

B B

(a)

i

(b)

i The thumb is in the
current's direction.
The fingers reveal
the field vector's
direction, which is
tangent to a circle.
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Magnetic field from a long straight wire

The Biot-Savart Law,

Bseg =
µ0

4π

I ∆s × r̂

r2

implies what the magnetic field is at a perpendicular distance R
from an infinitely long straight wire:

B =
µ0I

2πR

(The proof requires some calculus.)



Gauss’s Law for Magnetic Fields

Gauss’s Law for magnetic fields.:∮
B · dA = 0

Where the integral is taken over a closed surface A. (This is like a
sum over the flux through many small areas.)

We can interpret it as an assertion that magnetic monopoles do
not exist.

The magnetic field has no sources or sinks.



Gauss’s Law for Magnetic Fields∮
B · dA = 0

86332-3 I N DUCE D MAG N ETIC F I E LDS
PART 3

CHECKPOINT 1

The figure here shows four closed surfaces with flat top and bottom faces and curved
sides.The table gives the areas A of the faces and the magnitudes B of the uniform and
perpendicular magnetic fields through those faces; the units of A and B are arbitrary
but consistent. Rank the surfaces according to the magnitudes of the magnetic flux
through their curved sides, greatest first.

Surface Atop Btop Abot Bbot

a 2 6, outward 4 3, inward
b 2 1, inward 4 2, inward
c 2 6, inward 2 8, outward
d 2 3, outward 3 2, outward

(a) (b) (c) (d)

32-3 Induced Magnetic Fields
In Chapter 30 you saw that a changing magnetic flux induces an electric field, and
we ended up with Faraday’s law of induction in the form

(Faraday’s law of induction). (32-2)

Here is the electric field induced along a closed loop by the changing magnetic
flux encircled by that loop. Because symmetry is often so powerful in physics,
we should be tempted to ask whether induction can occur in the opposite sense;
that is, can a changing electric flux induce a magnetic field?

The answer is that it can; furthermore, the equation governing the induction
of a magnetic field is almost symmetric with Eq. 32-2. We often call it Maxwell’s
law of induction after James Clerk Maxwell, and we write it as

(Maxwell’s law of induction). (32-3)

Here is the magnetic field induced along a closed loop by the changing electric
flux !E in the region encircled by that loop.

As an example of this sort of induction, we consider the charging of a parallel-
plate capacitor with circular plates. (Although we shall focus on this arrangement,

B
:

! B
:

! ds: " #0$0
d!E

dt

!B

E
:

! E
:

! ds: " %
d!B

dt

Fig. 32-4 The field lines for the
magnetic field of a short bar mag-
net.The red curves represent cross
sections of closed, three-dimensional
Gaussian surfaces.

B
:

Surface IN

S

Surface II

B

Gauss’ law for magnetic fields holds for structures more complicated than
a magnetic dipole, and it holds even if the Gaussian surface does not enclose the
entire structure. Gaussian surface II near the bar magnet of Fig. 32-4 encloses no
poles, and we can easily conclude that the net magnetic flux through it is zero.
Gaussian surface I is more difficult. It may seem to enclose only the north pole of
the magnet because it encloses the label N and not the label S. However, a south
pole must be associated with the lower boundary of the surface because magnetic
field lines enter the surface there. (The enclosed section is like one piece of the
broken bar magnet in Fig. 32-3.) Thus, Gaussian surface I encloses a magnetic
dipole, and the net flux through the surface is zero.
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Gauss’s Law for Magnetism Question, Ch32 # 2
The figure shows a closed surface. Along the flat top face, which
has a radius of 2.0 cm, a perpendicular magnetic field B of
magnitude 0.30 T is directed outward. Along the flat bottom face,
a magnetic flux of 0.70 mWb is directed outward. What are the
(a) magnitude and
(b) direction (inward or outward) of the magnetic flux through the
curved part of the surface?

884 CHAPTE R 32 MAXWE LL’S EQUATION S; MAG N ETI S M OF MATTE R

sec. 32-2 Gauss’ Law for Magnetic Fields
•1 The magnetic flux through each of five faces of a die (singular
of “dice”) is given by !B " #N Wb, where N (" 1 to 5) is the num-
ber of spots on the face. The flux is positive (outward) for N even
and negative (inward) for N odd.What is the flux through the sixth
face of the die?

•2 Figure 32-26 shows a closed surface. Along
the flat top face, which has a radius of 2.0 cm, a
perpendicular magnetic field of magnitude
0.30 T is directed outward. Along the flat bot-
tom face, a magnetic flux of 0.70 mWb is di-
rected outward. What are the (a) magnitude
and (b) direction (inward or outward) of the
magnetic flux through the curved part of the
surface?

••3 A Gaussian surface in the
shape of a right circular cylinder with end caps has a radius of 12.0
cm and a length of 80.0 cm. Through one end there is an inward
magnetic flux of 25.0 mWb. At the other end there is a uniform
magnetic field of 1.60 mT, normal to the surface and directed out-
ward.What are the (a) magnitude and (b) direction (inward or out-
ward) of the net magnetic flux through the curved surface?

•••4 Two wires, parallel to a z
axis and a distance 4r apart,
carry equal currents i in oppo-
site directions, as shown in Fig.
32-27. A circular cylinder of ra-
dius r and length L has its axis
on the z axis, midway between
the wires. Use Gauss’ law for
magnetism to derive an expres-
sion for the net outward mag-
netic flux through the half of the cylindrical surface above the x
axis. (Hint: Find the flux through the portion of the xz plane that
lies within the cylinder.)

sec. 32-3 Induced Magnetic Fields
•5 The induced magnetic field at radial distance 6.0 mm
from the central axis of a circular parallel-plate capacitor is 2.0 $
10%7 T. The plates have radius 3.0 mm. At what rate is the
electric field between the plates changing?

•6 A capacitor with square plates of edge
length L is being discharged by a current of 0.75
A. Figure 32-28 is a head-on view of one of the
plates from inside the capacitor. A dashed rec-
tangular path is shown. If L " 12 cm, W " 4.0
cm, and H " 2.0 cm, what is the value of 
! around the dashed path?

••7 Uniform electric flux. Figure 32-29
shows a circular region of radius R " 3.00 cm
in which a uniform electric flux is directed out of the plane of the

B
:

! ds:

dE
:

/dt

SSM

ILWSSM

B
:

page. The total electric flux through the region is
given by !E " (3.00 mV & m/s)t, where t is in sec-
onds. What is the magnitude of the magnetic
field that is induced at radial distances (a) 2.00
cm and (b) 5.00 cm?

••8 Nonuniform electric flux. Figure 32-
29 shows a circular region of radius R " 3.00
cm in which an electric flux is directed out of
the plane of the page. The flux encircled by a
concentric circle of radius r is given by !E,enc "
(0.600 V & m/s)(r/R)t, where r ' R and t is in seconds. What is the
magnitude of the induced magnetic field at radial distances (a) 2.00
cm and (b) 5.00 cm?

••9 Uniform electric field. In Fig. 32-29, a uniform electric field
is directed out of the page within a circular region of radius R " 3.00
cm. The field magnitude is given by E " (4.50 $ 10%3 V/m & s)t,
where t is in seconds.What is the magnitude of the induced magnetic
field at radial distances (a) 2.00 cm and (b) 5.00 cm?

••10 Nonuniform electric field. In Fig. 32-29, an electric field
is directed out of the page within a circular region of radius R "
3.00 cm.The field magnitude is E " (0.500 V/m & s)(1 % r/R)t, where t
is in seconds and r is the radial distance (r ' R). What is the magni-
tude of the induced magnetic field at radial distances (a) 2.00 cm and
(b) 5.00 cm?

••11 Suppose that a parallel-plate capacitor has circular plates
with radius R " 30 mm and a plate separation of 5.0 mm. Suppose
also that a sinusoidal potential difference with a maximum value of
150 V and a frequency of 60 Hz is applied across the plates; that is,

V " (150 V) sin[2p(60 Hz)t].

(a) Find Bmax(R), the maximum value of the induced magnetic field
that occurs at r " R. (b) Plot Bmax(r) for 0 ( r ( 10 cm.

••12 A parallel-plate capacitor with circular plates of radius 40
mm is being discharged by a current of 6.0 A.At what radius (a) in-
side and (b) outside the capacitor gap is the magnitude of the in-
duced magnetic field equal to 75% of its maximum value? (c) What
is that maximum value?

sec. 32-4 Displacement Current
•13 At what rate must the potential difference between the
plates of a parallel-plate capacitor with a 2.0 mF capacitance be
changed to produce a displacement current of 1.5 A?

•14 A parallel-plate capacitor with circular plates of radius R is
being charged. Show that the magnitude of the current density of
the displacement current is Jd " )0(dE/dt) for r ' R.

•15 Prove that the displacement current in a parallel-plate
capacitor of capacitance C can be written as id C(dV/dt), where
V is the potential difference between the plates.

•16 A parallel-plate capacitor with circular plates of radius 0.10
m is being discharged.A circular loop of radius 0.20 m is concentric

"
SSM

Fig. 32-26
Problem 2.

B

Fig. 32-27 Problem 4.

x

y

r–r

Wire 1

–2r 2r

Wire 2

Fig. 32-28
Problem 6.

L
H

W

L

Fig. 32-29
Problems 7 to

10 and 19 to 22.

R

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday
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Summary

• Faraday’s law

• Lenz’s law

• magnetic field from a moving charge

• Guass’s law

Homework
Study!


