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Last time

• Coulomb’s law

• force from many charges

• current

• electric field

• charges and conductors



Warm Up Questions
Which of the following could be the charge on the particle hidden
by the question mark?

HALLIDAY REVISED

23-1 One of the primary goals of physics is to find simple ways of solving
seemingly complex problems. One of the main tools of physics in attaining this
goal is the use of symmetry. For example, in finding the electric field of the
charged ring of Fig. 22-10 and the charged rod of Fig. 22-11, we considered the
fields of charge elements in the ring and rod. Then we simplified
the calculation of by using symmetry to discard the perpendicular components
of the vectors.That saved us some work.

For certain charge distributions involving symmetry, we can save far more work
by using a law called Gauss’ law, developed by German mathematician and physi-
cist Carl Friedrich Gauss (1777–1855). Instead of considering the fields of
charge elements in a given charge distribution, Gauss’ law considers a hypothetical
(imaginary) closed surface enclosing the charge distribution.This Gaussian surface,
as it is called, can have any shape, but the shape that minimizes our calculations of
the electric field is one that mimics the symmetry of the charge distribution. For ex-
ample, if the charge is spread uniformly over a sphere, we enclose the sphere with a
spherical Gaussian surface, such as the one in Fig. 23-1, and then, as we discuss in
this chapter, find the electric field on the surface by using the fact that
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Gauss’ law relates the electric fields at points on a (closed) Gaussian surface to the
net charge enclosed by that surface.

We can also use Gauss’ law in reverse: If we know the electric field on a Gaussian
surface, we can find the net charge enclosed by the surface. As a limited example,
suppose that the electric field vectors in Fig. 23-1 all point radially outward from the
center of the sphere and have equal magnitude. Gauss’ law immediately tells us that
the spherical surface must enclose a net positive charge that is either a particle or
distributed spherically. However, to calculate how much charge is enclosed, we need
a way of calculating how much electric field is intercepted by the Gaussian surface in
Fig. 23-1.This measure of intercepted field is called flux, which we discuss next.

23-2 Flux
Suppose that, as in Fig. 23-2a, you aim a wide airstream of uniform velocity at
a small square loop of area A. Let " represent the volume flow rate (volume per unit
time) at which air flows through the loop.This rate depends on the angle between 
and the plane of the loop. If is perpendicular to the plane, the rate " is equal to vA.

If is parallel to the plane of the loop, no air moves through the loop, so
" is zero. For an intermediate angle u, the rate " depends on the component of 

normal to the plane (Fig.23-2b).Since that component is v cos u, the rate of volume
flow through the loop is

" ! (v cos u)A. (23-1)

This rate of flow through an area is an example of a flux—a volume flux in this
situation.
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Fig. 23-1 A spherical Gaussian 
surface. If the electric field vectors
are of uniform magnitude and point
radially outward at all surface points,
you can conclude that a net positive
distribution of charge must lie within
the surface and have spherical 
symmetry.
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(A) 0 C

(B) −1 C

(C) −1.6× 10−19 C

(D) +1 µC
1Figure from Halliday, Resnick, Walker
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(A) 0 C

(B) −1 C

(C) −1.6× 10−19 C

(D) +1 µC←
1Figure from Halliday, Resnick, Walker



Warm Up Questions

Which expression relating force to electric field is correct?

(A) F = m0E

(B) E = q0F

(C) F = q0E

(D) F = E



Warm Up Questions

Which expression relating force to electric field is correct?

(A) ���
��XXXXXF = m0E

(B) ���
��XXXXXE = q0F

(C) F = q0E←
(D) ����XXXXF = E



Warm Up Questions

What are the units of electric field?

(A) Nm

(B) N/C

(C) Nm2/C2

(D) C/N
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What are the units of electric field?

(A) Nm
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(C) Nm2/C2
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Homework Questions
pg 573 42 & 43
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A and then they are separated. Next, sphere W is touched to sphere
B (with an initial charge of !32e) and then they are separated.
Finally, sphere W is touched to sphere C (with an initial charge of
"48e), and then they are separated. The final charge on sphere W is
"18e.What was the initial charge on sphere A?

39 In Fig. 21-37, particle 1
of charge "4e is above a floor by
distance d1 # 2.00 mm and particle
2 of charge "6e is on the floor, at
distance d2 # 6.00 mm horizontally
from particle 1. What is the x com-
ponent of the electrostatic force on
particle 2 due to particle 1?

40 In Fig. 21-22, particles 1 and 2 are fixed in place, but particle 3
is free to move. If the net electrostatic force on particle 3 due to
particles 1 and 2 is zero and L23 # 2.00L12, what is the ratio q1/q2?

41 (a) What equal positive charges would have to be placed on
Earth and on the Moon to neutralize their gravitational attraction?
(b) Why don’t you need to know the lunar distance to solve this prob-
lem? (c) How many kilograms of hydrogen ions (that is, protons)
would be needed to provide the positive charge calculated in (a)?

42 In Fig. 21-38, two tiny conducting
balls of identical mass m and identical
charge q hang from nonconducting
threads of length L. Assume that u is so
small that tan u can be replaced by its
approximate equal, sin u. (a) Show that

gives the equilibrium separation x of
the balls. (b) If L # 120 cm, m # 10 g,
and x # 5.0 cm, what is |q|?

43 (a) Explain what happens to the
balls of Problem 42 if one of them is dis-
charged (loses its charge q to, say, the
ground). (b) Find the new equilibrium separation x, using the given
values of L and m and the computed value of |q|.

44 How far apart must two protons be if the magnitude of the
electrostatic force acting on either one due to the other is equal to the
magnitude of the gravitational force on a proton at Earth’s surface?

45 How many megacoulombs of positive charge are in 1.00 
mol of neutral molecular-hydrogen gas (H2)?

46 In Fig. 21-39, four particles are fixed along an x axis, separated
by distances d # 2.00 cm. The charges are q1 # "2e, q2 # !e, q3 #
"e, and q4 # "4e, with e # 1.60 $ 10!19 C. In unit-vector notation,
what is the net electrostatic force on (a) particle 1 and (b) particle
2 due to the other particles?
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Fig. 21-37 Problem 39.
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Fig. 21-38
Problems 42 and 43.

48 In Fig. 21-40, three identical conduct-
ing spheres form an equilateral triangle of
side length d # 20.0 cm. The sphere radii
are much smaller than d, and the sphere
charges are qA # !2.00 nC, qB # !4.00
nC, and qC # "8.00 nC. (a) What is the
magnitude of the electrostatic force be-
tween spheres A and C? The following
steps are then taken: A and B are
connected by a thin wire and then discon-
nected; B is grounded by the wire, and the wire is then removed; B
and C are connected by the wire and then disconnected. What now
are the magnitudes of the electrostatic force (b) between spheres
A and C and (c) between spheres B and C?

49 A neutron consists of one “up” quark of charge "2e/3 and two
“down” quarks each having charge !e/3. If we assume that the down
quarks are 2.6 $ 10!15 m apart inside the neutron, what is the magni-
tude of the electrostatic force between them?

50 Figure 21-41 shows a long, nonconducting, massless rod of
length L, pivoted at its center and balanced with a block of weight W
at a distance x from the left end.At the left and right ends of the rod
are attached small conducting spheres with positive charges q and 2q,
respectively. A distance h directly beneath each of these spheres is a
fixed sphere with positive charge Q. (a) Find the distance x when the
rod is horizontal and balanced. (b) What value should h have so that
the rod exerts no vertical force on the bearing when the rod is hori-
zontal and balanced?

d

d d

A

B C

Fig. 21-40
Problem 48.
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+QW

Fig. 21-41 Problem 50.

51 A charged nonconducting rod, with a length of 2.00 m and a
cross-sectional area of 4.00 cm2, lies along the positive side of an x
axis with one end at the origin. The volume charge density r is
charge per unit volume in coulombs per cubic meter. How many
excess electrons are on the rod if r is (a) uniform, with a value of
!4.00 mC/m3, and (b) nonuniform, with a value given by r # bx2,
where b # !2.00 mC/m5?

52 A particle of charge Q is fixed at the origin of an xy coordi-
nate system. At t # 0 a particle (m # 0.800 g, q # 4.00 mC) is lo-
cated on the x axis at x # 20.0 cm, moving with a speed of 50.0 m/s
in the positive y direction. For what value of Q will the moving par-
ticle execute circular motion? (Neglect the gravitational force on
the particle.)

53 What would be the magnitude of the electrostatic force be-
tween two 1.00 C point charges separated by a distance of (a) 1.00
m and (b) 1.00 km if such point charges existed (they do not) and
this configuration could be set up?

54 A charge of 6.0 mC is to be split into two parts that are then
separated by 3.0 mm. What is the maximum possible magnitude of
the electrostatic force between those two parts?

1 2
d d d

3 4
x

Fig. 21-39 Problem 46.

47 Point charges of "6.0 mC and !4.0 mC are placed on an
x axis, at x # 8.0 m and x # 16 m, respectively. What charge must
be placed at x # 24 m so that any charge placed at the origin would
experience no electrostatic force?
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Overview

• field due to a point charge

• field from multiple point charges

• electric fields of charge distribution



Field from a Point Charge

We want an expression for the electric field from a point charge, q.

Using Coulomb’s Law the force on the test particle is
F→0 =

k qq0
r2

r̂.

E =
F

q0
=

(
1

��q0

)
k q��q0
r2

r̂

The field at a displacement r from a charge q is:

E =
k q

r2
r̂



Field from a Point Charge

The field at a displacement r from a charge q is:

E =
k q

r2
r̂

This is a vector field:

+

Fig. 22-6 The electric field vectors at
various points around a positive point
charge.
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Fig. 22-4 Field lines for two equal positive
point charges.The charges repel each other.
(The lines terminate on distant negative
charges.) To “see”the actual three-dimen-
sional pattern of field lines,mentally rotate
the pattern shown here about an axis passing
through both charges in the plane of the page.
The three-dimensional pattern and the elec-
tric field it represents are said to have rota-
tional symmetry about that axis.The electric
field vector at one point is shown;note that it
is tangent to the field line through that point.

Fig. 22-5 Field lines for a positive point
charge and a nearby negative point charge
that are equal in magnitude.The charges at-
tract each other.The pattern of field lines and
the electric field it represents have rotational
symmetry about an axis passing through both
charges in the plane of the page.The electric
field vector at one point is shown; the vector
is tangent to the field line through the point.

positive test charge at any point near the sheet
of Fig. 22-3a, the net electrostatic force acting on
the test charge would be perpendicular to the
sheet, because forces acting in all other direc-
tions would cancel one another as a result of
the symmetry. Moreover, the net force on the
test charge would point away from the sheet as
shown.Thus, the electric field vector at any point
in the space on either side of the sheet is also
perpendicular to the sheet and directed away
from it (Figs. 22-3b and c). Because the charge is
uniformly distributed along the sheet, all the

field vectors have the same magnitude. Such an electric field, with the same mag-
nitude and direction at every point, is a uniform electric field.

Of course, no real nonconducting sheet (such as a flat expanse of plastic) is infi-
nitely large, but if we consider a region that is near the middle of a real sheet and not
near its edges, the field lines through that region are arranged as in Figs. 22-3b and c.

Figure 22-4 shows the field lines for two equal positive charges. Figure 22-5
shows the pattern for two charges that are equal in magnitude but of opposite
sign, a configuration that we call an electric dipole. Although we do not often use
field lines quantitatively, they are very useful to visualize what is going on.

22-4 The Electric Field Due to a Point Charge
To find the electric field due to a point charge q (or charged particle) at any point
a distance r from the point charge, we put a positive test charge q0 at that point.
From Coulomb’s law (Eq. 21-1), the electrostatic force acting on q0 is

(22-2)

The direction of is directly away from the point charge if q is positive, and directly
toward the point charge if q is negative.The electric field vector is, from Eq.22-1,

(point charge). (22-3)

The direction of is the same as that of the force on the positive test charge:
directly away from the point charge if q is positive, and toward it if q is negative.

Because there is nothing special about the point we chose for q0, Eq. 22-3
gives the field at every point around the point charge q. The field for a positive
point charge is shown in Fig. 22-6 in vector form (not as field lines).

We can quickly find the net,or resultant,electric field due to more than one point
charge. If we place a positive test charge q0 near n point charges q1, q2, . . . , qn, then,
from Eq.21-7, the net force from the n point charges acting on the test charge is

Therefore, from Eq. 22-1, the net electric field at the position of the test charge is

(22-4)

Here is the electric field that would be set up by point charge i acting alone.
Equation 22-4 shows us that the principle of superposition applies to electric
fields as well as to electrostatic forces.
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Field from many charges

The field is just the force divide by the charge.

So, what is the force from many charges?

Fnet !

Fnet,0 = F1→0 + F2→0 + ... + Fn→0

Enet =
Fnet
q0

Total electric field:

Enet = E1 + E2 + ... + En
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Field from many charges

The field is just the force divide by the charge.

So, what is the force from many charges? Fnet !
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Question about field from point charges

Consider a proton p and an electron e on an x axis.

CHECKPOINT 1

The figure here shows a proton p and an electron e on
an x axis. What is the direction of the electric field due to the electron at (a) point S and
(b) point R? What is the direction of the net electric field at (c) point R and (d) point S?

x
S e pR
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Sample Problem

Net electric field due to three charged particles

Figure 22-7a shows three particles with charges q1 ! "2Q,
q2 ! #2Q, and q3 ! #4Q, each a distance d from the origin.
What net electric field is produced at the origin?

Charges q1, q2, and q3 produce electric field vectors 
and respectively, at the origin, and the net electric field is
the vector sum To find this sum, we first
must find the magnitudes and orientations of the three field
vectors.

Magnitudes and directions: To find the magnitude of 
which is due to q1, we use Eq. 22-3, substituting d for r and
2Q for q and obtaining

Similarly, we find the magnitudes of  and to beE
:
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Fig. 22-7 (a) Three particles with charges q1, q2, and q3 are at the
same distance d from the origin. (b) The electric field vectors 
and at the origin due to the three particles. (c) The electric field
vector and the vector sum at the origin.E
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Find the net field
at this empty point.

Field toward

Field toward
Field away

We next must find the orientations of the three electric
field vectors at the origin. Because q1 is a positive charge,
the field vector it produces points directly away from it,
and because q2 and q3 are both negative, the field vectors
they produce point directly toward each of them. Thus, the
three electric fields produced at the origin by the three
charged particles are oriented as in Fig. 22-7b. (Caution:
Note that we have placed the tails of the vectors at the
point where the fields are to be evaluated; doing so de-
creases the chance of error. Error becomes very probable
if the tails of the field vectors are placed on the particles
creating the fields.)

Adding the fields: We can now add the fields vectorially
just as we added force vectors in Chapter 21. However, here
we can use symmetry to simplify the procedure. From Fig.
22-7b, we see that electric fields and have the same di-
rection. Hence, their vector sum has that direction and has
the magnitude
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which happens to equal the magnitude of field E
:

3.

Additional examples, video, and practice available at WileyPLUS

We must now combine two vectors, and the vector
sum that have the same magnitude and that are
oriented symmetrically about the x axis, as shown in Fig.
22-7c. From the symmetry of Fig. 22-7c, we realize that the
equal y components of our two vectors cancel (one is up-
ward and the other is downward) and the equal x
components add (both are rightward). Thus, the net electric
field at the origin is in the positive direction of the x axis
and has the magnitude
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 E ! 2E3x ! 2E3 cos 30&
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What is the direction of the electric field due to the electron at
point S and point R?

(A) leftward at S , leftward at R

(B) leftward at S , rightward at R

(C) rightward at S , leftward at R

(D) rightward at S , rightward at R

1Figure from Halliday, Resnick, Walker, page 583.
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We next must find the orientations of the three electric
field vectors at the origin. Because q1 is a positive charge,
the field vector it produces points directly away from it,
and because q2 and q3 are both negative, the field vectors
they produce point directly toward each of them. Thus, the
three electric fields produced at the origin by the three
charged particles are oriented as in Fig. 22-7b. (Caution:
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22-7c. From the symmetry of Fig. 22-7c, we realize that the
equal y components of our two vectors cancel (one is up-
ward and the other is downward) and the equal x
components add (both are rightward). Thus, the net electric
field at the origin is in the positive direction of the x axis
and has the magnitude

(Answer) ! (2) 
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4$%0d2 . 

 E ! 2E3x ! 2E3 cos 30&
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What is the direction of the electric field due to the electron at
point S and point R?

(A) leftward at S , leftward at R

(B) leftward at S , rightward at R

(C) rightward at S , leftward at R ←
(D) rightward at S , rightward at R

1Figure from Halliday, Resnick, Walker, page 583.



Question about field from point charges

Consider a proton p and an electron e on an x axis.

CHECKPOINT 1

The figure here shows a proton p and an electron e on
an x axis. What is the direction of the electric field due to the electron at (a) point S and
(b) point R? What is the direction of the net electric field at (c) point R and (d) point S?

x
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Sample Problem

Net electric field due to three charged particles

Figure 22-7a shows three particles with charges q1 ! "2Q,
q2 ! #2Q, and q3 ! #4Q, each a distance d from the origin.
What net electric field is produced at the origin?

Charges q1, q2, and q3 produce electric field vectors 
and respectively, at the origin, and the net electric field is
the vector sum To find this sum, we first
must find the magnitudes and orientations of the three field
vectors.

Magnitudes and directions: To find the magnitude of 
which is due to q1, we use Eq. 22-3, substituting d for r and
2Q for q and obtaining

Similarly, we find the magnitudes of  and to beE
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Fig. 22-7 (a) Three particles with charges q1, q2, and q3 are at the
same distance d from the origin. (b) The electric field vectors 
and at the origin due to the three particles. (c) The electric field
vector and the vector sum at the origin.E
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Find the net field
at this empty point.

Field toward

Field toward
Field away

We next must find the orientations of the three electric
field vectors at the origin. Because q1 is a positive charge,
the field vector it produces points directly away from it,
and because q2 and q3 are both negative, the field vectors
they produce point directly toward each of them. Thus, the
three electric fields produced at the origin by the three
charged particles are oriented as in Fig. 22-7b. (Caution:
Note that we have placed the tails of the vectors at the
point where the fields are to be evaluated; doing so de-
creases the chance of error. Error becomes very probable
if the tails of the field vectors are placed on the particles
creating the fields.)

Adding the fields: We can now add the fields vectorially
just as we added force vectors in Chapter 21. However, here
we can use symmetry to simplify the procedure. From Fig.
22-7b, we see that electric fields and have the same di-
rection. Hence, their vector sum has that direction and has
the magnitude
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:

3.

Additional examples, video, and practice available at WileyPLUS

We must now combine two vectors, and the vector
sum that have the same magnitude and that are
oriented symmetrically about the x axis, as shown in Fig.
22-7c. From the symmetry of Fig. 22-7c, we realize that the
equal y components of our two vectors cancel (one is up-
ward and the other is downward) and the equal x
components add (both are rightward). Thus, the net electric
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and has the magnitude

(Answer) ! (2) 
1

4$%0
 
4Q
d2  (0.866) !

6.93Q
4$%0d2 . 

 E ! 2E3x ! 2E3 cos 30&

E
:

E
:

1 " E
:

2,
E
:

3

halliday_c22_580-604hr.qxd  11-12-2009  13:02  Page 583

What is the direction of the net electric field at point S and point
R?

(A) leftward at S , leftward at R

(B) leftward at S , rightward at R

(C) rightward at S , leftward at R

(D) rightward at S , rightward at R

1Figure from Halliday, Resnick, Walker, page 583.
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We next must find the orientations of the three electric
field vectors at the origin. Because q1 is a positive charge,
the field vector it produces points directly away from it,
and because q2 and q3 are both negative, the field vectors
they produce point directly toward each of them. Thus, the
three electric fields produced at the origin by the three
charged particles are oriented as in Fig. 22-7b. (Caution:
Note that we have placed the tails of the vectors at the
point where the fields are to be evaluated; doing so de-
creases the chance of error. Error becomes very probable
if the tails of the field vectors are placed on the particles
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22-7c. From the symmetry of Fig. 22-7c, we realize that the
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What is the direction of the net electric field at point S and point
R?

(A) leftward at S , leftward at R

(B) leftward at S , rightward at R

(C) rightward at S , leftward at R ←
(D) rightward at S , rightward at R

1Figure from Halliday, Resnick, Walker, page 583.



Electric Field Question

q1 = q3 = 5.00 µC, q2 = −2.00 µC, and a = 0.100 m.
The resultant force exerted on q3 is Fnet,3 = (−1.04 i + 7.94 j) N.

What is the electric field at the location of q3 due to the other two
charges?

696 Chapter 23 Electric Fields

same sign as in Figure 23.6a, the product q1q2 is positive and the electric force on one 
particle is directed away from the other particle. If q1 and q2 are of opposite sign as 
shown in Figure 23.6b, the product q1q2 is negative and the electric force on one par-
ticle is directed toward the other particle. These signs describe the relative direction 
of the force but not the absolute direction. A negative product indicates an attractive 
force, and a positive product indicates a repulsive force. The absolute direction of the 
force on a charge depends on the location of the other charge. For example, if an x 
axis lies along the two charges in Figure 23.6a, the product q1q2 is positive, but F

S
12  

points in the positive x direction and F
S

21  points in the negative x direction.
 When more than two charges are present, the force between any pair of them is 
given by Equation 23.6. Therefore, the resultant force on any one of them equals the 
vector sum of the forces exerted by the other individual charges. For example, if four 
charges are present, the resultant force exerted by particles 2, 3, and 4 on particle 1 is

F
S

1 5 F
S

21 1 F
S

31 1 F
S

41

Q uick Quiz 23.3  Object A has a charge of 12 mC, and object B has a charge  
of 16 mC. Which statement is true about the electric forces on the objects?  
(a) F

S
AB 5 23 F

S
BA  (b) F

S
AB 5 2 F

S
BA  (c) 3 F

S
AB 5 2 F

S
BA  (d) F

S
AB 5 3 F

S
BA  

(e)  F
S

AB 5 F
S

BA   (f) 3 F
S

AB 5 F
S

BA

Example 23.2   Find the Resultant Force

Consider three point charges located at the corners of a right triangle as shown in 
Figure 23.7, where q1 5 q3 5 5.00 mC, q2 5 22.00 mC, and a 5 0.100 m. Find the 
resultant force exerted on q3.

Conceptualize  Think about the net force on q3. Because charge q3 is near two 
other charges, it will experience two electric forces. These forces are exerted in dif-
ferent directions as shown in Figure 23.7. Based on the forces shown in the figure, 
estimate the direction of the net force vector.

Categorize  Because two forces are exerted on charge q3, we categorize this exam-
ple as a vector addition problem.

Analyze  The directions of the individual forces exerted by q1 and q2 on q3 are 
shown in Figure 23.7. The force F

S
23  exerted by q2 on q3 is attractive because q2  

and q3 have opposite signs. In the coordinate system shown in Figure 23.7, the 
attractive force F

S
23  is to the left (in the negative x direction).

 The force F
S

13  exerted by q1 on q3 is repulsive because both charges are positive. The repulsive force F
S

13  makes an 
angle of 45.08 with the x axis.

S O L U T I O N

Figure 23.6 Two point charges 
separated by a distance r exert a 
force on each other that is given 
by Coulomb’s law. The force F

S
21 

exerted by q2 on q1 is equal in mag-
nitude and opposite in direction to 
the force F

S
12 exerted by q1 on q2.

r

q1

q2

r12ˆ

When the charges are of the 
same sign, the force is repulsive.

a b
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When the charges are of opposite 
signs, the force is attractive.
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Figure 23.7  (Example 23.2) The 
force exerted by q1 on q3 is F

S
13. The 

force exerted by q2 on q3 is F
S

23.  
The resultant force F

S
3 exerted on q3 

is the vector sum F
S

13 1 F
S

23.

(A) (−1.04 i + 7.94 j) N

(B) (−1.04 i + 7.94 j) N/C

(C) (−0.208 i + 1.59 j) MN/C

(D) (−2.08 i + 15.9 j) N/C

1Figure from Serway & Jewett, pg 696, Ex 2.
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q1 = q3 = 5.00 µC, q2 = −2.00 µC, and a = 0.100 m.
The resultant force exerted on q3 is Fnet,3 = (−1.04 i + 7.94 j) N.

What is the electric field at the location of q3 due to the other two
charges?
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Question about net field

597QU E STION S
PART 3

1 Figure 22-20 shows three arrangements of electric field lines. In
each arrangement, a proton is released from rest at point A and is
then accelerated through point B by the electric field. Points A and
B have equal separations in the three arrangements. Rank the
arrangements according to the linear momentum of the proton at
point B, greatest first.

ducing it? (c) Is the magnitude of
the net electric field at P equal to
the sum of the magnitudes E of the
two field vectors (is it equal to
2E)? (d) Do the x components of
those two field vectors add or can-
cel? (e) Do their y components
add or cancel? (f) Is the direction
of the net field at P that of the can-
celing components or the adding components? (g) What is the di-
rection of the net field?

4 Figure 22-23 shows four situations in which four charged parti-
cles are evenly spaced to the left and right of a central point. The
charge values are indicated. Rank the situations according to the
magnitude of the net electric field at the central point, greatest first.

A B A B A B

(a) (b) (c)

Fig. 22-20 Question 1.

2 Figure 22-21 shows two square arrays of charged particles. The
squares, which are centered on point P, are misaligned. The parti-
cles are separated by either d or d/2 along the perimeters of the
squares. What are the magnitude and direction of the net electric
field at P?

+6q

–2q

+3q
–2q

+3q

–q

+6q

–2q

–3q

–q

+2q –3q

+2q

–qP

Fig. 22-21 Question 2.

where z is the distance between the point and the center of the
dipole.

Field Due to a Continuous Charge Distribution The
electric field due to a continuous charge distribution is found by
treating charge elements as point charges and then summing, via
integration, the electric field vectors produced by all the charge el-
ements to find the net vector.

Force on a Point Charge in an Electric Field When a
point charge q is placed in an external electric field , the electro-
static force that acts on the point charge is

. (22-28)F
:

! qE
:

F
:

E
:

Force has the same direction as if q is positive and the
opposite direction if q is negative.

Dipole in an Electric Field When an electric dipole of dipole
moment is placed in an electric field , the field exerts a torque

on the dipole:
(22-34)

The dipole has a potential energy U associated with its orientation
in the field:

(22-38)

This potential energy is defined to be zero when is perpendicular
to ; it is least ( ) when is aligned with and greatest
( ) when is directed opposite .E

:
p:U ! pE

E
:

p:U ! "pEE
:

p:
U ! "p: ! E

:
.

#: ! p: " E
:

.
#:

E
:

p:

E
:

F
:

3 In Fig. 22-22, two particles of charge "q are arranged symmet-
rically about the y axis; each produces an electric field at point P on
that axis. (a) Are the magnitudes of the fields at P equal? (b) Is
each electric field directed toward or away from the charge pro-

x

y

P

–q –q

d d

Fig. 22-22 Question 3.

(1)
+e +e–e –e

(2)
+e –e+e –e

(3)
–e +e+e +e

(4)
–e –e –e+e

d d d d

Fig. 22-23 Question 4.

5 Figure 22-24 shows two charged particles fixed in place on an
axis. (a) Where on the axis (other
than at an infinite distance) is there
a point at which their net electric
field is zero: between the charges, to
their left, or to their right? (b) Is
there a point of zero net electric field
anywhere off the axis (other than at
an infinite distance)?

6 In Fig. 22-25, two identical cir-
cular nonconducting rings are cen-

+q –3q

Fig. 22-24 Question 5.

P1 P2 P3

Ring A Ring B

Fig. 22-25 Question 6.
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Electric Dipole

electric dipole

A pair of charges of equal magnitude q but opposite sign,
separated by a distance, d .

dipole moment:

p = qd r̂

where r̂ is a unit vector pointing from the negative charge to the
positive charge.

584 CHAPTE R 22 E LECTR IC F I E LDS

Fig. 22-8 (a) An electric dipole.The
electric field vectors and at point
P on the dipole axis result from the dipole’s
two charges. Point P is at distances r(!) and
r(") from the individual charges that make
up the dipole. (b) The dipole moment of
the dipole points from the negative charge
to the positive charge.

p:

E
:

(")E
:

(!)

z 

r(–) 

r(+)

E(+) 

d 

z 

–q 

+q 

P 

(a) (b) 

+ + 

– – 

p 

E(–)

Dipole 
center 

Up here the +q
field dominates.

Down here the –q
field dominates.

22-5 The Electric Field Due to an Electric Dipole
Figure 22-8a shows two charged particles of magnitude q but of opposite sign,
separated by a distance d. As was noted in connection with Fig. 22-5, we call this
configuration an electric dipole. Let us find the electric field due to the dipole of
Fig. 22-8a at a point P, a distance z from the midpoint of the dipole and on the
axis through the particles, which is called the dipole axis.

From symmetry, the electric field at point P—and also the fields and
E
:

(") due to the separate charges that make up the dipole—must lie along the
dipole axis, which we have taken to be a z axis.Applying the superposition princi-
ple for electric fields, we find that the magnitude E of the electric field at P is

(22-5)

After a little algebra, we can rewrite this equation as

(22-6)

After forming a common denominator and multiplying its terms, we come to

(22-7)

We are usually interested in the electrical effect of a dipole only at distances
that are large compared with the dimensions of the dipole—that is, at distances such
that z # d. At such large distances, we have d/2z $ 1 in Eq. 22-7. Thus, in our ap-
proximation, we can neglect the d/2z term in the denominator, which leaves us with

(22-8)

The product qd, which involves the two intrinsic properties q and d of the
dipole, is the magnitude p of a vector quantity known as the electric dipole moment

of the dipole. (The unit of is the coulomb-meter.) Thus, we can write Eq. 22-8 as

(electric dipole). (22-9)

The direction of is taken to be from the negative to the positive end of the
dipole, as indicated in Fig. 22-8b. We can use the direction of to specify the
orientation of a dipole.

Equation 22-9 shows that, if we measure the electric field of a dipole only at
distant points, we can never find q and d separately; instead, we can find only their
product. The field at distant points would be unchanged if, for example, q were
doubled and d simultaneously halved. Although Eq. 22-9 holds only for distant
points along the dipole axis, it turns out that E for a dipole varies as 1/r 3 for all
distant points, regardless of whether they lie on the dipole axis; here r is the dis-
tance between the point in question and the dipole center.

Inspection of Fig. 22-8 and of the field lines in Fig. 22-5 shows that the direc-
tion of for distant points on the dipole axis is always the direction of the dipoleE

:

p:
p:

E %
1

2&'0
 

p
z3

p:p:

E %
1

2&'0
 
qd
z3 .

%
q

2&'0z3  
d

!1 " ! d
2z "

2"2 .E %
q

4&'0z2  
2d/z

!1 " ! d
2z "

2"2

E %
q

4&'0z2  ! 1

!1 "
d
2z "

2 "
1

!1 !  
d
2z "

2 ".

 %
q

4&'0(z " 1
2d)2  "

q
4&'0(z ! 1

2d)2  .

 %
1

4&'0
 

q
r2

(!)
"

1
4&'0

 
q

r2
(")

  E %  E(!) " E(")

E
:

(!)E
:

halliday_c22_580-604hr.qxd  7-12-2009  14:16  Page 584



Electric Field from an Electric Dipole
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Fig. 22-8 (a) An electric dipole.The
electric field vectors and at point
P on the dipole axis result from the dipole’s
two charges. Point P is at distances r(!) and
r(") from the individual charges that make
up the dipole. (b) The dipole moment of
the dipole points from the negative charge
to the positive charge.
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22-5 The Electric Field Due to an Electric Dipole
Figure 22-8a shows two charged particles of magnitude q but of opposite sign,
separated by a distance d. As was noted in connection with Fig. 22-5, we call this
configuration an electric dipole. Let us find the electric field due to the dipole of
Fig. 22-8a at a point P, a distance z from the midpoint of the dipole and on the
axis through the particles, which is called the dipole axis.

From symmetry, the electric field at point P—and also the fields and
E
:

(") due to the separate charges that make up the dipole—must lie along the
dipole axis, which we have taken to be a z axis.Applying the superposition princi-
ple for electric fields, we find that the magnitude E of the electric field at P is

(22-5)

After a little algebra, we can rewrite this equation as

(22-6)

After forming a common denominator and multiplying its terms, we come to

(22-7)

We are usually interested in the electrical effect of a dipole only at distances
that are large compared with the dimensions of the dipole—that is, at distances such
that z # d. At such large distances, we have d/2z $ 1 in Eq. 22-7. Thus, in our ap-
proximation, we can neglect the d/2z term in the denominator, which leaves us with

(22-8)

The product qd, which involves the two intrinsic properties q and d of the
dipole, is the magnitude p of a vector quantity known as the electric dipole moment

of the dipole. (The unit of is the coulomb-meter.) Thus, we can write Eq. 22-8 as

(electric dipole). (22-9)

The direction of is taken to be from the negative to the positive end of the
dipole, as indicated in Fig. 22-8b. We can use the direction of to specify the
orientation of a dipole.

Equation 22-9 shows that, if we measure the electric field of a dipole only at
distant points, we can never find q and d separately; instead, we can find only their
product. The field at distant points would be unchanged if, for example, q were
doubled and d simultaneously halved. Although Eq. 22-9 holds only for distant
points along the dipole axis, it turns out that E for a dipole varies as 1/r 3 for all
distant points, regardless of whether they lie on the dipole axis; here r is the dis-
tance between the point in question and the dipole center.

Inspection of Fig. 22-8 and of the field lines in Fig. 22-5 shows that the direc-
tion of for distant points on the dipole axis is always the direction of the dipoleE
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We will find an expression for the magnitude
of the field along the dipole axis

E = E(+) − E(−)

=
kq

r2(+)

−
kq

r2(−)

=
kq

z2

(
1

(1 − d/2z)2
−

1

(1 + d/2z)2

)

=
2kp

z3

where we assumed z >> d

The effect of the dipole falls off as 1/z3 - means the charges
largely, but not entirely cancel each other out.
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Fig. 22-8 (a) An electric dipole.The
electric field vectors and at point
P on the dipole axis result from the dipole’s
two charges. Point P is at distances r(!) and
r(") from the individual charges that make
up the dipole. (b) The dipole moment of
the dipole points from the negative charge
to the positive charge.

p:

E
:

(")E
:

(!)

z 

r(–) 

r(+)

E(+) 

d 

z 

–q 

+q 

P 

(a) (b) 

+ + 

– – 

p 

E(–)

Dipole 
center 

Up here the +q
field dominates.

Down here the –q
field dominates.

22-5 The Electric Field Due to an Electric Dipole
Figure 22-8a shows two charged particles of magnitude q but of opposite sign,
separated by a distance d. As was noted in connection with Fig. 22-5, we call this
configuration an electric dipole. Let us find the electric field due to the dipole of
Fig. 22-8a at a point P, a distance z from the midpoint of the dipole and on the
axis through the particles, which is called the dipole axis.

From symmetry, the electric field at point P—and also the fields and
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(") due to the separate charges that make up the dipole—must lie along the
dipole axis, which we have taken to be a z axis.Applying the superposition princi-
ple for electric fields, we find that the magnitude E of the electric field at P is

(22-5)

After a little algebra, we can rewrite this equation as
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After forming a common denominator and multiplying its terms, we come to
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We are usually interested in the electrical effect of a dipole only at distances
that are large compared with the dimensions of the dipole—that is, at distances such
that z # d. At such large distances, we have d/2z $ 1 in Eq. 22-7. Thus, in our ap-
proximation, we can neglect the d/2z term in the denominator, which leaves us with
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The product qd, which involves the two intrinsic properties q and d of the
dipole, is the magnitude p of a vector quantity known as the electric dipole moment

of the dipole. (The unit of is the coulomb-meter.) Thus, we can write Eq. 22-8 as

(electric dipole). (22-9)

The direction of is taken to be from the negative to the positive end of the
dipole, as indicated in Fig. 22-8b. We can use the direction of to specify the
orientation of a dipole.

Equation 22-9 shows that, if we measure the electric field of a dipole only at
distant points, we can never find q and d separately; instead, we can find only their
product. The field at distant points would be unchanged if, for example, q were
doubled and d simultaneously halved. Although Eq. 22-9 holds only for distant
points along the dipole axis, it turns out that E for a dipole varies as 1/r 3 for all
distant points, regardless of whether they lie on the dipole axis; here r is the dis-
tance between the point in question and the dipole center.

Inspection of Fig. 22-8 and of the field lines in Fig. 22-5 shows that the direc-
tion of for distant points on the dipole axis is always the direction of the dipoleE
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We will find an expression for the magnitude
of the field along the dipole axis

E = E(+) − E(−)

=
kq

r2(+)

−
kq

r2(−)

=
kq

z2

(
1

(1 − d/2z)2
−

1

(1 + d/2z)2

)
=

2kp

z3

where we assumed z >> d

The effect of the dipole falls off as 1/z3 - means the charges
largely, but not entirely cancel each other out.



r-inverse decays

1Figure by Neeraj Sood, from rfidjournal.com.



Continuous distribution of charge

In previous examples, we added up the field from each point
charge.

But what about the case of a charged object, like a plate or a
wire?

In just -1 Coulomb of charge, there are more than a quintillion
excess electrons!

You do not want to add up the effect of each one by one.

Solution: treat the charge as a continuous distribution with some
charge density.
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Continuous distribution of charge

In previous examples, we added up the field from each point
charge.

But what about the case of a charged object, like a plate or a
wire?

In just -1 Coulomb of charge, there are more than a quintillion
excess electrons!

You do not want to add up the effect of each one by one.

Solution: treat the charge as a continuous distribution with some
charge density.



Charge Density

charge density

The amount of charge in per unit ‘volume’ of an object.

(Here ‘volume’ could be volume, area, or length)

By convention, different symbols can be used in different cases:

symbol description units

λ charge per unit length C m−1

σ charge per unit area C m−2

ρ charge per unit volume C m−3

For a wire, usually use charge per length.
For a plate, charge per area.



Continuous distribution of charge
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This negatively charged rod
is obviously not a particle.

Here is the field created by
the symmetric element,
same size and angle. We use this to relate the

element's arc length to
the angle that it subtends.

These y components just
cancel, so neglect them.

These x components add.
Our job is to add all such
components.

But we can treat this
element as a particle.

Here is the field the
element creates.

Fig. 22-11 (a) A plastic rod of charge !Q is a circular section of radius r and central angle 120°;
point P is the center of curvature of the rod. (b)–(c) A differential element in the top half of the rod,
at an angle u to the x axis and of arc length ds, sets up a differential electric field at P. (d) An ele-
ment ds", symmetric to ds about the x axis, sets up a field at P with the same magnitude. (e)–(f)
The field components. (g) Arc length ds makes an angle du about point P.

dE
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"
dE

:
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We need to add up the charge of each little “particle” ds. Each
has charge λ ds.

To be perfectly accurate, we would make the length of ds→ 0.
This is an integral:

∑
λ∆s →

∫
λ ds



The main trick

All this does not mean you have to be able to do integrals.

If you understand that you sum up the effect of charges, you can
still figure out what the net field at many points is just by
symmetry.



Example: Field from a ring of charge

Some Measures of Electric Charge

Name Symbol SI Unit

Charge q C
Linear charge 

density l C/m
Surface charge 

density s C/m2

Volume charge 
density r C/m3

Table 22-2

Fig. 22-10 A ring of uniform positive
charge. A differential element of charge 
occupies a length ds (greatly exaggerated for
clarity).This element sets up an electric field

at point P. The component of along
the central axis of the ring is dE cos u.
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The perpendicular
components just
cancel but the parallel
components add.

586 CHAPTE R 22 E LECTR IC F I E LDS

22-6 The Electric Field Due to a Line of Charge
We now consider charge distributions that consist of a great many closely spaced
point charges (perhaps billions) that are spread along a line, over a surface, or
within a volume. Such distributions are said to be continuous rather than discrete.
Since these distributions can include an enormous number of point charges, we
find the electric fields that they produce by means of calculus rather than by con-
sidering the point charges one by one. In this section we discuss the electric field
caused by a line of charge. We consider a charged surface in the next section. In
the next chapter, we shall find the field inside a uniformly charged sphere.

When we deal with continuous charge distributions, it is most convenient to
express the charge on an object as a charge density rather than as a total charge.
For a line of charge, for example, we would report the linear charge density
(or charge per unit length) l, whose SI unit is the coulomb per meter. Table 22-2
shows the other charge densities we shall be using.

Figure 22-10 shows a thin ring of radius R with a uniform positive linear
charge density l around its circumference. We may imagine the ring to be made
of plastic or some other insulator, so that the charges can be regarded as fixed
in place. What is the electric field at point P, a distance z from the plane of the
ring along its central axis?

To answer, we cannot just apply Eq. 22-3, which gives the electric field set up
by a point charge, because the ring is obviously not a point charge. However, we
can mentally divide the ring into differential elements of charge that are so small
that they are like point charges, and then we can apply Eq. 22-3 to each of them.
Next, we can add the electric fields set up at P by all the differential elements.
The vector sum of the fields gives us the field set up at P by the ring.

Let ds be the (arc) length of any differential element of the ring. Since l is
the charge per unit (arc) length, the element has a charge of magnitude

dq ! l ds. (22-10)

This differential charge sets up a differential electric field at point P, which is
a distance r from the element. Treating the element as a point charge and using
Eq. 22-10, we can rewrite Eq. 22-3 to express the magnitude of as

(22-11)

From Fig. 22-10, we can rewrite Eq. 22-11 as
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Vertical components? From each
charge λ ds:

dEy = dE cos θ

=

(
kλ ds

r2

)
cos θ

=

(
kλ ds

(R2 + z2)

)
z√

R2 + z2

=
k z λ ds

(R2 + z2)3/2



Example: Field from a ring of charge

Some Measures of Electric Charge

Name Symbol SI Unit

Charge q C
Linear charge 

density l C/m
Surface charge 

density s C/m2

Volume charge 
density r C/m3

Table 22-2

Fig. 22-10 A ring of uniform positive
charge. A differential element of charge 
occupies a length ds (greatly exaggerated for
clarity).This element sets up an electric field

at point P. The component of along
the central axis of the ring is dE cos u.
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The perpendicular
components just
cancel but the parallel
components add.
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22-6 The Electric Field Due to a Line of Charge
We now consider charge distributions that consist of a great many closely spaced
point charges (perhaps billions) that are spread along a line, over a surface, or
within a volume. Such distributions are said to be continuous rather than discrete.
Since these distributions can include an enormous number of point charges, we
find the electric fields that they produce by means of calculus rather than by con-
sidering the point charges one by one. In this section we discuss the electric field
caused by a line of charge. We consider a charged surface in the next section. In
the next chapter, we shall find the field inside a uniformly charged sphere.

When we deal with continuous charge distributions, it is most convenient to
express the charge on an object as a charge density rather than as a total charge.
For a line of charge, for example, we would report the linear charge density
(or charge per unit length) l, whose SI unit is the coulomb per meter. Table 22-2
shows the other charge densities we shall be using.

Figure 22-10 shows a thin ring of radius R with a uniform positive linear
charge density l around its circumference. We may imagine the ring to be made
of plastic or some other insulator, so that the charges can be regarded as fixed
in place. What is the electric field at point P, a distance z from the plane of the
ring along its central axis?

To answer, we cannot just apply Eq. 22-3, which gives the electric field set up
by a point charge, because the ring is obviously not a point charge. However, we
can mentally divide the ring into differential elements of charge that are so small
that they are like point charges, and then we can apply Eq. 22-3 to each of them.
Next, we can add the electric fields set up at P by all the differential elements.
The vector sum of the fields gives us the field set up at P by the ring.

Let ds be the (arc) length of any differential element of the ring. Since l is
the charge per unit (arc) length, the element has a charge of magnitude

dq ! l ds. (22-10)

This differential charge sets up a differential electric field at point P, which is
a distance r from the element. Treating the element as a point charge and using
Eq. 22-10, we can rewrite Eq. 22-3 to express the magnitude of as
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dEy =
k z λ ds

(R2 + z2)3/2

There are 2πR-worth of little lengths
ds. Adding the field for all together:

Ey =
k z λ(2πR)

(R2 + z2)3/2

=
k q z

(R2 + z2)3/2

since total charge q = 2πRλ by
definition.



Question
The figure here shows three nonconducting rods, one circular and
two straight. Each has a uniform charge of magnitude Q along its
top half and another along its bottom half. For each rod, what is
the direction of the net electric field at point P?
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CHECKPOINT 2

The figure here shows three nonconducting rods, one circular and two
straight. Each has a uniform charge of magnitude Q along its top half
and another along its bottom half. For each rod, what is the direction of
the net electric field at point P? x x x 

y y y 

–Q 

+Q 

P P 

+Q 

+Q 

+Q 

–Q 

P 

(a) (b) (c)

Problem-Solving Tactics

Circular arc, with point P at the center of curvature, as
in Fig. 22-11. Express the adding component of in terms
of u.That introduces either sin u or cos u. Reduce the result-
ing two variables s and u to one, u, by replacing ds with r du.
Integrate over u from one end of the arc to the other end.

Straight line, with point P on an extension of the line,
as in Fig. 22-12a. In the expression for dE, replace r with x.
Integrate over x, from end to end of the line of charge.

Straight line, with point P at perpendicular dis-
tance y from the line of charge, as in Fig. 22-12b. In the
expression for dE, replace r with an expression involving x
and y. If P is on the perpendicular bisector of the line of
charge,find an expression for the adding component of 
That will introduce either sin u or cos u. Reduce the result-
ing two variables x and u to one, x, by replacing the
trigonometric function with an expression (its definition)
involving x and y. Integrate over x from end to end of the
line of charge. If P is not on a line of symmetry, as in Fig.
22-12c, set up an integral to sum the components dEx,
and integrate over x to find Ex. Also set up an integral
to sum the components dEy, and integrate over x again to
find Ey. Use the components Ex and Ey in the usual way to
find the magnitude E and the orientation of .

Step 6. One arrangement of the integration limits gives a pos-
itive result.The reverse gives the same result with a minus
sign; discard the minus sign. If the result is to be stated in
terms of the total charge Q of the distribution, replace l
with Q/L, in which L is the length of the distribution.

E
:

dE
:

.

dE
:

A Field Guide for Lines of Charge

Here is a generic guide for finding the electric field pro-
duced at a point P by a line of uniform charge, either circu-
lar or straight.The general strategy is to pick out an element
dq of the charge, find due to that element, and integrate

over the entire line of charge.
Step 1. If the line of charge is circular, let ds be the arc

length of an element of the distribution. If the line is
straight, run an x axis along it and let dx be the length of
an element. Mark the element on a sketch.

Step 2. Relate the charge dq of the element to the length of
the element with either dq ! l ds or dq ! l dx. Consider
dq and l to be positive, even if the charge is actually nega-
tive. (The sign of the charge is used in the next step.)

Step 3. Express the field produced at P by dq with
Eq. 22-3, replacing q in that equation with either l ds or
l dx. If the charge on the line is positive, then at P draw a
vector that points directly away from dq. If the charge
is negative, draw the vector pointing directly toward dq.

Step 4. Always look for any symmetry in the situation. If P
is on an axis of symmetry of the charge distribution, re-
solve the field produced by dq into components that
are perpendicular and parallel to the axis of symmetry.
Then consider a second element dq" that is located sym-
metrically to dq about the line of symmetry.At P draw
the vector that this symmetrical element produces
and resolve it into components. One of the components
produced by dq is a canceling component; it is canceled
by the corresponding component produced by dq" and
needs no further attention.The other component
produced by dq is an adding component; it adds to the
corresponding component produced by dq".Add the
adding components of all the elements via integration.

Step 5. Here are four general types of uniform charge
distributions, with strategies for the integral of step 4.

Ring, with point P on (central) axis of symmetry, as
in Fig. 22-10. In the expression for dE, replace r 2 with
z2 # R2, as in Eq. 22-12. Express the adding component
of in terms of u.That introduces cos u, but u is identi-
cal for all elements and thus is not a variable. Replace
cos u as in Eq. 22-13. Integrate over s, around the cir-
cumference of the ring.
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Fig. 22-12 (a) Point P is on an extension of the line of charge.
(b) P is on a line of symmetry of the line of charge, at perpendicu-
lar distance y from that line. (c) Same as (b) except that P is not on
a line of symmetry.
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For (a) it is:

(A) up

(B) down

(C) left

(D) right
1Page 590, Halliday, Resnick, Walker.
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The figure here shows three nonconducting rods, one circular and
two straight. Each has a uniform charge of magnitude Q along its
top half and another along its bottom half. For each rod, what is
the direction of the net electric field at point P?
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Problem-Solving Tactics

Circular arc, with point P at the center of curvature, as
in Fig. 22-11. Express the adding component of in terms
of u.That introduces either sin u or cos u. Reduce the result-
ing two variables s and u to one, u, by replacing ds with r du.
Integrate over u from one end of the arc to the other end.

Straight line, with point P on an extension of the line,
as in Fig. 22-12a. In the expression for dE, replace r with x.
Integrate over x, from end to end of the line of charge.

Straight line, with point P at perpendicular dis-
tance y from the line of charge, as in Fig. 22-12b. In the
expression for dE, replace r with an expression involving x
and y. If P is on the perpendicular bisector of the line of
charge,find an expression for the adding component of 
That will introduce either sin u or cos u. Reduce the result-
ing two variables x and u to one, x, by replacing the
trigonometric function with an expression (its definition)
involving x and y. Integrate over x from end to end of the
line of charge. If P is not on a line of symmetry, as in Fig.
22-12c, set up an integral to sum the components dEx,
and integrate over x to find Ex. Also set up an integral
to sum the components dEy, and integrate over x again to
find Ey. Use the components Ex and Ey in the usual way to
find the magnitude E and the orientation of .

Step 6. One arrangement of the integration limits gives a pos-
itive result.The reverse gives the same result with a minus
sign; discard the minus sign. If the result is to be stated in
terms of the total charge Q of the distribution, replace l
with Q/L, in which L is the length of the distribution.
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A Field Guide for Lines of Charge

Here is a generic guide for finding the electric field pro-
duced at a point P by a line of uniform charge, either circu-
lar or straight.The general strategy is to pick out an element
dq of the charge, find due to that element, and integrate

over the entire line of charge.
Step 1. If the line of charge is circular, let ds be the arc

length of an element of the distribution. If the line is
straight, run an x axis along it and let dx be the length of
an element. Mark the element on a sketch.

Step 2. Relate the charge dq of the element to the length of
the element with either dq ! l ds or dq ! l dx. Consider
dq and l to be positive, even if the charge is actually nega-
tive. (The sign of the charge is used in the next step.)

Step 3. Express the field produced at P by dq with
Eq. 22-3, replacing q in that equation with either l ds or
l dx. If the charge on the line is positive, then at P draw a
vector that points directly away from dq. If the charge
is negative, draw the vector pointing directly toward dq.

Step 4. Always look for any symmetry in the situation. If P
is on an axis of symmetry of the charge distribution, re-
solve the field produced by dq into components that
are perpendicular and parallel to the axis of symmetry.
Then consider a second element dq" that is located sym-
metrically to dq about the line of symmetry.At P draw
the vector that this symmetrical element produces
and resolve it into components. One of the components
produced by dq is a canceling component; it is canceled
by the corresponding component produced by dq" and
needs no further attention.The other component
produced by dq is an adding component; it adds to the
corresponding component produced by dq".Add the
adding components of all the elements via integration.

Step 5. Here are four general types of uniform charge
distributions, with strategies for the integral of step 4.

Ring, with point P on (central) axis of symmetry, as
in Fig. 22-10. In the expression for dE, replace r 2 with
z2 # R2, as in Eq. 22-12. Express the adding component
of in terms of u.That introduces cos u, but u is identi-
cal for all elements and thus is not a variable. Replace
cos u as in Eq. 22-13. Integrate over s, around the cir-
cumference of the ring.
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Fig. 22-12 (a) Point P is on an extension of the line of charge.
(b) P is on a line of symmetry of the line of charge, at perpendicu-
lar distance y from that line. (c) Same as (b) except that P is not on
a line of symmetry.
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Question
The figure here shows three nonconducting rods, one circular and
two straight. Each has a uniform charge of magnitude Q along its
top half and another along its bottom half. For each rod, what is
the direction of the net electric field at point P?
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The figure here shows three nonconducting rods, one circular and two
straight. Each has a uniform charge of magnitude Q along its top half
and another along its bottom half. For each rod, what is the direction of
the net electric field at point P? x x x 
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P 

(a) (b) (c)

Problem-Solving Tactics

Circular arc, with point P at the center of curvature, as
in Fig. 22-11. Express the adding component of in terms
of u.That introduces either sin u or cos u. Reduce the result-
ing two variables s and u to one, u, by replacing ds with r du.
Integrate over u from one end of the arc to the other end.

Straight line, with point P on an extension of the line,
as in Fig. 22-12a. In the expression for dE, replace r with x.
Integrate over x, from end to end of the line of charge.

Straight line, with point P at perpendicular dis-
tance y from the line of charge, as in Fig. 22-12b. In the
expression for dE, replace r with an expression involving x
and y. If P is on the perpendicular bisector of the line of
charge,find an expression for the adding component of 
That will introduce either sin u or cos u. Reduce the result-
ing two variables x and u to one, x, by replacing the
trigonometric function with an expression (its definition)
involving x and y. Integrate over x from end to end of the
line of charge. If P is not on a line of symmetry, as in Fig.
22-12c, set up an integral to sum the components dEx,
and integrate over x to find Ex. Also set up an integral
to sum the components dEy, and integrate over x again to
find Ey. Use the components Ex and Ey in the usual way to
find the magnitude E and the orientation of .

Step 6. One arrangement of the integration limits gives a pos-
itive result.The reverse gives the same result with a minus
sign; discard the minus sign. If the result is to be stated in
terms of the total charge Q of the distribution, replace l
with Q/L, in which L is the length of the distribution.
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A Field Guide for Lines of Charge

Here is a generic guide for finding the electric field pro-
duced at a point P by a line of uniform charge, either circu-
lar or straight.The general strategy is to pick out an element
dq of the charge, find due to that element, and integrate

over the entire line of charge.
Step 1. If the line of charge is circular, let ds be the arc

length of an element of the distribution. If the line is
straight, run an x axis along it and let dx be the length of
an element. Mark the element on a sketch.

Step 2. Relate the charge dq of the element to the length of
the element with either dq ! l ds or dq ! l dx. Consider
dq and l to be positive, even if the charge is actually nega-
tive. (The sign of the charge is used in the next step.)

Step 3. Express the field produced at P by dq with
Eq. 22-3, replacing q in that equation with either l ds or
l dx. If the charge on the line is positive, then at P draw a
vector that points directly away from dq. If the charge
is negative, draw the vector pointing directly toward dq.

Step 4. Always look for any symmetry in the situation. If P
is on an axis of symmetry of the charge distribution, re-
solve the field produced by dq into components that
are perpendicular and parallel to the axis of symmetry.
Then consider a second element dq" that is located sym-
metrically to dq about the line of symmetry.At P draw
the vector that this symmetrical element produces
and resolve it into components. One of the components
produced by dq is a canceling component; it is canceled
by the corresponding component produced by dq" and
needs no further attention.The other component
produced by dq is an adding component; it adds to the
corresponding component produced by dq".Add the
adding components of all the elements via integration.

Step 5. Here are four general types of uniform charge
distributions, with strategies for the integral of step 4.

Ring, with point P on (central) axis of symmetry, as
in Fig. 22-10. In the expression for dE, replace r 2 with
z2 # R2, as in Eq. 22-12. Express the adding component
of in terms of u.That introduces cos u, but u is identi-
cal for all elements and thus is not a variable. Replace
cos u as in Eq. 22-13. Integrate over s, around the cir-
cumference of the ring.

dE
:

dE
:

"

dE
:

dE
:

dE
:

dE
:

dE
:

E
:

x
P

(a)

x
(b)

P

y

x
(c)

P

y

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

Fig. 22-12 (a) Point P is on an extension of the line of charge.
(b) P is on a line of symmetry of the line of charge, at perpendicu-
lar distance y from that line. (c) Same as (b) except that P is not on
a line of symmetry.
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Question
The figure here shows three nonconducting rods, one circular and
two straight. Each has a uniform charge of magnitude Q along its
top half and another along its bottom half. For each rod, what is
the direction of the net electric field at point P?
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The figure here shows three nonconducting rods, one circular and two
straight. Each has a uniform charge of magnitude Q along its top half
and another along its bottom half. For each rod, what is the direction of
the net electric field at point P? x x x 

y y y 

–Q 
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P P 
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+Q 
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(a) (b) (c)

Problem-Solving Tactics

Circular arc, with point P at the center of curvature, as
in Fig. 22-11. Express the adding component of in terms
of u.That introduces either sin u or cos u. Reduce the result-
ing two variables s and u to one, u, by replacing ds with r du.
Integrate over u from one end of the arc to the other end.

Straight line, with point P on an extension of the line,
as in Fig. 22-12a. In the expression for dE, replace r with x.
Integrate over x, from end to end of the line of charge.

Straight line, with point P at perpendicular dis-
tance y from the line of charge, as in Fig. 22-12b. In the
expression for dE, replace r with an expression involving x
and y. If P is on the perpendicular bisector of the line of
charge,find an expression for the adding component of 
That will introduce either sin u or cos u. Reduce the result-
ing two variables x and u to one, x, by replacing the
trigonometric function with an expression (its definition)
involving x and y. Integrate over x from end to end of the
line of charge. If P is not on a line of symmetry, as in Fig.
22-12c, set up an integral to sum the components dEx,
and integrate over x to find Ex. Also set up an integral
to sum the components dEy, and integrate over x again to
find Ey. Use the components Ex and Ey in the usual way to
find the magnitude E and the orientation of .

Step 6. One arrangement of the integration limits gives a pos-
itive result.The reverse gives the same result with a minus
sign; discard the minus sign. If the result is to be stated in
terms of the total charge Q of the distribution, replace l
with Q/L, in which L is the length of the distribution.
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A Field Guide for Lines of Charge

Here is a generic guide for finding the electric field pro-
duced at a point P by a line of uniform charge, either circu-
lar or straight.The general strategy is to pick out an element
dq of the charge, find due to that element, and integrate

over the entire line of charge.
Step 1. If the line of charge is circular, let ds be the arc

length of an element of the distribution. If the line is
straight, run an x axis along it and let dx be the length of
an element. Mark the element on a sketch.

Step 2. Relate the charge dq of the element to the length of
the element with either dq ! l ds or dq ! l dx. Consider
dq and l to be positive, even if the charge is actually nega-
tive. (The sign of the charge is used in the next step.)

Step 3. Express the field produced at P by dq with
Eq. 22-3, replacing q in that equation with either l ds or
l dx. If the charge on the line is positive, then at P draw a
vector that points directly away from dq. If the charge
is negative, draw the vector pointing directly toward dq.

Step 4. Always look for any symmetry in the situation. If P
is on an axis of symmetry of the charge distribution, re-
solve the field produced by dq into components that
are perpendicular and parallel to the axis of symmetry.
Then consider a second element dq" that is located sym-
metrically to dq about the line of symmetry.At P draw
the vector that this symmetrical element produces
and resolve it into components. One of the components
produced by dq is a canceling component; it is canceled
by the corresponding component produced by dq" and
needs no further attention.The other component
produced by dq is an adding component; it adds to the
corresponding component produced by dq".Add the
adding components of all the elements via integration.

Step 5. Here are four general types of uniform charge
distributions, with strategies for the integral of step 4.

Ring, with point P on (central) axis of symmetry, as
in Fig. 22-10. In the expression for dE, replace r 2 with
z2 # R2, as in Eq. 22-12. Express the adding component
of in terms of u.That introduces cos u, but u is identi-
cal for all elements and thus is not a variable. Replace
cos u as in Eq. 22-13. Integrate over s, around the cir-
cumference of the ring.
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Fig. 22-12 (a) Point P is on an extension of the line of charge.
(b) P is on a line of symmetry of the line of charge, at perpendicu-
lar distance y from that line. (c) Same as (b) except that P is not on
a line of symmetry.
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Question
The figure here shows three nonconducting rods, one circular and
two straight. Each has a uniform charge of magnitude Q along its
top half and another along its bottom half. For each rod, what is
the direction of the net electric field at point P?
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The figure here shows three nonconducting rods, one circular and two
straight. Each has a uniform charge of magnitude Q along its top half
and another along its bottom half. For each rod, what is the direction of
the net electric field at point P? x x x 

y y y 
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P P 
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+Q 
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Problem-Solving Tactics

Circular arc, with point P at the center of curvature, as
in Fig. 22-11. Express the adding component of in terms
of u.That introduces either sin u or cos u. Reduce the result-
ing two variables s and u to one, u, by replacing ds with r du.
Integrate over u from one end of the arc to the other end.

Straight line, with point P on an extension of the line,
as in Fig. 22-12a. In the expression for dE, replace r with x.
Integrate over x, from end to end of the line of charge.

Straight line, with point P at perpendicular dis-
tance y from the line of charge, as in Fig. 22-12b. In the
expression for dE, replace r with an expression involving x
and y. If P is on the perpendicular bisector of the line of
charge,find an expression for the adding component of 
That will introduce either sin u or cos u. Reduce the result-
ing two variables x and u to one, x, by replacing the
trigonometric function with an expression (its definition)
involving x and y. Integrate over x from end to end of the
line of charge. If P is not on a line of symmetry, as in Fig.
22-12c, set up an integral to sum the components dEx,
and integrate over x to find Ex. Also set up an integral
to sum the components dEy, and integrate over x again to
find Ey. Use the components Ex and Ey in the usual way to
find the magnitude E and the orientation of .

Step 6. One arrangement of the integration limits gives a pos-
itive result.The reverse gives the same result with a minus
sign; discard the minus sign. If the result is to be stated in
terms of the total charge Q of the distribution, replace l
with Q/L, in which L is the length of the distribution.
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A Field Guide for Lines of Charge

Here is a generic guide for finding the electric field pro-
duced at a point P by a line of uniform charge, either circu-
lar or straight.The general strategy is to pick out an element
dq of the charge, find due to that element, and integrate

over the entire line of charge.
Step 1. If the line of charge is circular, let ds be the arc

length of an element of the distribution. If the line is
straight, run an x axis along it and let dx be the length of
an element. Mark the element on a sketch.

Step 2. Relate the charge dq of the element to the length of
the element with either dq ! l ds or dq ! l dx. Consider
dq and l to be positive, even if the charge is actually nega-
tive. (The sign of the charge is used in the next step.)

Step 3. Express the field produced at P by dq with
Eq. 22-3, replacing q in that equation with either l ds or
l dx. If the charge on the line is positive, then at P draw a
vector that points directly away from dq. If the charge
is negative, draw the vector pointing directly toward dq.

Step 4. Always look for any symmetry in the situation. If P
is on an axis of symmetry of the charge distribution, re-
solve the field produced by dq into components that
are perpendicular and parallel to the axis of symmetry.
Then consider a second element dq" that is located sym-
metrically to dq about the line of symmetry.At P draw
the vector that this symmetrical element produces
and resolve it into components. One of the components
produced by dq is a canceling component; it is canceled
by the corresponding component produced by dq" and
needs no further attention.The other component
produced by dq is an adding component; it adds to the
corresponding component produced by dq".Add the
adding components of all the elements via integration.

Step 5. Here are four general types of uniform charge
distributions, with strategies for the integral of step 4.

Ring, with point P on (central) axis of symmetry, as
in Fig. 22-10. In the expression for dE, replace r 2 with
z2 # R2, as in Eq. 22-12. Express the adding component
of in terms of u.That introduces cos u, but u is identi-
cal for all elements and thus is not a variable. Replace
cos u as in Eq. 22-13. Integrate over s, around the cir-
cumference of the ring.
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Fig. 22-12 (a) Point P is on an extension of the line of charge.
(b) P is on a line of symmetry of the line of charge, at perpendicu-
lar distance y from that line. (c) Same as (b) except that P is not on
a line of symmetry.

halliday_c22_580-604hr.qxd  7-12-2009  14:16  Page 590

For (c) it is:

(A) up

(B) down

(C) left

(D) right
1Page 590, Halliday, Resnick, Walker.



Question
The figure here shows three nonconducting rods, one circular and
two straight. Each has a uniform charge of magnitude Q along its
top half and another along its bottom half. For each rod, what is
the direction of the net electric field at point P?
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The figure here shows three nonconducting rods, one circular and two
straight. Each has a uniform charge of magnitude Q along its top half
and another along its bottom half. For each rod, what is the direction of
the net electric field at point P? x x x 
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Problem-Solving Tactics

Circular arc, with point P at the center of curvature, as
in Fig. 22-11. Express the adding component of in terms
of u.That introduces either sin u or cos u. Reduce the result-
ing two variables s and u to one, u, by replacing ds with r du.
Integrate over u from one end of the arc to the other end.

Straight line, with point P on an extension of the line,
as in Fig. 22-12a. In the expression for dE, replace r with x.
Integrate over x, from end to end of the line of charge.

Straight line, with point P at perpendicular dis-
tance y from the line of charge, as in Fig. 22-12b. In the
expression for dE, replace r with an expression involving x
and y. If P is on the perpendicular bisector of the line of
charge,find an expression for the adding component of 
That will introduce either sin u or cos u. Reduce the result-
ing two variables x and u to one, x, by replacing the
trigonometric function with an expression (its definition)
involving x and y. Integrate over x from end to end of the
line of charge. If P is not on a line of symmetry, as in Fig.
22-12c, set up an integral to sum the components dEx,
and integrate over x to find Ex. Also set up an integral
to sum the components dEy, and integrate over x again to
find Ey. Use the components Ex and Ey in the usual way to
find the magnitude E and the orientation of .

Step 6. One arrangement of the integration limits gives a pos-
itive result.The reverse gives the same result with a minus
sign; discard the minus sign. If the result is to be stated in
terms of the total charge Q of the distribution, replace l
with Q/L, in which L is the length of the distribution.
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A Field Guide for Lines of Charge

Here is a generic guide for finding the electric field pro-
duced at a point P by a line of uniform charge, either circu-
lar or straight.The general strategy is to pick out an element
dq of the charge, find due to that element, and integrate

over the entire line of charge.
Step 1. If the line of charge is circular, let ds be the arc

length of an element of the distribution. If the line is
straight, run an x axis along it and let dx be the length of
an element. Mark the element on a sketch.

Step 2. Relate the charge dq of the element to the length of
the element with either dq ! l ds or dq ! l dx. Consider
dq and l to be positive, even if the charge is actually nega-
tive. (The sign of the charge is used in the next step.)

Step 3. Express the field produced at P by dq with
Eq. 22-3, replacing q in that equation with either l ds or
l dx. If the charge on the line is positive, then at P draw a
vector that points directly away from dq. If the charge
is negative, draw the vector pointing directly toward dq.

Step 4. Always look for any symmetry in the situation. If P
is on an axis of symmetry of the charge distribution, re-
solve the field produced by dq into components that
are perpendicular and parallel to the axis of symmetry.
Then consider a second element dq" that is located sym-
metrically to dq about the line of symmetry.At P draw
the vector that this symmetrical element produces
and resolve it into components. One of the components
produced by dq is a canceling component; it is canceled
by the corresponding component produced by dq" and
needs no further attention.The other component
produced by dq is an adding component; it adds to the
corresponding component produced by dq".Add the
adding components of all the elements via integration.

Step 5. Here are four general types of uniform charge
distributions, with strategies for the integral of step 4.

Ring, with point P on (central) axis of symmetry, as
in Fig. 22-10. In the expression for dE, replace r 2 with
z2 # R2, as in Eq. 22-12. Express the adding component
of in terms of u.That introduces cos u, but u is identi-
cal for all elements and thus is not a variable. Replace
cos u as in Eq. 22-13. Integrate over s, around the cir-
cumference of the ring.
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Fig. 22-12 (a) Point P is on an extension of the line of charge.
(b) P is on a line of symmetry of the line of charge, at perpendicu-
lar distance y from that line. (c) Same as (b) except that P is not on
a line of symmetry.
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Summary

• E-field from many charges

• electric fields of charge distribution

Homework
• E-fields worksheet

Halliday, Resnick, Walker:

• Ch 22, onward from page 597. Problems: 2, 5, 7, 9, 23


