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Last time

• motion of charges in electric fields



Overview

• electric flux

• Gauss’s law

• implications of Gauss’s law

• Coulomb’s law from Gauss’s law

• some rules to help solve problems



Gauss’s Law basic idea

Gauss’s law relates the electric field across a closed surface (eg. a
sphere) to the amount of net charge enclosed by the surface.

HALLIDAY REVISED

23-1 One of the primary goals of physics is to find simple ways of solving
seemingly complex problems. One of the main tools of physics in attaining this
goal is the use of symmetry. For example, in finding the electric field of the
charged ring of Fig. 22-10 and the charged rod of Fig. 22-11, we considered the
fields of charge elements in the ring and rod. Then we simplified
the calculation of by using symmetry to discard the perpendicular components
of the vectors.That saved us some work.

For certain charge distributions involving symmetry, we can save far more work
by using a law called Gauss’ law, developed by German mathematician and physi-
cist Carl Friedrich Gauss (1777–1855). Instead of considering the fields of
charge elements in a given charge distribution, Gauss’ law considers a hypothetical
(imaginary) closed surface enclosing the charge distribution.This Gaussian surface,
as it is called, can have any shape, but the shape that minimizes our calculations of
the electric field is one that mimics the symmetry of the charge distribution. For ex-
ample, if the charge is spread uniformly over a sphere, we enclose the sphere with a
spherical Gaussian surface, such as the one in Fig. 23-1, and then, as we discuss in
this chapter, find the electric field on the surface by using the fact that
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Gauss’ law relates the electric fields at points on a (closed) Gaussian surface to the
net charge enclosed by that surface.

We can also use Gauss’ law in reverse: If we know the electric field on a Gaussian
surface, we can find the net charge enclosed by the surface. As a limited example,
suppose that the electric field vectors in Fig. 23-1 all point radially outward from the
center of the sphere and have equal magnitude. Gauss’ law immediately tells us that
the spherical surface must enclose a net positive charge that is either a particle or
distributed spherically. However, to calculate how much charge is enclosed, we need
a way of calculating how much electric field is intercepted by the Gaussian surface in
Fig. 23-1.This measure of intercepted field is called flux, which we discuss next.

23-2 Flux
Suppose that, as in Fig. 23-2a, you aim a wide airstream of uniform velocity at
a small square loop of area A. Let " represent the volume flow rate (volume per unit
time) at which air flows through the loop.This rate depends on the angle between 
and the plane of the loop. If is perpendicular to the plane, the rate " is equal to vA.

If is parallel to the plane of the loop, no air moves through the loop, so
" is zero. For an intermediate angle u, the rate " depends on the component of 

normal to the plane (Fig.23-2b).Since that component is v cos u, the rate of volume
flow through the loop is

" ! (v cos u)A. (23-1)

This rate of flow through an area is an example of a flux—a volume flux in this
situation.
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Fig. 23-1 A spherical Gaussian 
surface. If the electric field vectors
are of uniform magnitude and point
radially outward at all surface points,
you can conclude that a net positive
distribution of charge must lie within
the surface and have spherical 
symmetry.
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Can we quantify the “electric field across a boundary”?



Flux

Flux is a quantity that makes the idea of the “electric field
through some region” precise.

Flux is a flow rate through an area.
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Before we discuss a flux involved in electrostatics, we need to rewrite Eq.
23-1 in terms of vectors. To do this, we first define an area vector as being a
vector whose magnitude is equal to an area (here the area of the loop) and whose
direction is normal to the plane of the area (Fig. 23-2c). We then rewrite Eq. 23-1
as the scalar (or dot) product of the velocity vector of the airstream and the area
vector of the loop:

(23-2)

where u is the angle between and .
The word “flux” comes from the Latin word meaning “to flow.” That meaning

makes sense if we talk about the flow of air volume through the loop. However, Eq.
23-2 can be regarded in a more abstract way.To see this different way, note that we
can assign a velocity vector to each point in the airstream passing through the loop
(Fig. 23-2d). Because the composite of all those vectors is a velocity field, we can in-
terpret Eq. 23-2 as giving the flux of the velocity field through the loop. With this in-
terpretation, flux no longer means the actual flow of something through an area—
rather it means the product of an area and the field across that area.

23-3 Flux of an Electric Field
To define the flux of an electric field, consider Fig. 23-3, which shows an arbitrary
(asymmetric) Gaussian surface immersed in a nonuniform electric field. Let us
divide the surface into small squares of area !A, each square being small enough
to permit us to neglect any curvature and to consider the individual square to be
flat. We represent each such element of area with an area vector , whose mag-
nitude is the area !A. Each vector is perpendicular to the Gaussian surface
and directed away from the interior of the surface.

Because the squares have been taken to be arbitrarily small, the electric field
may be taken as constant over any given square. The vectors and for

each square then make some angle u with each other. Figure 23-3 shows an
enlarged view of three squares on the Gaussian surface and the angle u for each.

A provisional definition for the flux of the electric field for the Gaussian
surface of Fig. 23-3 is

(23-3)

This equation instructs us to visit each square on the Gaussian surface, evaluate the
scalar product for the two vectors and we find there, and sum the re-
sults algebraically (that is, with signs included) for all the squares that make up the
surface. The value of each scalar product (positive, negative, or zero) determines
whether the flux through its square is positive, negative, or zero. Squares like square
1 in Fig. 23-3, in which points inward, make a negative contribution to the sum of
Eq. 23-3. Squares like 2, in which lies in the surface, make zero contribution.
Squares like 3, in which points outward, make a positive contribution.E
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Fig. 23-2 (a) A uniform airstream of ve-
locity is perpendicular to the plane of a
square loop of area A.(b) The component
of perpendicular to the plane of the loop
is v cos u, where u is the angle between 
and a normal to the plane. (c) The area vec-
tor is perpendicular to the plane of the
loop and makes an angle u with . (d) The
velocity field intercepted by the area of the
loop.
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Fig. 23-3 A Gaussian surface of 
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Flux

Imagine air blowing directly through a square loop of wire of area
A.
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Before we discuss a flux involved in electrostatics, we need to rewrite Eq.
23-1 in terms of vectors. To do this, we first define an area vector as being a
vector whose magnitude is equal to an area (here the area of the loop) and whose
direction is normal to the plane of the area (Fig. 23-2c). We then rewrite Eq. 23-1
as the scalar (or dot) product of the velocity vector of the airstream and the area
vector of the loop:

(23-2)

where u is the angle between and .
The word “flux” comes from the Latin word meaning “to flow.” That meaning

makes sense if we talk about the flow of air volume through the loop. However, Eq.
23-2 can be regarded in a more abstract way.To see this different way, note that we
can assign a velocity vector to each point in the airstream passing through the loop
(Fig. 23-2d). Because the composite of all those vectors is a velocity field, we can in-
terpret Eq. 23-2 as giving the flux of the velocity field through the loop. With this in-
terpretation, flux no longer means the actual flow of something through an area—
rather it means the product of an area and the field across that area.

23-3 Flux of an Electric Field
To define the flux of an electric field, consider Fig. 23-3, which shows an arbitrary
(asymmetric) Gaussian surface immersed in a nonuniform electric field. Let us
divide the surface into small squares of area !A, each square being small enough
to permit us to neglect any curvature and to consider the individual square to be
flat. We represent each such element of area with an area vector , whose mag-
nitude is the area !A. Each vector is perpendicular to the Gaussian surface
and directed away from the interior of the surface.

Because the squares have been taken to be arbitrarily small, the electric field
may be taken as constant over any given square. The vectors and for

each square then make some angle u with each other. Figure 23-3 shows an
enlarged view of three squares on the Gaussian surface and the angle u for each.

A provisional definition for the flux of the electric field for the Gaussian
surface of Fig. 23-3 is

(23-3)

This equation instructs us to visit each square on the Gaussian surface, evaluate the
scalar product for the two vectors and we find there, and sum the re-
sults algebraically (that is, with signs included) for all the squares that make up the
surface. The value of each scalar product (positive, negative, or zero) determines
whether the flux through its square is positive, negative, or zero. Squares like square
1 in Fig. 23-3, in which points inward, make a negative contribution to the sum of
Eq. 23-3. Squares like 2, in which lies in the surface, make zero contribution.
Squares like 3, in which points outward, make a positive contribution.E

:
E
:

E
:

!A
:

E
:

E
:

! !"
:

# $ ! %
:

! !"
:

.

E
:

!A
:

E
:

!A
:

!A
:

A
:

v:
# $ vA cos & $ v: ! A

:
,

A
:

v:

A
:

(a)

Air flow

(b)

θ

(c) (d)

θ
vv

v A

Fig. 23-2 (a) A uniform airstream of ve-
locity is perpendicular to the plane of a
square loop of area A.(b) The component
of perpendicular to the plane of the loop
is v cos u, where u is the angle between 
and a normal to the plane. (c) The area vec-
tor is perpendicular to the plane of the
loop and makes an angle u with . (d) The
velocity field intercepted by the area of the
loop.
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The volume of air that passes through in 1 s is V = A× v × (1 s),
where v is the speed of the air.

The rate of flow would be V /t = Av .



Flux

Now consider a more general situation: the air does not blow
directly through the loop, but at some angle θ.

If θ = 90◦, what is the flow rate (flux) through the loop?

Zero!

In that case there is no flow through the loop. The air goes around
the loop.

The flux depends on the angle that the flow makes to the loop /
area.



Flux

Now consider a more general situation: the air does not blow
directly through the loop, but at some angle θ.

If θ = 90◦, what is the flow rate (flux) through the loop? Zero!

In that case there is no flow through the loop. The air goes around
the loop.

The flux depends on the angle that the flow makes to the loop /
area.



Flux

726 Chapter 24 Gauss’s Law

From the SI units of E and A, we see that FE has units of newton meters squared per 
coulomb (N ? m2/C). Electric flux is proportional to the number of electric field 
lines penetrating some surface.
 If the surface under consideration is not perpendicular to the field, the flux 
through it must be less than that given by Equation 24.1. Consider Figure 24.2, where 
the normal to the surface of area A is at an angle u to the uniform electric field. Notice 
that the number of lines that cross this area A is equal to the number of lines that 
cross the area A!, which is a projection of area A onto a plane oriented perpendicu-
lar to the field. The area A is the product of the length and the width of the surface:  
A 5 ,w. At the left edge of the figure, we see that the widths of the surfaces are related 
by w! 5 w cos u. The area A! is given by A! 5 ,w! 5 ,w cos u and we see that the two 
areas are related by A! 5 A cos u. Because the flux through A equals the flux through 
A!, the flux through A is
 FE 5 EA! 5 EA cos u (24.2)

From this result, we see that the flux through a surface of fixed area A has a maxi-
mum value EA when the surface is perpendicular to the field (when the normal to 
the surface is parallel to the field, that is, when u 5 08 in Fig. 24.2); the flux is zero 
when the surface is parallel to the field (when the normal to the surface is perpen-
dicular to the field, that is, when u 5 908).
 In this discussion, the angle u is used to describe the orientation of the surface 
of area A. We can also interpret the angle as that between the electric field vector 
and the normal to the surface. In this case, the product E cos u in Equation 24.2 is 
the component of the electric field perpendicular to the surface. The flux through 
the surface can then be written FE  5 (E cos u)A 5 EnA, where we use En as the com-
ponent of the electric field normal to the surface.
 We assumed a uniform electric field in the preceding discussion. In more gen-
eral situations, the electric field may vary over a large surface. Therefore, the defi-
nition of flux given by Equation 24.2 has meaning only for a small element of area 
over which the field is approximately constant. Consider a general surface divided 
into a large number of small elements, each of area DAi. It is convenient to define 
a vector D A

S
i whose magnitude represents the area of the i th element of the large 

surface and whose direction is defined to be perpendicular to the surface element as 
shown in Figure 24.3. The electric field E

S
i  at the location of this element makes an 

angle ui with the vector D A
S

i. The electric flux FE , i through this element is

FE,i 5 Ei DAi  cos ui 5 E
S

i ? D A
S

i

where we have used the definition of the scalar product of two vectors  
( A

S
? B

S
; AB cos u ; see Chapter 7). Summing the contributions of all elements 

gives an approximation to the total flux through the surface:

FE < a E
S

i ? D A
S

i

If the area of each element approaches zero, the number of elements approaches 
infinity and the sum is replaced by an integral. Therefore, the general definition of 
electric flux is

 FE ; 3
surface

E
S

? d A
S

 (24.3)

Equation 24.3 is a surface integral, which means it must be evaluated over the surface 
in question. In general, the value of FE depends both on the field pattern and on 
the surface.
 We are often interested in evaluating the flux through a closed surface, defined as 
a surface that divides space into an inside and an outside region so that one cannot 
move from one region to the other without crossing the surface. The surface of a 
sphere, for example, is a closed surface. By convention, if the area element in Equa-
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Figure 24.2  Field lines repre-
senting a uniform electric field 
penetrating an area A whose nor-
mal is at an angle u to the field.
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being normal to the surface
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Figure 24.3  A small element of 
surface area DAi  in an electric field.



Flux

The area A⊥ = A cos θ.

For other values of θ the flux of air that move through is vA cos θ.
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Before we discuss a flux involved in electrostatics, we need to rewrite Eq.
23-1 in terms of vectors. To do this, we first define an area vector as being a
vector whose magnitude is equal to an area (here the area of the loop) and whose
direction is normal to the plane of the area (Fig. 23-2c). We then rewrite Eq. 23-1
as the scalar (or dot) product of the velocity vector of the airstream and the area
vector of the loop:

(23-2)

where u is the angle between and .
The word “flux” comes from the Latin word meaning “to flow.” That meaning

makes sense if we talk about the flow of air volume through the loop. However, Eq.
23-2 can be regarded in a more abstract way.To see this different way, note that we
can assign a velocity vector to each point in the airstream passing through the loop
(Fig. 23-2d). Because the composite of all those vectors is a velocity field, we can in-
terpret Eq. 23-2 as giving the flux of the velocity field through the loop. With this in-
terpretation, flux no longer means the actual flow of something through an area—
rather it means the product of an area and the field across that area.

23-3 Flux of an Electric Field
To define the flux of an electric field, consider Fig. 23-3, which shows an arbitrary
(asymmetric) Gaussian surface immersed in a nonuniform electric field. Let us
divide the surface into small squares of area !A, each square being small enough
to permit us to neglect any curvature and to consider the individual square to be
flat. We represent each such element of area with an area vector , whose mag-
nitude is the area !A. Each vector is perpendicular to the Gaussian surface
and directed away from the interior of the surface.

Because the squares have been taken to be arbitrarily small, the electric field
may be taken as constant over any given square. The vectors and for

each square then make some angle u with each other. Figure 23-3 shows an
enlarged view of three squares on the Gaussian surface and the angle u for each.

A provisional definition for the flux of the electric field for the Gaussian
surface of Fig. 23-3 is

(23-3)

This equation instructs us to visit each square on the Gaussian surface, evaluate the
scalar product for the two vectors and we find there, and sum the re-
sults algebraically (that is, with signs included) for all the squares that make up the
surface. The value of each scalar product (positive, negative, or zero) determines
whether the flux through its square is positive, negative, or zero. Squares like square
1 in Fig. 23-3, in which points inward, make a negative contribution to the sum of
Eq. 23-3. Squares like 2, in which lies in the surface, make zero contribution.
Squares like 3, in which points outward, make a positive contribution.E
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We can define flux:

Φ = vA cos θ



Electric Flux

The electric flux, ΦE , through an area A is

ΦE = EA cos θ

where θ is the angle between the electric field vector at the surface
and the normal vector to the surface.

This can be written:

ΦE = E · A

The direction of A is ⊥ to the surface, and the magnitude is the
area of the surface.



Gaussian Surface

Gaussian surface

An imaginary boundary (close surface) drawn around some region
of space in order to study electric charge and field.

The surface can be any shape you like!

It is just a tool for calculating charge or field.



Electric Flux
The electric flux ΦE through a Gaussian surface is proportional to
the net number of electric field lines passing through that surface.
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Before we discuss a flux involved in electrostatics, we need to rewrite Eq.
23-1 in terms of vectors. To do this, we first define an area vector as being a
vector whose magnitude is equal to an area (here the area of the loop) and whose
direction is normal to the plane of the area (Fig. 23-2c). We then rewrite Eq. 23-1
as the scalar (or dot) product of the velocity vector of the airstream and the area
vector of the loop:
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where u is the angle between and .
The word “flux” comes from the Latin word meaning “to flow.” That meaning

makes sense if we talk about the flow of air volume through the loop. However, Eq.
23-2 can be regarded in a more abstract way.To see this different way, note that we
can assign a velocity vector to each point in the airstream passing through the loop
(Fig. 23-2d). Because the composite of all those vectors is a velocity field, we can in-
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divide the surface into small squares of area !A, each square being small enough
to permit us to neglect any curvature and to consider the individual square to be
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and directed away from the interior of the surface.
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may be taken as constant over any given square. The vectors and for

each square then make some angle u with each other. Figure 23-3 shows an
enlarged view of three squares on the Gaussian surface and the angle u for each.

A provisional definition for the flux of the electric field for the Gaussian
surface of Fig. 23-3 is

(23-3)

This equation instructs us to visit each square on the Gaussian surface, evaluate the
scalar product for the two vectors and we find there, and sum the re-
sults algebraically (that is, with signs included) for all the squares that make up the
surface. The value of each scalar product (positive, negative, or zero) determines
whether the flux through its square is positive, negative, or zero. Squares like square
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Consider small areas of the Gaussian
surface ∆A.

Total flux through the surface:

ΦE =
∑

E · (∆A)

just the sum of all the flux through each
little area.

(
Formally, ΦE =

∮
E · dA

)



Electric Flux through Gaussian Surfaces
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Before we discuss a flux involved in electrostatics, we need to rewrite Eq.
23-1 in terms of vectors. To do this, we first define an area vector as being a
vector whose magnitude is equal to an area (here the area of the loop) and whose
direction is normal to the plane of the area (Fig. 23-2c). We then rewrite Eq. 23-1
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(23-2)

where u is the angle between and .
The word “flux” comes from the Latin word meaning “to flow.” That meaning

makes sense if we talk about the flow of air volume through the loop. However, Eq.
23-2 can be regarded in a more abstract way.To see this different way, note that we
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may be taken as constant over any given square. The vectors and for

each square then make some angle u with each other. Figure 23-3 shows an
enlarged view of three squares on the Gaussian surface and the angle u for each.

A provisional definition for the flux of the electric field for the Gaussian
surface of Fig. 23-3 is

(23-3)

This equation instructs us to visit each square on the Gaussian surface, evaluate the
scalar product for the two vectors and we find there, and sum the re-
sults algebraically (that is, with signs included) for all the squares that make up the
surface. The value of each scalar product (positive, negative, or zero) determines
whether the flux through its square is positive, negative, or zero. Squares like square
1 in Fig. 23-3, in which points inward, make a negative contribution to the sum of
Eq. 23-3. Squares like 2, in which lies in the surface, make zero contribution.
Squares like 3, in which points outward, make a positive contribution.E
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Fig. 23-2 (a) A uniform airstream of ve-
locity is perpendicular to the plane of a
square loop of area A.(b) The component
of perpendicular to the plane of the loop
is v cos u, where u is the angle between 
and a normal to the plane. (c) The area vec-
tor is perpendicular to the plane of the
loop and makes an angle u with . (d) The
velocity field intercepted by the area of the
loop.
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• The flux is positive where
the field vector point out of
the surface.

• The flux is negative where
the field vector point into
the surface.

For a closed surface:

ΦE =

∮
E · dA



Gauss’s Law

The net flux through a surface is directly proportional to the net
charge enclosed by the surface.

ε0ΦE = qenc

We can also write this same thing as an integral:

∮
E · dA =

qenc
ε0



Gauss’s Law

The net flux through a surface is directly proportional to the net
charge enclosed by the surface.

ε0Φ = qenc



Example: uniform field

Let’s draw a Gaussian surface in a uniform field.

For a cylinder, there is some symmetry: easy to calculate flux!
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The exact definition of the flux of the electric field through a closed surface is
found by allowing the area of the squares shown in Fig. 23-3 to become smaller
and smaller, approaching a differential limit dA. The area vectors then approach
a differential limit .The sum of Eq. 23-3 then becomes an integral:

(electric flux through a Gaussian surface). (23-4)

The loop on the integral sign indicates that the integration is to be taken over the
entire (closed) surface.The flux of the electric field is a scalar, and its SI unit is the
newton–square-meter per coulomb (N ! m2/C).

We can interpret Eq. 23-4 in the following way: First recall that we can use
the density of electric field lines passing through an area as a proportional mea-
sure of the magnitude of the electric field there. Specifically, the magnitude E is
proportional to the number of electric field lines per unit area. Thus, the scalar
product in Eq. 23-4 is proportional to the number of electric field lines
passing through area . Then, because the integration in Eq. 23-4 is carried out
over a Gaussian surface, which is closed, we see that

dA
:

E
:

! dA
:

E
:

" # ! E
:

! dA
:

dA
:

The electric flux " through a Gaussian surface is proportional to the net number of
electric field lines passing through that surface.

CHECKPOINT 1

The figure here shows a Gaussian cube
of face area A immersed in a uniform
electric field that has the positive
direction of the z axis. In terms of E
and A, what is the flux through (a) the
front face (which is in the xy plane),
(b) the rear face, (c) the top face, and
(d) the whole cube?

E
:

y

x

z

A

E

Sample Problem

right cap, where 0 for all points,

Finally, for the cylindrical surface, where the angle u is 90° at
all points,

Substituting these results into Eq. 23-5 leads us to

" # $EA % 0 % EA # 0. (Answer)

The net flux is zero because the field lines that represent the
electric field all pass entirely through the Gaussian surface,
from the left to the right.

"
b

 E
:

! dA
:

# " E(cos 90&) dA # 0.

"
c

 E
:

! dA
:

# " E(cos 0) dA # EA.

' #

Flux through a closed cylinder, uniform field

Figure 23-4 shows a Gaussian surface in the form of a
cylinder of radius R immersed in a uniform electric field ,
with the cylinder axis parallel to the field. What is the flux
" of the electric field through this closed surface?

We can find the flux " through the Gaussian surface by inte-
grating the scalar product over that surface.

Calculations: We can do the integration by writing the flux as
the sum of three terms: integrals over the left cylinder cap a, the
cylindrical surface b, and the right cap c.Thus, from Eq.23-4,

(23-5)

For all points on the left cap, the angle u between and
is 180° and the magnitude E of the field is uniform.Thus,

where gives the cap’s area A (# pR2). Similarly, for the" dA

"
a

 E
:

! dA
:

# " E(cos 180&) dA # $E " dA # $EA,

dA
:

E
:

# "
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 E
:

! dA
:

% "
b

 E
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:

% "
c

 E
:
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:
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:
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:

E
:
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:

E
:

KEY I DEA

Fig. 23-4 A cylindrical Gaussian surface, closed by end caps, is
immersed in a uniform electric field.The cylinder axis is parallel to
the field direction.
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Additional examples, video, and practice available at WileyPLUS
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The sides of the cylinder are ‖ to E ⇒ Φ = 0.

We only need to consider the ends.

Φ = E (πr2) cos(0) + E (πr2) cos(180◦) = 0



Example: uniform field

The total flux across the boundary is zero!

60723-3 FLUX OF AN E LECTR IC F I E LD
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The exact definition of the flux of the electric field through a closed surface is
found by allowing the area of the squares shown in Fig. 23-3 to become smaller
and smaller, approaching a differential limit dA. The area vectors then approach
a differential limit .The sum of Eq. 23-3 then becomes an integral:

(electric flux through a Gaussian surface). (23-4)

The loop on the integral sign indicates that the integration is to be taken over the
entire (closed) surface.The flux of the electric field is a scalar, and its SI unit is the
newton–square-meter per coulomb (N ! m2/C).

We can interpret Eq. 23-4 in the following way: First recall that we can use
the density of electric field lines passing through an area as a proportional mea-
sure of the magnitude of the electric field there. Specifically, the magnitude E is
proportional to the number of electric field lines per unit area. Thus, the scalar
product in Eq. 23-4 is proportional to the number of electric field lines
passing through area . Then, because the integration in Eq. 23-4 is carried out
over a Gaussian surface, which is closed, we see that
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E
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! dA
:

E
:

" # ! E
:

! dA
:

dA
:

The electric flux " through a Gaussian surface is proportional to the net number of
electric field lines passing through that surface.

CHECKPOINT 1

The figure here shows a Gaussian cube
of face area A immersed in a uniform
electric field that has the positive
direction of the z axis. In terms of E
and A, what is the flux through (a) the
front face (which is in the xy plane),
(b) the rear face, (c) the top face, and
(d) the whole cube?

E
:

y

x

z

A

E

Sample Problem

right cap, where 0 for all points,

Finally, for the cylindrical surface, where the angle u is 90° at
all points,

Substituting these results into Eq. 23-5 leads us to

" # $EA % 0 % EA # 0. (Answer)

The net flux is zero because the field lines that represent the
electric field all pass entirely through the Gaussian surface,
from the left to the right.

"
b

 E
:

! dA
:

# " E(cos 90&) dA # 0.

"
c

 E
:

! dA
:

# " E(cos 0) dA # EA.

' #

Flux through a closed cylinder, uniform field

Figure 23-4 shows a Gaussian surface in the form of a
cylinder of radius R immersed in a uniform electric field ,
with the cylinder axis parallel to the field. What is the flux
" of the electric field through this closed surface?

We can find the flux " through the Gaussian surface by inte-
grating the scalar product over that surface.

Calculations: We can do the integration by writing the flux as
the sum of three terms: integrals over the left cylinder cap a, the
cylindrical surface b, and the right cap c.Thus, from Eq.23-4,

(23-5)

For all points on the left cap, the angle u between and
is 180° and the magnitude E of the field is uniform.Thus,

where gives the cap’s area A (# pR2). Similarly, for the" dA
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Fig. 23-4 A cylindrical Gaussian surface, closed by end caps, is
immersed in a uniform electric field.The cylinder axis is parallel to
the field direction.
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From Gauss’s Law ε0Φ = qenc, we know:

qenc = 0

This is always true for any Gaussian surface in a uniform electric
field.



Gauss’s Law for a Point Charge

For a point charge, we can imagine a spherical Gaussian surface.
The field will be perpendicular to the surface at every point.

612 CHAPTE R 23 GAUSS’ LAW

HALLIDAY REVISED

CHECKPOINT 3

There is a certain net flux !i through a Gaussian sphere of radius r enclosing an iso-
lated charged particle. Suppose the enclosing Gaussian surface is changed to (a) a
larger Gaussian sphere, (b) a Gaussian cube with edge length equal to r, and (c) a
Gaussian cube with edge length equal to 2r. In each case, is the net flux through the new
Gaussian surface greater than, less than, or equal to !i?

If an excess charge is placed on an isolated conductor, that amount of charge will
move entirely to the surface of the conductor. None of the excess charge will be found
within the body of the conductor.

23-6 A Charged Isolated Conductor
Gauss’ law permits us to prove an important theorem about conductors:

This might seem reasonable, considering that charges with the same sign repel
one another.You might imagine that, by moving to the surface, the added charges
are getting as far away from one another as they can. We turn to Gauss’ law for
verification of this speculation.

Figure 23-9a shows, in cross section, an isolated lump of copper hanging from
an insulating thread and having an excess charge q. We place a Gaussian surface
just inside the actual surface of the conductor.

23-5 Gauss’ Law and Coulomb’s Law
Because Gauss’ law and Coulomb’s law are different ways of describing the rela-
tion between electric charge and electric field in static situations, we should be
able to derive each from the other. Here we derive Coulomb’s law from Gauss’
law and some symmetry considerations.

Figure 23-8 shows a positive point charge q, around which we have drawn a
concentric spherical Gaussian surface of radius r. Let us divide this surface into
differential areas dA. By definition, the area vector at any point is perpendic-
ular to the surface and directed outward from the interior. From the symmetry of
the situation, we know that at any point the electric field is also perpendicular
to the surface and directed outward from the interior. Thus, since the angle u
between and is zero, we can rewrite Eq. 23-7 for Gauss’ law as

(23-8)

Here qenc " q. Although E varies radially with distance from q, it has the same
value everywhere on the spherical surface. Since the integral in Eq. 23-8 is taken
over that surface, E is a constant in the integration and can be brought out in
front of the integral sign.That gives us

(23-9)

The integral is now merely the sum of all the differential areas dA on the sphere
and thus is just the surface area, 4pr 2. Substituting this, we have

#0E(4pr 2) " q

or (23-10)

This is exactly Eq. 22-3, which we found using Coulomb’s law.

E "
1

4$#0
 

q
r 2 .

#0E ! dA " q . 

#0 ! E
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! dA
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" #0 ! E dA " qenc 
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E
:

E
:

dA
:

Fig. 23-9 (a) A lump of copper with a
charge q hangs from an insulating thread.
A Gaussian surface is placed within the
metal, just inside the actual surface. (b) The
lump of copper now has a cavity within it.
A Gaussian surface lies within the metal,
close to the cavity surface.

Copper
surface

Gaussian
surface

(a)

(b)

Copper
surface

Gaussian
surface

Fig. 23-8 A spherical Gaussian 
surface centered on a point charge q.
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q
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Φ = 4πr2E

Gauss’s law:

ε0Φ = 4πr2E = q

so,

E =
1

4πε0

q

r2
=

kq

r2

Same as from Coulomb’s law!



Question

Imagine a Gaussian surface enclosing a dipole.

What is the net flux through the surface?



Nonconducting sheet of charge
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23-8 Applying Gauss’ Law: Planar Symmetry
Nonconducting Sheet
Figure 23-15 shows a portion of a thin, infinite, nonconducting sheet with a uni-
form (positive) surface charge density s. A sheet of thin plastic wrap, uniformly
charged on one side, can serve as a simple model. Let us find the electric field 
a distance r in front of the sheet.

A useful Gaussian surface is a closed cylinder with end caps of area A,
arranged to pierce the sheet perpendicularly as shown. From symmetry, must
be perpendicular to the sheet and hence to the end caps. Furthermore, since the
charge is positive, is directed away from the sheet, and thus the electric field
lines pierce the two Gaussian end caps in an outward direction. Because the field
lines do not pierce the curved surface, there is no flux through this portion of the
Gaussian surface.Thus is simply E dA; then Gauss’ law,

becomes

where sA is the charge enclosed by the Gaussian surface.This gives

(sheet of charge). (23-13)

Since we are considering an infinite sheet with uniform charge density, this result
holds for any point at a finite distance from the sheet. Equation 23-13 agrees with
Eq. 22-27, which we found by integration of electric field components.

Two Conducting Plates
Figure 23-16a shows a cross section of a thin, infinite conducting plate with excess
positive charge. From Section 23-6 we know that this excess charge lies on the
surface of the plate. Since the plate is thin and very large, we can assume that
essentially all the excess charge is on the two large faces of the plate.

If there is no external electric field to force the positive charge into some par-
ticular distribution, it will spread out on the two faces with a uniform surface
charge density of magnitude s1. From Eq. 23-11 we know that just outside the
plate this charge sets up an electric field of magnitude E ! s1/"0. Because the
excess charge is positive, the field is directed away from the plate.

Figure 23-16b shows an identical plate with excess negative charge having
the same magnitude of surface charge density s1. The only difference is that now
the electric field is directed toward the plate.

Suppose we arrange for the plates of Figs. 23-16a and b to be close to each
other and parallel (Fig. 23-16c). Since the plates are conductors, when we bring
them into this arrangement, the excess charge on one plate attracts the excess
charge on the other plate, and all the excess charge moves onto the inner faces of
the plates as in Fig. 23-16c.With twice as much charge now on each inner face, the
new surface charge density (call it s) on each inner face is twice s1.Thus, the elec-
tric field at any point between the plates has the magnitude

(23-14)

This field is directed away from the positively charged plate and toward the nega-
tively charged plate. Since no excess charge is left on the outer faces, the electric
field to the left and right of the plates is zero.

E !
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! qenc,

E
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:

E
:

E
:

E
:

Fig. 23-15 (a) Perspective view and (b)
side view of a portion of a very large, thin
plastic sheet, uniformly charged on one
side to surface charge density s.A closed
cylindrical Gaussian surface passes through
the sheet and is perpendicular to it.
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Fig. 23-16 (a) A thin, very large conduct-
ing plate with excess positive charge. (b) An
identical plate with excess negative charge.
(c) The two plates arranged so they are par-
allel and close.
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Again, the sides of the cylinder are ‖ to
E ⇒ Φ = 0.

We only need to consider the ends.

Φ = E (πr2) cos(0) + E (πr2) cos(0)

= 2πr2E

Then, using Gauss’s law:

ε0(2πr
2E ) = σ(πr2)

E =
σ

2ε0

which is what I claimed in the previous
lecture.



Nonconducting sheet of charge

61723-8 APPLYI NG GAUSS’ LAW: PLANAR SYM M ETRY
PART 3

HALLIDAY REVISED

23-8 Applying Gauss’ Law: Planar Symmetry
Nonconducting Sheet
Figure 23-15 shows a portion of a thin, infinite, nonconducting sheet with a uni-
form (positive) surface charge density s. A sheet of thin plastic wrap, uniformly
charged on one side, can serve as a simple model. Let us find the electric field 
a distance r in front of the sheet.

A useful Gaussian surface is a closed cylinder with end caps of area A,
arranged to pierce the sheet perpendicularly as shown. From symmetry, must
be perpendicular to the sheet and hence to the end caps. Furthermore, since the
charge is positive, is directed away from the sheet, and thus the electric field
lines pierce the two Gaussian end caps in an outward direction. Because the field
lines do not pierce the curved surface, there is no flux through this portion of the
Gaussian surface.Thus is simply E dA; then Gauss’ law,

becomes

where sA is the charge enclosed by the Gaussian surface.This gives

(sheet of charge). (23-13)

Since we are considering an infinite sheet with uniform charge density, this result
holds for any point at a finite distance from the sheet. Equation 23-13 agrees with
Eq. 22-27, which we found by integration of electric field components.

Two Conducting Plates
Figure 23-16a shows a cross section of a thin, infinite conducting plate with excess
positive charge. From Section 23-6 we know that this excess charge lies on the
surface of the plate. Since the plate is thin and very large, we can assume that
essentially all the excess charge is on the two large faces of the plate.

If there is no external electric field to force the positive charge into some par-
ticular distribution, it will spread out on the two faces with a uniform surface
charge density of magnitude s1. From Eq. 23-11 we know that just outside the
plate this charge sets up an electric field of magnitude E ! s1/"0. Because the
excess charge is positive, the field is directed away from the plate.

Figure 23-16b shows an identical plate with excess negative charge having
the same magnitude of surface charge density s1. The only difference is that now
the electric field is directed toward the plate.

Suppose we arrange for the plates of Figs. 23-16a and b to be close to each
other and parallel (Fig. 23-16c). Since the plates are conductors, when we bring
them into this arrangement, the excess charge on one plate attracts the excess
charge on the other plate, and all the excess charge moves onto the inner faces of
the plates as in Fig. 23-16c.With twice as much charge now on each inner face, the
new surface charge density (call it s) on each inner face is twice s1.Thus, the elec-
tric field at any point between the plates has the magnitude

(23-14)

This field is directed away from the positively charged plate and toward the nega-
tively charged plate. Since no excess charge is left on the outer faces, the electric
field to the left and right of the plates is zero.

E !
2#1

"0
!

#

"0
.

E !
#

2"0

"0(EA $ EA) ! #A,

"0 ! E
:

! dA
:

! qenc,

E
:

! dA
:

E
:

E
:

E
:

Fig. 23-15 (a) Perspective view and (b)
side view of a portion of a very large, thin
plastic sheet, uniformly charged on one
side to surface charge density s.A closed
cylindrical Gaussian surface passes through
the sheet and is perpendicular to it.
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Fig. 23-16 (a) A thin, very large conduct-
ing plate with excess positive charge. (b) An
identical plate with excess negative charge.
(c) The two plates arranged so they are par-
allel and close.
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Again, the sides of the cylinder are ‖ to
E ⇒ Φ = 0.

We only need to consider the ends.

Φ = E (πr2) cos(0) + E (πr2) cos(0)

= 2πr2E

Then, using Gauss’s law:

ε0(2πr
2E ) = σ(πr2)

E =
σ

2ε0

which is what I claimed in the previous
lecture.



Field between conducting plates
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23-8 Applying Gauss’ Law: Planar Symmetry
Nonconducting Sheet
Figure 23-15 shows a portion of a thin, infinite, nonconducting sheet with a uni-
form (positive) surface charge density s. A sheet of thin plastic wrap, uniformly
charged on one side, can serve as a simple model. Let us find the electric field 
a distance r in front of the sheet.

A useful Gaussian surface is a closed cylinder with end caps of area A,
arranged to pierce the sheet perpendicularly as shown. From symmetry, must
be perpendicular to the sheet and hence to the end caps. Furthermore, since the
charge is positive, is directed away from the sheet, and thus the electric field
lines pierce the two Gaussian end caps in an outward direction. Because the field
lines do not pierce the curved surface, there is no flux through this portion of the
Gaussian surface.Thus is simply E dA; then Gauss’ law,

becomes

where sA is the charge enclosed by the Gaussian surface.This gives

(sheet of charge). (23-13)

Since we are considering an infinite sheet with uniform charge density, this result
holds for any point at a finite distance from the sheet. Equation 23-13 agrees with
Eq. 22-27, which we found by integration of electric field components.

Two Conducting Plates
Figure 23-16a shows a cross section of a thin, infinite conducting plate with excess
positive charge. From Section 23-6 we know that this excess charge lies on the
surface of the plate. Since the plate is thin and very large, we can assume that
essentially all the excess charge is on the two large faces of the plate.

If there is no external electric field to force the positive charge into some par-
ticular distribution, it will spread out on the two faces with a uniform surface
charge density of magnitude s1. From Eq. 23-11 we know that just outside the
plate this charge sets up an electric field of magnitude E ! s1/"0. Because the
excess charge is positive, the field is directed away from the plate.

Figure 23-16b shows an identical plate with excess negative charge having
the same magnitude of surface charge density s1. The only difference is that now
the electric field is directed toward the plate.

Suppose we arrange for the plates of Figs. 23-16a and b to be close to each
other and parallel (Fig. 23-16c). Since the plates are conductors, when we bring
them into this arrangement, the excess charge on one plate attracts the excess
charge on the other plate, and all the excess charge moves onto the inner faces of
the plates as in Fig. 23-16c.With twice as much charge now on each inner face, the
new surface charge density (call it s) on each inner face is twice s1.Thus, the elec-
tric field at any point between the plates has the magnitude

(23-14)

This field is directed away from the positively charged plate and toward the nega-
tively charged plate. Since no excess charge is left on the outer faces, the electric
field to the left and right of the plates is zero.
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Fig. 23-15 (a) Perspective view and (b)
side view of a portion of a very large, thin
plastic sheet, uniformly charged on one
side to surface charge density s.A closed
cylindrical Gaussian surface passes through
the sheet and is perpendicular to it.
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Fig. 23-16 (a) A thin, very large conduct-
ing plate with excess positive charge. (b) An
identical plate with excess negative charge.
(c) The two plates arranged so they are par-
allel and close.
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From Gauss’s Law we can also find the field between conducting
plates with an air (or vacuum) gap separating them:

E =
σ

ε0



Some Implications of Gauss’s Law

Rules that make calculating easier!

• If an excess charge is placed on an isolated conductor, that
amount of charge will move entirely to the surface of the
conductor. None of the excess charge will be found within the
body of the conductor.

• A shell of uniform charge attracts or repels a charged particle
that is outside the shell as if all the shell’s charge were
concentrated at the center of the shell.

• If a charged particle is located inside a shell of uniform charge,
there is no electrostatic force on the particle from the shell.



Some Implications of Gauss’s Law
Excess Charge on a Conductor

If an excess charge is placed on an isolated conductor, that amount
of charge will move entirely to the surface of the conductor. None
of the excess charge will be found within the body of the
conductor.
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24.4 Conductors in Electrostatic Equilibrium
As we learned in Section 23.2, a good electrical conductor contains charges (elec-
trons) that are not bound to any atom and therefore are free to move about within 
the material. When there is no net motion of charge within a conductor, the 
 conductor is in electrostatic equilibrium. A conductor in electrostatic equilibrium 
has the following properties:

 1. The electric field is zero everywhere inside the conductor, whether the con-
ductor is solid or hollow.

 2. If the conductor is isolated and carries a charge, the charge resides on its 
surface.

 3. The electric field at a point just outside a charged conductor is perpendicu-
lar to the surface of the conductor and has a magnitude s/P0, where s is 
the surface charge density at that point.

 4. On an irregularly shaped conductor, the surface charge density is greatest 
at locations where the radius of curvature of the surface is smallest.

 We verify the first three properties in the discussion that follows. The fourth 
property is presented here (but not verified until we have studied the appropriate 
material in Chapter 25) to provide a complete list of properties for conductors in 
electrostatic equilibrium.
 We can understand the first property by considering a conducting slab placed 
in an external field E

S
 (Fig. 24.16). The electric field inside the conductor must be 

zero, assuming electrostatic equilibrium exists. If the field were not zero, free elec-
trons in the conductor would experience an electric force ( F

S
5 q E

S
) and would 

accelerate due to this force. This motion of electrons, however, would mean that 
the conductor is not in electrostatic equilibrium. Therefore, the existence of elec-
trostatic equilibrium is consistent only with a zero field in the conductor.
 Let’s investigate how this zero field is accomplished. Before the external field is 
applied, free electrons are uniformly distributed throughout the conductor. When 
the external field is applied, the free electrons accelerate to the left in Figure 
24.16, causing a plane of negative charge to accumulate on the left surface. The 
movement of electrons to the left results in a plane of positive charge on the right 
surface. These planes of charge create an additional electric field inside the con-
ductor that opposes the external field. As the electrons move, the surface charge 
densities on the left and right surfaces increase until the magnitude of the inter-
nal field equals that of the external field, resulting in a net field of zero inside 
the conductor. The time it takes a good conductor to reach equilibrium is on the 
order of 10216 s, which for most purposes can be considered instantaneous.
 If the conductor is hollow, the electric field inside the conductor is also zero, 
whether we consider points in the conductor or in the cavity within the conductor. 
The zero value of the electric field in the cavity is easiest to argue with the concept 
of electric potential, so we will address this issue in Section 25.6.
 Gauss’s law can be used to verify the second property of a conductor in electro-
static equilibrium. Figure 24.17 shows an arbitrarily shaped conductor. A gaussian  

�W  Properties of a conductor in 
electrostatic equilibrium

Gaussian
surface

Figure 24.17  A conductor of 
arbitrary shape. The broken line 
represents a gaussian surface  
that can be just inside the conduc-
tor’s surface.

The charge distributions of all these configurations do not have sufficient symmetry to make the use of Gauss’s law 
practical. We cannot find a closed surface surrounding any of these distributions for which all portions of the surface 
satisfy one or more of conditions (1) through (4) listed at the beginning of this section.

S O L U T I O N

 

▸ 24.6 c o n t i n u e d
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Figure 24.16  A conducting 
slab in an external electric field 
E
S

. The charges induced on the 
two surfaces of the slab produce 
an electric field that opposes the 
external field, giving a resultant 
field of zero inside the slab.

E = 0 inside the conductor, so the Gaussian surface shown cannot
enclose a net charge.



Charges and Conductors

Excess charge sits on the outside surface of a conductor.

Close to the surface, the electric field lines are perpendicular to the
surface.

1Figure from OpenStax College Physics.



Some Implications of Gauss’s Law

Uniform Shell of Charge

• A shell of uniform charge attracts or repels a charged particle
that is outside the shell as if all the shell’s charge were
concentrated at the center of the shell.

• If a charged particle is located inside a shell of uniform charge,
there is no electrostatic force on the particle from the shell.



Uniform Sphere of Charge
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Example 24.3   A Spherically Symmetric Charge Distribution

An insulating solid sphere of radius a has a uniform 
volume charge density r and carries a total positive 
charge Q (Fig. 24.10).

(A)  Calculate the magnitude of the electric field at a 
point outside the sphere.

Conceptualize  Notice how this problem differs from 
our previous discussion of Gauss’s law. The electric 
field due to point charges was discussed in Section 
24.2. Now we are considering the electric field due 
to a distribution of charge. We found the field for 
various distributions of charge in Chapter 23 by inte-
grating over the distribution. This example demon-
strates a difference from our discussions in Chapter 
23. In this chapter, we find the electric field using 
Gauss’s law.

Categorize  Because the charge is distributed uni-
formly throughout the sphere, the charge distribution 
has spherical symmetry and we can apply Gauss’s law to find the electric field.

Analyze To reflect the spherical symmetry, let’s choose a spherical gaussian surface of radius r, concentric with the 
sphere, as shown in Figure 24.10a. For this choice, condition (2) is satisfied everywhere on the surface and E

S
? d A

S
5 E dA.

S O L U T I O N

24.3  Application of Gauss’s Law to Various  
Charge Distributions

As mentioned earlier, Gauss’s law is useful for determining electric fields when the 
charge distribution is highly symmetric. The following examples demonstrate ways 
of choosing the gaussian surface over which the surface integral given by Equation 
24.6 can be simplified and the electric field determined. In choosing the surface, 
always take advantage of the symmetry of the charge distribution so that E can be 
removed from the integral. The goal in this type of calculation is to determine a 
surface for which each portion of the surface satisfies one or more of the following 
conditions:

 1. The value of the electric field can be argued by symmetry to be constant 
over the portion of the surface.

 2. The dot product in Equation 24.6 can be expressed as a simple algebraic 
product E dA because E

S
 and d A

S
 are parallel.

 3. The dot product in Equation 24.6 is zero because E
S

 and d A
S

 are 
perpendicular.

 4. The electric field is zero over the portion of the surface.

 Different portions of the gaussian surface can satisfy different conditions as 
long as every portion satisfies at least one condition. All four conditions are used in 
examples throughout the remainder of this chapter and will be identified by num-
ber. If the charge distribution does not have sufficient symmetry such that a gauss-
ian surface that satisfies these conditions can be found, Gauss’s law is still true, but 
is not useful for determining the electric field for that charge distribution.

Gaussian
sphere

Gaussian
sphere

For points outside the sphere, 
a large, spherical gaussian 
surface is drawn concentric 
with the sphere.

For points inside the sphere, 
a spherical gaussian surface 
smaller than the sphere is 
drawn.

r

a

r
a

Q

a b

Figure 24.10  (Example 24.3) A uniformly charged insulating 
sphere of radius a and total charge Q. In diagrams such as this one, 
the dotted line represents the intersection of the gaussian surface 
with the plane of the page.

Pitfall Prevention 24.2
Gaussian Surfaces Are Not Real  
A gaussian surface is an imaginary 
surface you construct to satisfy the 
conditions listed here. It does not 
have to coincide with a physical 
surface in the situation.

continued

Consider a uniform insulating sphere of charge, radius a, charge
density ρ, total charge Q.

How does the electric field strength change with distance from the
center?
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Example 24.3   A Spherically Symmetric Charge Distribution

An insulating solid sphere of radius a has a uniform 
volume charge density r and carries a total positive 
charge Q (Fig. 24.10).

(A)  Calculate the magnitude of the electric field at a 
point outside the sphere.

Conceptualize  Notice how this problem differs from 
our previous discussion of Gauss’s law. The electric 
field due to point charges was discussed in Section 
24.2. Now we are considering the electric field due 
to a distribution of charge. We found the field for 
various distributions of charge in Chapter 23 by inte-
grating over the distribution. This example demon-
strates a difference from our discussions in Chapter 
23. In this chapter, we find the electric field using 
Gauss’s law.

Categorize  Because the charge is distributed uni-
formly throughout the sphere, the charge distribution 
has spherical symmetry and we can apply Gauss’s law to find the electric field.

Analyze To reflect the spherical symmetry, let’s choose a spherical gaussian surface of radius r, concentric with the 
sphere, as shown in Figure 24.10a. For this choice, condition (2) is satisfied everywhere on the surface and E

S
? d A

S
5 E dA.

S O L U T I O N

24.3  Application of Gauss’s Law to Various  
Charge Distributions

As mentioned earlier, Gauss’s law is useful for determining electric fields when the 
charge distribution is highly symmetric. The following examples demonstrate ways 
of choosing the gaussian surface over which the surface integral given by Equation 
24.6 can be simplified and the electric field determined. In choosing the surface, 
always take advantage of the symmetry of the charge distribution so that E can be 
removed from the integral. The goal in this type of calculation is to determine a 
surface for which each portion of the surface satisfies one or more of the following 
conditions:

 1. The value of the electric field can be argued by symmetry to be constant 
over the portion of the surface.

 2. The dot product in Equation 24.6 can be expressed as a simple algebraic 
product E dA because E

S
 and d A

S
 are parallel.

 3. The dot product in Equation 24.6 is zero because E
S

 and d A
S

 are 
perpendicular.

 4. The electric field is zero over the portion of the surface.

 Different portions of the gaussian surface can satisfy different conditions as 
long as every portion satisfies at least one condition. All four conditions are used in 
examples throughout the remainder of this chapter and will be identified by num-
ber. If the charge distribution does not have sufficient symmetry such that a gauss-
ian surface that satisfies these conditions can be found, Gauss’s law is still true, but 
is not useful for determining the electric field for that charge distribution.

Gaussian
sphere

Gaussian
sphere

For points outside the sphere, 
a large, spherical gaussian 
surface is drawn concentric 
with the sphere.

For points inside the sphere, 
a spherical gaussian surface 
smaller than the sphere is 
drawn.
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Figure 24.10  (Example 24.3) A uniformly charged insulating 
sphere of radius a and total charge Q. In diagrams such as this one, 
the dotted line represents the intersection of the gaussian surface 
with the plane of the page.

Pitfall Prevention 24.2
Gaussian Surfaces Are Not Real  
A gaussian surface is an imaginary 
surface you construct to satisfy the 
conditions listed here. It does not 
have to coincide with a physical 
surface in the situation.

continued

∮
E · dA =

qenc
ε0

Outside sphere (for r > a):

4πr2E =
1

ε0
Q

E =
Q

4πε0r2

E =
keQ

r2

Inside sphere (for r < a):

4πr2E =
1

ε0

(
4

3
πr3ρ

)
E =

ρr

3ε0

=
keQr

a3



Uniform Sphere of Charge

732 Chapter 24 Gauss’s Law

Replace E
S

? d A
S

 in Gauss’s law with E dA: FE 5 C E
S

? d A
S

5 C E dA 5
Q
P0

By symmetry, E has the same value everywhere on the 
surface, which satisfies condition (1), so we can remove  
E from the integral:

C E dA 5 E C dA 5 E 14pr 2 2 5
Q
P0

Solve for E : (1)   E 5
Q

4pP0r 2 5 ke 
Q

r 2    1 for r .  a 2
Finalize  This field is identical to that for a point charge. Therefore, the electric field due to a uniformly charged 
sphere in the region external to the sphere is equivalent to that of a point charge located at the center of the sphere.

(B)  Find the magnitude of the electric field at a point inside the sphere.

Analyze  In this case, let’s choose a spherical gaussian surface having radius r , a, concentric with the insulating 
sphere (Fig. 24.10b). Let V 9 be the volume of this smaller sphere. To apply Gauss’s law in this situation, recognize that 
the charge q in within the gaussian surface of volume V 9 is less than Q.

S O L U T I O N

Notice that conditions (1) and (2) are satisfied every-
where on the gaussian surface in Figure 24.10b. Apply 
Gauss’s law in the region r , a :

C E dA 5 E C dA 5 E 14pr 2 2 5
q in

P0

Calculate q in by using q in5 rV 9: q in 5 rV r 5 r 1 4
3pr 3 2

Solve for E and substitute for q in: E 5
q in

4pP0r 2 5
r 1 4

3pr 3 2
4pP0r 2 5

r

3P0
 r

Substitute r 5 Q /4
3pa3 and P0 5 1/4pke : (2)   E 5

Q /4
3 pa 3

3 11/4pke 2  r 5 ke 
Q

a 3 r 1 for r ,  a 2  

Finalize  This result for E differs from the one obtained in part (A). It shows that 
E  S 0 as r S 0. Therefore, the result eliminates the problem that would exist at  
r 5 0 if E varied as 1/r 2 inside the sphere as it does outside the sphere. That is, if  
E ~ 1/r 2 for r , a, the field would be infinite at r 5 0, which is physically impossible.

Suppose the radial position r 5 a is approached from inside the 
sphere and from outside. Do we obtain the same value of the electric field from 
both directions?

Answer  Equation (1) shows that the electric field approaches a value from the out-
side given by

E 5 lim
r S a

ake 
Q

r 2 b 5 ke 
Q

a 2

From the inside, Equation (2) gives

E 5 lim
r S a

ake 
Q

a 3 rb 5 ke 
Q

a 3 a 5 ke 
Q

a 2

Therefore, the value of the field is the same as the surface is approached from 
both directions. A plot of E versus r is shown in Figure 24.11. Notice that the mag-
nitude of the field is continuous.

WHAT IF ?

a

E

a r

E 
keQ
r2

E !

!

keQ
a3 r

Figure 24.11  (Example 24.3)  
A plot of E versus r for a uniformly 
charged insulating sphere. The 
electric field inside the sphere  
(r , a) varies linearly with r. The 
field outside the sphere (r . a) is 
the same as that of a point charge  
Q located at r 5 0.

▸ 24.3 c o n t i n u e d

 

Outside the sphere, the electric field is the same as for a point
charge, strength Q, located at the center of the sphere.

Inside the sphere, field varies linearly in the distance from the
center and all charge outside the distance r cancels out!



Question
Page 621, #8

The figure shows four solid spheres, each with charge Q uniformly
distributed through its volume.

621QU E STION S
PART 3

HALLIDAY REVISED

1 A surface has the area vector What is the
flux of a uniform electric field through the area if the field is
(a) and (b) 

2 Figure 23-20 shows, in cross section, three solid cylinders, each of
length L and uniform charge Q. Concentric with each cylinder is a
cylindrical Gaussian surface, with all three surfaces having the same
radius. Rank the Gaussian surfaces according to the electric field at
any point on the surface,greatest first.

4k̂ N/C?E
:

!E
:

! 4î N/C

A
:

! (2î " 3ĵ) m2. 6 Three infinite nonconducting sheets, with uniform positive sur-
face charge densities s, 2s, and 3s, are arranged to be parallel like
the two sheets in Fig. 23-17a. What is their order, from left to right,
if the electric field produced by the arrangement has magnitude
E ! 0 in one region and E ! 2s/#0 in another region?

7 Figure 23-24 shows four situations in which four very long
rods extend into and out of the page (we see only their cross sec-
tions). The value below each cross section gives that particular
rod’s uniform charge density in microcoulombs per meter. The
rods are separated by either d or 2d as drawn, and a central point
is shown midway between the inner rods. Rank the situations ac-
cording to the magnitude of the net electric field at that central
point, greatest first.

E
:

Fig. 23-20 Question 2.

(a) (b) (c)

Gaussian
surface

Cylinder

3 Figure 23-21 shows, in cross sec-
tion, a central metal ball, two spheri-
cal metal shells, and three spherical
Gaussian surfaces of radii R, 2R, and
3R, all with the same center.The uni-
form charges on the three objects
are: ball, Q; smaller shell, 3Q; larger
shell, 5Q. Rank the Gaussian sur-
faces according to the magnitude of
the electric field at any point on the
surface, greatest first.

4 Figure 23-22 shows, in cross sec-
tion, two Gaussian spheres and two
Gaussian cubes that are centered on
a positively charged particle. (a)
Rank the net flux through the four
Gaussian surfaces, greatest first. (b)
Rank the magnitudes of the electric
fields on the surfaces, greatest first,
and indicate whether the magni-
tudes are uniform or variable along
each surface.
5 In Fig. 23-23, an electron is re-
leased between two infinite noncon-
ducting sheets that are horizontal and
have uniform surface charge densities
s(") and s($),as indicated.The electron
is subjected to the following three situ-
ations involving surface charge densi-
ties and sheet separations. Rank the
magnitudes of the electron’s accelera-
tion,greatest first.

Situation s(") s($) Separation

1 "4s $4s d
2 "7s $s 4d
3 "3s $5s 9d

Fig. 23-21 Question 3.

3R

2R

R

Shell

Gaussian
surface

Fig. 23-22 Question 4.

a
b

c

d

+q

Fig. 23-23 Question 5.

+ + + + + + +

– – – – – – –

e

(–)σ

(+)σ

(a) (b) (c) (d)

P P P P

Fig. 23-25 Question 8.

8 Figure 23-25 shows four solid spheres, each with charge 
Q uniformly distributed through its volume. (a) Rank the spheres
according to their volume charge density, greatest first. The figure
also shows a point P for each sphere, all at the same distance
from the center of the sphere. (b) Rank the spheres according to
the magnitude of the electric field they produce at point P, great-
est first.

Fig. 23-24 Question 7.

(a)

(b)

(c)

(d)

+3 +2 –2 –3

–2 +2 +8

+5

+8

–6 +5 –6

+2 –4 –4 +2

9 A small charged ball lies within the hollow of a metallic
spherical shell of radius R. For three situations, the net charges on
the ball and shell, respectively, are (1) "4q, 0; (2) $6q, "10q; (3)
"16q, $12q. Rank the situations according to the charge on (a)
the inner surface of the shell and (b) the outer surface, most posi-
tive first.

10 Rank the situations of Question 9 according to the magnitude
of the electric field (a) halfway through the shell and (b) at a point
2R from the center of the shell, greatest first.
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** View All 
Solutions Here **

Rank the spheres according to their volume charge density,
greatest first. The figure also shows a point P for each sphere, all
at the same distance from the center of the sphere.

(A) a, b, c, d

(B) d, c, b, a

(C) a and b, c, d

(D) a, b, c and d
1Halliday, Resnik, Walker
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The figure shows four solid spheres, each with charge Q uniformly
distributed through its volume.
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1 A surface has the area vector What is the
flux of a uniform electric field through the area if the field is
(a) and (b) 

2 Figure 23-20 shows, in cross section, three solid cylinders, each of
length L and uniform charge Q. Concentric with each cylinder is a
cylindrical Gaussian surface, with all three surfaces having the same
radius. Rank the Gaussian surfaces according to the electric field at
any point on the surface,greatest first.
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if the electric field produced by the arrangement has magnitude
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rod’s uniform charge density in microcoulombs per meter. The
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is shown midway between the inner rods. Rank the situations ac-
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8 Figure 23-25 shows four solid spheres, each with charge 
Q uniformly distributed through its volume. (a) Rank the spheres
according to their volume charge density, greatest first. The figure
also shows a point P for each sphere, all at the same distance
from the center of the sphere. (b) Rank the spheres according to
the magnitude of the electric field they produce at point P, great-
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9 A small charged ball lies within the hollow of a metallic
spherical shell of radius R. For three situations, the net charges on
the ball and shell, respectively, are (1) "4q, 0; (2) $6q, "10q; (3)
"16q, $12q. Rank the situations according to the charge on (a)
the inner surface of the shell and (b) the outer surface, most posi-
tive first.

10 Rank the situations of Question 9 according to the magnitude
of the electric field (a) halfway through the shell and (b) at a point
2R from the center of the shell, greatest first.
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Rank the spheres according to their volume charge density,
greatest first. The figure also shows a point P for each sphere, all
at the same distance from the center of the sphere.

(A) a, b, c, d←
(B) d, c, b, a

(C) a and b, c, d

(D) a, b, c and d
1Halliday, Resnik, Walker
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The figure shows four solid spheres, each with charge Q uniformly
distributed through its volume.

621QU E STION S
PART 3

HALLIDAY REVISED

1 A surface has the area vector What is the
flux of a uniform electric field through the area if the field is
(a) and (b) 

2 Figure 23-20 shows, in cross section, three solid cylinders, each of
length L and uniform charge Q. Concentric with each cylinder is a
cylindrical Gaussian surface, with all three surfaces having the same
radius. Rank the Gaussian surfaces according to the electric field at
any point on the surface,greatest first.

4k̂ N/C?E
:

!E
:

! 4î N/C

A
:

! (2î " 3ĵ) m2. 6 Three infinite nonconducting sheets, with uniform positive sur-
face charge densities s, 2s, and 3s, are arranged to be parallel like
the two sheets in Fig. 23-17a. What is their order, from left to right,
if the electric field produced by the arrangement has magnitude
E ! 0 in one region and E ! 2s/#0 in another region?

7 Figure 23-24 shows four situations in which four very long
rods extend into and out of the page (we see only their cross sec-
tions). The value below each cross section gives that particular
rod’s uniform charge density in microcoulombs per meter. The
rods are separated by either d or 2d as drawn, and a central point
is shown midway between the inner rods. Rank the situations ac-
cording to the magnitude of the net electric field at that central
point, greatest first.

E
:

Fig. 23-20 Question 2.

(a) (b) (c)

Gaussian
surface

Cylinder

3 Figure 23-21 shows, in cross sec-
tion, a central metal ball, two spheri-
cal metal shells, and three spherical
Gaussian surfaces of radii R, 2R, and
3R, all with the same center.The uni-
form charges on the three objects
are: ball, Q; smaller shell, 3Q; larger
shell, 5Q. Rank the Gaussian sur-
faces according to the magnitude of
the electric field at any point on the
surface, greatest first.

4 Figure 23-22 shows, in cross sec-
tion, two Gaussian spheres and two
Gaussian cubes that are centered on
a positively charged particle. (a)
Rank the net flux through the four
Gaussian surfaces, greatest first. (b)
Rank the magnitudes of the electric
fields on the surfaces, greatest first,
and indicate whether the magni-
tudes are uniform or variable along
each surface.
5 In Fig. 23-23, an electron is re-
leased between two infinite noncon-
ducting sheets that are horizontal and
have uniform surface charge densities
s(") and s($),as indicated.The electron
is subjected to the following three situ-
ations involving surface charge densi-
ties and sheet separations. Rank the
magnitudes of the electron’s accelera-
tion,greatest first.

Situation s(") s($) Separation

1 "4s $4s d
2 "7s $s 4d
3 "3s $5s 9d

Fig. 23-21 Question 3.

3R

2R

R

Shell

Gaussian
surface

Fig. 23-22 Question 4.

a
b

c

d

+q

Fig. 23-23 Question 5.
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(a) (b) (c) (d)

P P P P

Fig. 23-25 Question 8.

8 Figure 23-25 shows four solid spheres, each with charge 
Q uniformly distributed through its volume. (a) Rank the spheres
according to their volume charge density, greatest first. The figure
also shows a point P for each sphere, all at the same distance
from the center of the sphere. (b) Rank the spheres according to
the magnitude of the electric field they produce at point P, great-
est first.

Fig. 23-24 Question 7.

(a)

(b)

(c)

(d)

+3 +2 –2 –3

–2 +2 +8

+5

+8

–6 +5 –6

+2 –4 –4 +2

9 A small charged ball lies within the hollow of a metallic
spherical shell of radius R. For three situations, the net charges on
the ball and shell, respectively, are (1) "4q, 0; (2) $6q, "10q; (3)
"16q, $12q. Rank the situations according to the charge on (a)
the inner surface of the shell and (b) the outer surface, most posi-
tive first.

10 Rank the situations of Question 9 according to the magnitude
of the electric field (a) halfway through the shell and (b) at a point
2R from the center of the shell, greatest first.
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Rank the spheres according to the magnitude of the electric field
they produce at point P, greatest first.

(A) a, b, c, d

(B) d, c, b, a

(C) a and b, c, d

(D) a, b, c and d
1Halliday, Resnik, Walker



Question
Page 621, #8

The figure shows four solid spheres, each with charge Q uniformly
distributed through its volume.

621QU E STION S
PART 3

HALLIDAY REVISED

1 A surface has the area vector What is the
flux of a uniform electric field through the area if the field is
(a) and (b) 

2 Figure 23-20 shows, in cross section, three solid cylinders, each of
length L and uniform charge Q. Concentric with each cylinder is a
cylindrical Gaussian surface, with all three surfaces having the same
radius. Rank the Gaussian surfaces according to the electric field at
any point on the surface,greatest first.
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! (2î " 3ĵ) m2. 6 Three infinite nonconducting sheets, with uniform positive sur-
face charge densities s, 2s, and 3s, are arranged to be parallel like
the two sheets in Fig. 23-17a. What is their order, from left to right,
if the electric field produced by the arrangement has magnitude
E ! 0 in one region and E ! 2s/#0 in another region?

7 Figure 23-24 shows four situations in which four very long
rods extend into and out of the page (we see only their cross sec-
tions). The value below each cross section gives that particular
rod’s uniform charge density in microcoulombs per meter. The
rods are separated by either d or 2d as drawn, and a central point
is shown midway between the inner rods. Rank the situations ac-
cording to the magnitude of the net electric field at that central
point, greatest first.
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Fig. 23-20 Question 2.
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Gaussian
surface
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3 Figure 23-21 shows, in cross sec-
tion, a central metal ball, two spheri-
cal metal shells, and three spherical
Gaussian surfaces of radii R, 2R, and
3R, all with the same center.The uni-
form charges on the three objects
are: ball, Q; smaller shell, 3Q; larger
shell, 5Q. Rank the Gaussian sur-
faces according to the magnitude of
the electric field at any point on the
surface, greatest first.

4 Figure 23-22 shows, in cross sec-
tion, two Gaussian spheres and two
Gaussian cubes that are centered on
a positively charged particle. (a)
Rank the net flux through the four
Gaussian surfaces, greatest first. (b)
Rank the magnitudes of the electric
fields on the surfaces, greatest first,
and indicate whether the magni-
tudes are uniform or variable along
each surface.
5 In Fig. 23-23, an electron is re-
leased between two infinite noncon-
ducting sheets that are horizontal and
have uniform surface charge densities
s(") and s($),as indicated.The electron
is subjected to the following three situ-
ations involving surface charge densi-
ties and sheet separations. Rank the
magnitudes of the electron’s accelera-
tion,greatest first.

Situation s(") s($) Separation

1 "4s $4s d
2 "7s $s 4d
3 "3s $5s 9d

Fig. 23-21 Question 3.
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Fig. 23-25 Question 8.

8 Figure 23-25 shows four solid spheres, each with charge 
Q uniformly distributed through its volume. (a) Rank the spheres
according to their volume charge density, greatest first. The figure
also shows a point P for each sphere, all at the same distance
from the center of the sphere. (b) Rank the spheres according to
the magnitude of the electric field they produce at point P, great-
est first.

Fig. 23-24 Question 7.

(a)

(b)

(c)

(d)

+3 +2 –2 –3

–2 +2 +8

+5

+8

–6 +5 –6

+2 –4 –4 +2

9 A small charged ball lies within the hollow of a metallic
spherical shell of radius R. For three situations, the net charges on
the ball and shell, respectively, are (1) "4q, 0; (2) $6q, "10q; (3)
"16q, $12q. Rank the situations according to the charge on (a)
the inner surface of the shell and (b) the outer surface, most posi-
tive first.

10 Rank the situations of Question 9 according to the magnitude
of the electric field (a) halfway through the shell and (b) at a point
2R from the center of the shell, greatest first.
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Rank the spheres according to the magnitude of the electric field
they produce at point P, greatest first.

(A) a, b, c, d

(B) d, c, b, a

(C) a and b, c, d←
(D) a, b, c and d

1Halliday, Resnik, Walker



Some Implications of Gauss’s Law

Faraday Ice Pail

61523-7 APPLYI NG GAUSS’ LAW: CYLI N DR ICAL SYM M ETRY
PART 3

HALLIDAY REVISED

Fig. 23-12 A Gaussian surface in the
form of a closed cylinder surrounds a section
of a very long, uniformly charged, cylindrical
plastic rod.

Additional examples, video, and practice available at WileyPLUS

23-7 Applying Gauss’ Law: Cylindrical Symmetry
Figure 23-12 shows a section of an infinitely long cylindrical plastic rod with
a uniform positive linear charge density l. Let us find an expression for the mag-
nitude of the electric field at a distance r from the axis of the rod.

Our Gaussian surface should match the symmetry of the problem, which is
cylindrical.We choose a circular cylinder of radius r and length h, coaxial with the
rod. Because the Gaussian surface must be closed, we include two end caps as
part of the surface.

Imagine now that, while you are not watching, someone rotates the plastic rod
about its longitudinal axis or turns it end for end. When you look again at the rod,
you will not be able to detect any change.We conclude from this symmetry that the
only uniquely specified direction in this problem is along a radial line.Thus, at every
point on the cylindrical part of the Gaussian surface, must have the same magni-
tude E and (for a positively charged rod) must be directed radially outward.

Since 2pr is the cylinder’s circumference and h is its height, the area A of the
cylindrical surface is 2prh.The flux of through this cylindrical surface is then

! " EA cos u " E(2prh) cos 0 " E(2prh).

There is no flux through the end caps because , being radially directed, is paral-
lel to the end caps at every point.

The charge enclosed by the surface is lh, which means Gauss’ law,

#0! " qenc,

reduces to #0E(2prh) " lh,

yielding (line of charge). (23-12)

This is the electric field due to an infinitely long, straight line of charge, at a point
that is a radial distance r from the line. The direction of is radially outward
from the line of charge if the charge is positive, and radially inward if it is nega-
tive. Equation 23-12 also approximates the field of a finite line of charge at points
that are not too near the ends (compared with the distance from the line).
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There is flux only
through the
curved surface.

Fig. 23-11 (a) A negative point charge is located within a
spherical metal shell that is electrically neutral. (b) As a result,
positive charge is nonuniformly distributed on the inner wall
of the shell, and an equal amount of negative charge is uni-
formly distributed on the outer wall.
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charge of &5.0 mC, leave the inner wall and move to the
outer wall. There they spread out uniformly, as is also sug-
gested by Fig. 23-11b. This distribution of negative charge is
uniform because the shell is spherical and because the
skewed distribution of positive charge on the inner wall can-
not produce an electric field in the shell to affect the distrib-
ution of charge on the outer wall. Furthermore, these nega-
tive charges repel one another.

The field lines inside and outside the shell are shown
approximately in Fig. 23-11b. All the field lines intersect
the shell and the point charge perpendicularly. Inside the
shell the pattern of field lines is skewed because of the
skew of the positive charge distribution. Outside the shell
the pattern is the same as if the point charge were centered
and the shell were missing. In fact, this would be true no
matter where inside the shell the point charge happened to
be located.
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A charge placed inside a conducting shell appears on the outside of
the conductor.

(E = 0 for the Gaussian surface shown.)



Summary

• Electric flux

• Gauss’s law idea

• Gauss’s law implications

• Coulomb’s law from Gauss’s law

• problem solving tricks

• electric potential energy

Homework Halliday, Resnick, Walker:

• Ch 23, onward from page 622. Problems: 1, 57, 63, 65, 69

• Look ahead at Chapter 24, Electric potential.


