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Last time

• electric flux

• Gauss’s law

• implications of Gauss’s law

• Coulomb’s law from Gauss’s law

• some rules to help solve problems



Warm Up Question
Page 621, #8

The figure shows four solid spheres, each with charge Q uniformly
distributed through its volume.

621QU E STION S
PART 3

HALLIDAY REVISED

1 A surface has the area vector What is the
flux of a uniform electric field through the area if the field is
(a) and (b) 

2 Figure 23-20 shows, in cross section, three solid cylinders, each of
length L and uniform charge Q. Concentric with each cylinder is a
cylindrical Gaussian surface, with all three surfaces having the same
radius. Rank the Gaussian surfaces according to the electric field at
any point on the surface,greatest first.
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! (2î " 3ĵ) m2. 6 Three infinite nonconducting sheets, with uniform positive sur-
face charge densities s, 2s, and 3s, are arranged to be parallel like
the two sheets in Fig. 23-17a. What is their order, from left to right,
if the electric field produced by the arrangement has magnitude
E ! 0 in one region and E ! 2s/#0 in another region?

7 Figure 23-24 shows four situations in which four very long
rods extend into and out of the page (we see only their cross sec-
tions). The value below each cross section gives that particular
rod’s uniform charge density in microcoulombs per meter. The
rods are separated by either d or 2d as drawn, and a central point
is shown midway between the inner rods. Rank the situations ac-
cording to the magnitude of the net electric field at that central
point, greatest first.
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Fig. 23-20 Question 2.
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3 Figure 23-21 shows, in cross sec-
tion, a central metal ball, two spheri-
cal metal shells, and three spherical
Gaussian surfaces of radii R, 2R, and
3R, all with the same center.The uni-
form charges on the three objects
are: ball, Q; smaller shell, 3Q; larger
shell, 5Q. Rank the Gaussian sur-
faces according to the magnitude of
the electric field at any point on the
surface, greatest first.

4 Figure 23-22 shows, in cross sec-
tion, two Gaussian spheres and two
Gaussian cubes that are centered on
a positively charged particle. (a)
Rank the net flux through the four
Gaussian surfaces, greatest first. (b)
Rank the magnitudes of the electric
fields on the surfaces, greatest first,
and indicate whether the magni-
tudes are uniform or variable along
each surface.
5 In Fig. 23-23, an electron is re-
leased between two infinite noncon-
ducting sheets that are horizontal and
have uniform surface charge densities
s(") and s($),as indicated.The electron
is subjected to the following three situ-
ations involving surface charge densi-
ties and sheet separations. Rank the
magnitudes of the electron’s accelera-
tion,greatest first.

Situation s(") s($) Separation

1 "4s $4s d
2 "7s $s 4d
3 "3s $5s 9d
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8 Figure 23-25 shows four solid spheres, each with charge 
Q uniformly distributed through its volume. (a) Rank the spheres
according to their volume charge density, greatest first. The figure
also shows a point P for each sphere, all at the same distance
from the center of the sphere. (b) Rank the spheres according to
the magnitude of the electric field they produce at point P, great-
est first.

Fig. 23-24 Question 7.
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(d)
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9 A small charged ball lies within the hollow of a metallic
spherical shell of radius R. For three situations, the net charges on
the ball and shell, respectively, are (1) "4q, 0; (2) $6q, "10q; (3)
"16q, $12q. Rank the situations according to the charge on (a)
the inner surface of the shell and (b) the outer surface, most posi-
tive first.

10 Rank the situations of Question 9 according to the magnitude
of the electric field (a) halfway through the shell and (b) at a point
2R from the center of the shell, greatest first.
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Rank the spheres according to their volume charge density,
greatest first. The figure also shows a point P for each sphere, all
at the same distance from the center of the sphere.

(A) a, b, c, d

(B) d, c, b, a

(C) a and b, c, d

(D) a, b, c and d
1Halliday, Resnik, Walker
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Rank the spheres according to their volume charge density,
greatest first. The figure also shows a point P for each sphere, all
at the same distance from the center of the sphere.

(A) a, b, c, d←
(B) d, c, b, a

(C) a and b, c, d

(D) a, b, c and d
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Some Implications of Gauss’s Law

Faraday Ice Pail

61523-7 APPLYI NG GAUSS’ LAW: CYLI N DR ICAL SYM M ETRY
PART 3

HALLIDAY REVISED

Fig. 23-12 A Gaussian surface in the
form of a closed cylinder surrounds a section
of a very long, uniformly charged, cylindrical
plastic rod.

Additional examples, video, and practice available at WileyPLUS

23-7 Applying Gauss’ Law: Cylindrical Symmetry
Figure 23-12 shows a section of an infinitely long cylindrical plastic rod with
a uniform positive linear charge density l. Let us find an expression for the mag-
nitude of the electric field at a distance r from the axis of the rod.

Our Gaussian surface should match the symmetry of the problem, which is
cylindrical.We choose a circular cylinder of radius r and length h, coaxial with the
rod. Because the Gaussian surface must be closed, we include two end caps as
part of the surface.

Imagine now that, while you are not watching, someone rotates the plastic rod
about its longitudinal axis or turns it end for end. When you look again at the rod,
you will not be able to detect any change.We conclude from this symmetry that the
only uniquely specified direction in this problem is along a radial line.Thus, at every
point on the cylindrical part of the Gaussian surface, must have the same magni-
tude E and (for a positively charged rod) must be directed radially outward.

Since 2pr is the cylinder’s circumference and h is its height, the area A of the
cylindrical surface is 2prh.The flux of through this cylindrical surface is then

! " EA cos u " E(2prh) cos 0 " E(2prh).

There is no flux through the end caps because , being radially directed, is paral-
lel to the end caps at every point.

The charge enclosed by the surface is lh, which means Gauss’ law,

#0! " qenc,

reduces to #0E(2prh) " lh,

yielding (line of charge). (23-12)

This is the electric field due to an infinitely long, straight line of charge, at a point
that is a radial distance r from the line. The direction of is radially outward
from the line of charge if the charge is positive, and radially inward if it is nega-
tive. Equation 23-12 also approximates the field of a finite line of charge at points
that are not too near the ends (compared with the distance from the line).
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Fig. 23-11 (a) A negative point charge is located within a
spherical metal shell that is electrically neutral. (b) As a result,
positive charge is nonuniformly distributed on the inner wall
of the shell, and an equal amount of negative charge is uni-
formly distributed on the outer wall.
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charge of &5.0 mC, leave the inner wall and move to the
outer wall. There they spread out uniformly, as is also sug-
gested by Fig. 23-11b. This distribution of negative charge is
uniform because the shell is spherical and because the
skewed distribution of positive charge on the inner wall can-
not produce an electric field in the shell to affect the distrib-
ution of charge on the outer wall. Furthermore, these nega-
tive charges repel one another.

The field lines inside and outside the shell are shown
approximately in Fig. 23-11b. All the field lines intersect
the shell and the point charge perpendicularly. Inside the
shell the pattern of field lines is skewed because of the
skew of the positive charge distribution. Outside the shell
the pattern is the same as if the point charge were centered
and the shell were missing. In fact, this would be true no
matter where inside the shell the point charge happened to
be located.
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A charge placed inside a conducting shell appears on the outside of
the conductor.

(E = 0 for the Gaussian surface shown.)



Overview

• electrical potential energy

• dipole energy in a electric field



Potential Energy

Recall from 2A, there are many kinds of potential or stored energy:

• gravitational (U = mgh)

• elastic (U = 1
2kx

2)

potential energy

energy that a system has as a result of its configuration; stored
energy

mechanical energy

the sum of a system’s kinetic and potential energies,
Emech = K + U



Conservative Forces

Conservative forces are forces that do not dissipate energy.

They conserve mechanical energy.

If you do work to lift a book, the book stores potential energy,
because its height has increased.

If you instead do work to push a book across a table energy is lost
to friction. The stored energy of the book doesn’t change.

The work done by a conservative force is always related to
potential energy:

∆U = Uf − Ui = −W
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Conservative Forces

Only for conservative forces, we can write:

W = −∆U

where W is the work done by the system and ∆U is the change in
the potential energy of the system.

Note: “by” the system, not “on” the system!

Example: The system is a compressed spring. It does work on a
massive block, pushing the block. The amount of work done by
the spring is equal to the decrease in potential energy of the spring
(ie. −∆U).
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Non-Conservative Forces

Some forces are dissipative and do not conserve mechanical energy
(Emech = K + U).

These forces are non-conservative forces.

Examples of non-conservative forces:

• Friction

• Air resistance

Mechanical energy is converted to heat or other inaccessible forms.
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Potential Energy

192 Chapter 7 Energy of a System

 Let us imagine a system consisting of a book and the Earth, interacting via the 
gravitational force. We do some work on the system by lifting the book slowly from 
rest through a vertical displacement D rS 5 1yf 2 yi 2 ĵ as in Figure 7.15. According 
to our discussion of work as an energy transfer, this work done on the system must 
appear as an increase in energy of the system. The book is at rest before we perform 
the work and is at rest after we perform the work. Therefore, there is no change in 
the kinetic energy of the system.
 Because the energy change of the system is not in the form of kinetic energy, 
the work-kinetic energy theorem does not apply here and the energy change must 
appear as some form of energy storage other than kinetic energy. After lifting the 
book, we could release it and let it fall back to the position yi . Notice that the book 
(and therefore, the system) now has kinetic energy and that its source is in the work 
that was done in lifting the book. While the book was at the highest point, the sys-
tem had the potential to possess kinetic energy, but it did not do so until the book was 
allowed to fall. Therefore, we call the energy storage mechanism before the book 
is released potential energy. We will find that the potential energy of a system can 
only be associated with specific types of forces acting between members of a system. 
The amount of potential energy in the system is determined by the configuration of 
the system. Moving members of the system to different positions or rotating them 
may change the configuration of the system and therefore its potential energy.
 Let us now derive an expression for the potential energy associated with an object 
at a given location above the surface of the Earth. Consider an external agent lift-
ing an object of mass m from an initial height yi above the ground to a final height 
yf as in Figure 7.15. We assume the lifting is done slowly, with no acceleration, so the 
applied force from the agent is equal in magnitude to the gravitational force on the 
object: the object is modeled as a particle in equilibrium moving at constant veloc-
ity. The work done by the external agent on the system (object and the Earth) as the 
object undergoes this upward displacement is given by the product of the upward 
applied force F

S
app and the upward displacement of this force, D rS 5 Dy ĵ:

 Wext 5 1 F
S

app 2 ? D rS 5 1mg  ĵ 2 ? 3 1yf 2 yi 2  ĵ 4 5 mgyf 2 mgyi (7.18)

where this result is the net work done on the system because the applied force is the 
only force on the system from the environment. (Remember that the gravitational 
force is internal to the system.) Notice the similarity between Equation 7.18 and Equa-
tion 7.15. In each equation, the work done on a system equals a difference between 
the final and initial values of a quantity. In Equation 7.15, the work represents a trans-
fer of energy into the system and the increase in energy of the system is kinetic in 
form. In Equation 7.18, the work represents a transfer of energy into the system and 
the system energy appears in a different form, which we have called potential energy.
 Therefore, we can identify the quantity mgy as the gravitational potential 
energy Ug  of the system of an object of mass m and the Earth:
 Ug ; mgy (7.19)

The units of gravitational potential energy are joules, the same as the units of work 
and kinetic energy. Potential energy, like work and kinetic energy, is a scalar quan-
tity. Notice that Equation 7.19 is valid only for objects near the surface of the Earth, 
where g is approximately constant.3
 Using our definition of gravitational potential energy, Equation 7.18 can now be 
rewritten as
 Wext 5 DUg (7.20)

which mathematically describes that the net external work done on the system in 
this situation appears as a change in the gravitational potential energy of the system.
 Equation 7.20 is similar in form to the work–kinetic energy theorem, Equation 
7.17. In Equation 7.17, work is done on a system and energy appears in the system as 
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Pitfall Prevention 7.7
Potential Energy The phrase 
potential energy does not refer to 
something that has the poten-
tial to become energy. Potential 
energy is energy.

Pitfall Prevention 7.8
Potential Energy Belongs to a 
System Potential energy is always 
associated with a system of two or 
more interacting objects. When 
a small object moves near the 
surface of the Earth under the 
influence of gravity, we may some-
times refer to the potential energy 
“associated with the object” rather 
than the more proper “associ-
ated with the system” because the 
Earth does not move significantly. 
We will not, however, refer to the 
potential energy “of the object” 
because this wording ignores the 
role of the Earth.

3The assumption that g is constant is valid as long as the vertical displacement of the object is small compared with 
the Earth’s radius.

The work done by gravity pulling down
a mass near the Earth’s surface:

W = Fd cos θ

= F (yf − yi ) cos(180◦)

= −mg(yf − yi )

Change in gravitational potential energy

∆Ug = mg(yf − yi )

Wg = −∆Ug

where W is the work done by gravity and ∆U is the potential
energy change of the system.
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 Let us imagine a system consisting of a book and the Earth, interacting via the 
gravitational force. We do some work on the system by lifting the book slowly from 
rest through a vertical displacement D rS 5 1yf 2 yi 2 ĵ as in Figure 7.15. According 
to our discussion of work as an energy transfer, this work done on the system must 
appear as an increase in energy of the system. The book is at rest before we perform 
the work and is at rest after we perform the work. Therefore, there is no change in 
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that was done in lifting the book. While the book was at the highest point, the sys-
tem had the potential to possess kinetic energy, but it did not do so until the book was 
allowed to fall. Therefore, we call the energy storage mechanism before the book 
is released potential energy. We will find that the potential energy of a system can 
only be associated with specific types of forces acting between members of a system. 
The amount of potential energy in the system is determined by the configuration of 
the system. Moving members of the system to different positions or rotating them 
may change the configuration of the system and therefore its potential energy.
 Let us now derive an expression for the potential energy associated with an object 
at a given location above the surface of the Earth. Consider an external agent lift-
ing an object of mass m from an initial height yi above the ground to a final height 
yf as in Figure 7.15. We assume the lifting is done slowly, with no acceleration, so the 
applied force from the agent is equal in magnitude to the gravitational force on the 
object: the object is modeled as a particle in equilibrium moving at constant veloc-
ity. The work done by the external agent on the system (object and the Earth) as the 
object undergoes this upward displacement is given by the product of the upward 
applied force F
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where this result is the net work done on the system because the applied force is the 
only force on the system from the environment. (Remember that the gravitational 
force is internal to the system.) Notice the similarity between Equation 7.18 and Equa-
tion 7.15. In each equation, the work done on a system equals a difference between 
the final and initial values of a quantity. In Equation 7.15, the work represents a trans-
fer of energy into the system and the increase in energy of the system is kinetic in 
form. In Equation 7.18, the work represents a transfer of energy into the system and 
the system energy appears in a different form, which we have called potential energy.
 Therefore, we can identify the quantity mgy as the gravitational potential 
energy Ug  of the system of an object of mass m and the Earth:
 Ug ; mgy (7.19)

The units of gravitational potential energy are joules, the same as the units of work 
and kinetic energy. Potential energy, like work and kinetic energy, is a scalar quan-
tity. Notice that Equation 7.19 is valid only for objects near the surface of the Earth, 
where g is approximately constant.3
 Using our definition of gravitational potential energy, Equation 7.18 can now be 
rewritten as
 Wext 5 DUg (7.20)

which mathematically describes that the net external work done on the system in 
this situation appears as a change in the gravitational potential energy of the system.
 Equation 7.20 is similar in form to the work–kinetic energy theorem, Equation 
7.17. In Equation 7.17, work is done on a system and energy appears in the system as 
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Pitfall Prevention 7.7
Potential Energy The phrase 
potential energy does not refer to 
something that has the poten-
tial to become energy. Potential 
energy is energy.

Pitfall Prevention 7.8
Potential Energy Belongs to a 
System Potential energy is always 
associated with a system of two or 
more interacting objects. When 
a small object moves near the 
surface of the Earth under the 
influence of gravity, we may some-
times refer to the potential energy 
“associated with the object” rather 
than the more proper “associ-
ated with the system” because the 
Earth does not move significantly. 
We will not, however, refer to the 
potential energy “of the object” 
because this wording ignores the 
role of the Earth.

3The assumption that g is constant is valid as long as the vertical displacement of the object is small compared with 
the Earth’s radius.

The work done by gravity pulling down
a mass near the Earth’s surface:

W = Fd cos θ

= F (yf − yi ) cos(180◦)

= −mg(yf − yi )

Change in gravitational potential energy

∆Ug = mg(yf − yi )

Wg = −∆Ug

where W is the work done by gravity and ∆U is the potential
energy change of the system.



Potential Energy and the Electrostatic Force

The electrostatic force is a conservative force.

We can ask what is the stored energy (potential energy) of some
particular configuration of charge.

electric potential energy

The electric potential energy of a system of fixed point charges is
equal to the work that must be done on the system by an external
agent to assemble the system, bringing each charge in from an
infinite distance.



Potential Energy and the Electrostatic Force

An example!

Consider an infinite sheet of charge, density σ. It causes and
electric field E .

Potential energy change of a charge q moving a distance rf − ri?

r

q

E

Work done bringing q in from ri
to rf ?

W = Fd cos θ

= (qE )(rf − ri ) cos(0)

= qE (rf − ri )

Similar to lifting a book.



Question

In the figure, a proton moves from point i to point f in a uniform
electric field directed as shown.

(a) Does the force of the electric field do positive or negative work
on the proton?

C H A P T E R

628

E L E C T R I C  
P O T E N T I A L24
24-1 One goal of physics is to identify basic forces in our world, such as the
electric force we discussed in Chapter 21. A related goal is to determine whether
a force is conservative—that is, whether a potential energy can be associated with
it. The motivation for associating a potential energy with a force is that we can
then apply the principle of the conservation of mechanical energy to closed sys-
tems involving the force. This extremely powerful principle allows us to calculate
the results of experiments for which force calculations alone would be very diffi-
cult. Experimentally, physicists and engineers discovered that the electric force is
conservative and thus has an associated electric potential energy. In this chapter
we first define this type of potential energy and then put it to use.

24-2 Electric Potential Energy
When an electrostatic force acts between two or more charged particles within
a system of particles, we can assign an electric potential energy U to the system.
If the system changes its configuration from an initial state i to a different final
state f, the electrostatic force does work W on the particles. From Eq. 8-1, we then
know that the resulting change !U in the potential energy of the system is

!U " Uf # Ui " #W. (24-1)

As with other conservative forces, the work done by the electrostatic force is path
independent. Suppose a charged particle within the system moves from point i to
point f while an electrostatic force between it and the rest of the system acts on it.
Provided the rest of the system does not change, the work W done by the force on
the particle is the same for all paths between points i and f.

For convenience, we usually take the reference configuration of a system of
charged particles to be that in which the particles are all infinitely separated from
one another. Also, we usually set the corresponding reference potential energy to
be zero. Suppose that several charged particles come together from initially infi-
nite separations (state i) to form a system of neighboring particles (state f ). Let
the initial potential energy Ui be zero, and let W$ represent the work done by the
electrostatic forces between the particles during the move in from infinity. Then
from Eq. 24-1, the final potential energy U of the system is

U " #W$. (24-2)

W H AT  I S  P H YS I C S ?

CHECKPOINT 1

In the figure, a proton moves from point i to point f in a
uniform electric field directed as shown. (a) Does the
electric field do positive or negative work on the proton?
(b) Does the electric potential energy of the proton increase or decrease?
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(A) positive

(B) negative

1Halliday, Resnick, Walker, page 628.
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charged particles to be that in which the particles are all infinitely separated from
one another. Also, we usually set the corresponding reference potential energy to
be zero. Suppose that several charged particles come together from initially infi-
nite separations (state i) to form a system of neighboring particles (state f ). Let
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electrostatic forces between the particles during the move in from infinity. Then
from Eq. 24-1, the final potential energy U of the system is

U " #W$. (24-2)
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CHECKPOINT 1

In the figure, a proton moves from point i to point f in a
uniform electric field directed as shown. (a) Does the
electric field do positive or negative work on the proton?
(b) Does the electric potential energy of the proton increase or decrease?

E

+
f i

halliday_c24_628-655hr.qxd  9-12-2009  10:26  Page 628

(A) positive

(B) negative←

1Halliday, Resnick, Walker, page 628.



Question

In the figure, a proton moves from point i to point f in a uniform
electric field directed as shown.

(b) Does the electric potential energy of the proton increase or
decrease?
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24-2 Electric Potential Energy
When an electrostatic force acts between two or more charged particles within
a system of particles, we can assign an electric potential energy U to the system.
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state f, the electrostatic force does work W on the particles. From Eq. 8-1, we then
know that the resulting change !U in the potential energy of the system is
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As with other conservative forces, the work done by the electrostatic force is path
independent. Suppose a charged particle within the system moves from point i to
point f while an electrostatic force between it and the rest of the system acts on it.
Provided the rest of the system does not change, the work W done by the force on
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charged particles to be that in which the particles are all infinitely separated from
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In the figure, a proton moves from point i to point f in a
uniform electric field directed as shown. (a) Does the
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Question

In the figure, a proton moves from point i to point f in a uniform
electric field directed as shown.

(b) Does the electric potential energy of the proton increase or
decrease?
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charged particles to be that in which the particles are all infinitely separated from
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be zero. Suppose that several charged particles come together from initially infi-
nite separations (state i) to form a system of neighboring particles (state f ). Let
the initial potential energy Ui be zero, and let W$ represent the work done by the
electrostatic forces between the particles during the move in from infinity. Then
from Eq. 24-1, the final potential energy U of the system is

U " #W$. (24-2)
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In the figure, a proton moves from point i to point f in a
uniform electric field directed as shown. (a) Does the
electric field do positive or negative work on the proton?
(b) Does the electric potential energy of the proton increase or decrease?
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Work done against Gravity by an Applied Force

192 Chapter 7 Energy of a System

 Let us imagine a system consisting of a book and the Earth, interacting via the 
gravitational force. We do some work on the system by lifting the book slowly from 
rest through a vertical displacement D rS 5 1yf 2 yi 2 ĵ as in Figure 7.15. According 
to our discussion of work as an energy transfer, this work done on the system must 
appear as an increase in energy of the system. The book is at rest before we perform 
the work and is at rest after we perform the work. Therefore, there is no change in 
the kinetic energy of the system.
 Because the energy change of the system is not in the form of kinetic energy, 
the work-kinetic energy theorem does not apply here and the energy change must 
appear as some form of energy storage other than kinetic energy. After lifting the 
book, we could release it and let it fall back to the position yi . Notice that the book 
(and therefore, the system) now has kinetic energy and that its source is in the work 
that was done in lifting the book. While the book was at the highest point, the sys-
tem had the potential to possess kinetic energy, but it did not do so until the book was 
allowed to fall. Therefore, we call the energy storage mechanism before the book 
is released potential energy. We will find that the potential energy of a system can 
only be associated with specific types of forces acting between members of a system. 
The amount of potential energy in the system is determined by the configuration of 
the system. Moving members of the system to different positions or rotating them 
may change the configuration of the system and therefore its potential energy.
 Let us now derive an expression for the potential energy associated with an object 
at a given location above the surface of the Earth. Consider an external agent lift-
ing an object of mass m from an initial height yi above the ground to a final height 
yf as in Figure 7.15. We assume the lifting is done slowly, with no acceleration, so the 
applied force from the agent is equal in magnitude to the gravitational force on the 
object: the object is modeled as a particle in equilibrium moving at constant veloc-
ity. The work done by the external agent on the system (object and the Earth) as the 
object undergoes this upward displacement is given by the product of the upward 
applied force F

S
app and the upward displacement of this force, D rS 5 Dy ĵ:

 Wext 5 1 F
S

app 2 ? D rS 5 1mg  ĵ 2 ? 3 1yf 2 yi 2  ĵ 4 5 mgyf 2 mgyi (7.18)

where this result is the net work done on the system because the applied force is the 
only force on the system from the environment. (Remember that the gravitational 
force is internal to the system.) Notice the similarity between Equation 7.18 and Equa-
tion 7.15. In each equation, the work done on a system equals a difference between 
the final and initial values of a quantity. In Equation 7.15, the work represents a trans-
fer of energy into the system and the increase in energy of the system is kinetic in 
form. In Equation 7.18, the work represents a transfer of energy into the system and 
the system energy appears in a different form, which we have called potential energy.
 Therefore, we can identify the quantity mgy as the gravitational potential 
energy Ug  of the system of an object of mass m and the Earth:
 Ug ; mgy (7.19)

The units of gravitational potential energy are joules, the same as the units of work 
and kinetic energy. Potential energy, like work and kinetic energy, is a scalar quan-
tity. Notice that Equation 7.19 is valid only for objects near the surface of the Earth, 
where g is approximately constant.3
 Using our definition of gravitational potential energy, Equation 7.18 can now be 
rewritten as
 Wext 5 DUg (7.20)

which mathematically describes that the net external work done on the system in 
this situation appears as a change in the gravitational potential energy of the system.
 Equation 7.20 is similar in form to the work–kinetic energy theorem, Equation 
7.17. In Equation 7.17, work is done on a system and energy appears in the system as 
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lifts a book slowly from a height yi 
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Pitfall Prevention 7.7
Potential Energy The phrase 
potential energy does not refer to 
something that has the poten-
tial to become energy. Potential 
energy is energy.

Pitfall Prevention 7.8
Potential Energy Belongs to a 
System Potential energy is always 
associated with a system of two or 
more interacting objects. When 
a small object moves near the 
surface of the Earth under the 
influence of gravity, we may some-
times refer to the potential energy 
“associated with the object” rather 
than the more proper “associ-
ated with the system” because the 
Earth does not move significantly. 
We will not, however, refer to the 
potential energy “of the object” 
because this wording ignores the 
role of the Earth.

3The assumption that g is constant is valid as long as the vertical displacement of the object is small compared with 
the Earth’s radius.

The work done on the book by an
external agent:

Wapp = Fd cos θ

= Fapp(yf − yi ) cos(0◦)

= mg(yf − yi )

Change in gravitational potential energy

∆Ug = mg(yf − yi )

Wapp = ∆Ug

where W is the work done on the system and ∆U is the potential
energy change of the system.



Work done against Gravity by an Applied Force

192 Chapter 7 Energy of a System

 Let us imagine a system consisting of a book and the Earth, interacting via the 
gravitational force. We do some work on the system by lifting the book slowly from 
rest through a vertical displacement D rS 5 1yf 2 yi 2 ĵ as in Figure 7.15. According 
to our discussion of work as an energy transfer, this work done on the system must 
appear as an increase in energy of the system. The book is at rest before we perform 
the work and is at rest after we perform the work. Therefore, there is no change in 
the kinetic energy of the system.
 Because the energy change of the system is not in the form of kinetic energy, 
the work-kinetic energy theorem does not apply here and the energy change must 
appear as some form of energy storage other than kinetic energy. After lifting the 
book, we could release it and let it fall back to the position yi . Notice that the book 
(and therefore, the system) now has kinetic energy and that its source is in the work 
that was done in lifting the book. While the book was at the highest point, the sys-
tem had the potential to possess kinetic energy, but it did not do so until the book was 
allowed to fall. Therefore, we call the energy storage mechanism before the book 
is released potential energy. We will find that the potential energy of a system can 
only be associated with specific types of forces acting between members of a system. 
The amount of potential energy in the system is determined by the configuration of 
the system. Moving members of the system to different positions or rotating them 
may change the configuration of the system and therefore its potential energy.
 Let us now derive an expression for the potential energy associated with an object 
at a given location above the surface of the Earth. Consider an external agent lift-
ing an object of mass m from an initial height yi above the ground to a final height 
yf as in Figure 7.15. We assume the lifting is done slowly, with no acceleration, so the 
applied force from the agent is equal in magnitude to the gravitational force on the 
object: the object is modeled as a particle in equilibrium moving at constant veloc-
ity. The work done by the external agent on the system (object and the Earth) as the 
object undergoes this upward displacement is given by the product of the upward 
applied force F
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where this result is the net work done on the system because the applied force is the 
only force on the system from the environment. (Remember that the gravitational 
force is internal to the system.) Notice the similarity between Equation 7.18 and Equa-
tion 7.15. In each equation, the work done on a system equals a difference between 
the final and initial values of a quantity. In Equation 7.15, the work represents a trans-
fer of energy into the system and the increase in energy of the system is kinetic in 
form. In Equation 7.18, the work represents a transfer of energy into the system and 
the system energy appears in a different form, which we have called potential energy.
 Therefore, we can identify the quantity mgy as the gravitational potential 
energy Ug  of the system of an object of mass m and the Earth:
 Ug ; mgy (7.19)

The units of gravitational potential energy are joules, the same as the units of work 
and kinetic energy. Potential energy, like work and kinetic energy, is a scalar quan-
tity. Notice that Equation 7.19 is valid only for objects near the surface of the Earth, 
where g is approximately constant.3
 Using our definition of gravitational potential energy, Equation 7.18 can now be 
rewritten as
 Wext 5 DUg (7.20)

which mathematically describes that the net external work done on the system in 
this situation appears as a change in the gravitational potential energy of the system.
 Equation 7.20 is similar in form to the work–kinetic energy theorem, Equation 
7.17. In Equation 7.17, work is done on a system and energy appears in the system as 
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lifts a book slowly from a height yi 
to a height yf .
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Pitfall Prevention 7.7
Potential Energy The phrase 
potential energy does not refer to 
something that has the poten-
tial to become energy. Potential 
energy is energy.

Pitfall Prevention 7.8
Potential Energy Belongs to a 
System Potential energy is always 
associated with a system of two or 
more interacting objects. When 
a small object moves near the 
surface of the Earth under the 
influence of gravity, we may some-
times refer to the potential energy 
“associated with the object” rather 
than the more proper “associ-
ated with the system” because the 
Earth does not move significantly. 
We will not, however, refer to the 
potential energy “of the object” 
because this wording ignores the 
role of the Earth.

3The assumption that g is constant is valid as long as the vertical displacement of the object is small compared with 
the Earth’s radius.

The work done on the book by an
external agent:

Wapp = Fd cos θ

= Fapp(yf − yi ) cos(0◦)

= mg(yf − yi )

Change in gravitational potential energy

∆Ug = mg(yf − yi )

Wapp = ∆Ug

where W is the work done on the system and ∆U is the potential
energy change of the system.



Question

Now we move the proton from point i to point f in a uniform
electric field directed as shown with an applied force.

(a) Does our force do positive or negative work?
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electric force we discussed in Chapter 21. A related goal is to determine whether
a force is conservative—that is, whether a potential energy can be associated with
it. The motivation for associating a potential energy with a force is that we can
then apply the principle of the conservation of mechanical energy to closed sys-
tems involving the force. This extremely powerful principle allows us to calculate
the results of experiments for which force calculations alone would be very diffi-
cult. Experimentally, physicists and engineers discovered that the electric force is
conservative and thus has an associated electric potential energy. In this chapter
we first define this type of potential energy and then put it to use.

24-2 Electric Potential Energy
When an electrostatic force acts between two or more charged particles within
a system of particles, we can assign an electric potential energy U to the system.
If the system changes its configuration from an initial state i to a different final
state f, the electrostatic force does work W on the particles. From Eq. 8-1, we then
know that the resulting change !U in the potential energy of the system is

!U " Uf # Ui " #W. (24-1)

As with other conservative forces, the work done by the electrostatic force is path
independent. Suppose a charged particle within the system moves from point i to
point f while an electrostatic force between it and the rest of the system acts on it.
Provided the rest of the system does not change, the work W done by the force on
the particle is the same for all paths between points i and f.

For convenience, we usually take the reference configuration of a system of
charged particles to be that in which the particles are all infinitely separated from
one another. Also, we usually set the corresponding reference potential energy to
be zero. Suppose that several charged particles come together from initially infi-
nite separations (state i) to form a system of neighboring particles (state f ). Let
the initial potential energy Ui be zero, and let W$ represent the work done by the
electrostatic forces between the particles during the move in from infinity. Then
from Eq. 24-1, the final potential energy U of the system is

U " #W$. (24-2)

W H AT  I S  P H YS I C S ?

CHECKPOINT 1

In the figure, a proton moves from point i to point f in a
uniform electric field directed as shown. (a) Does the
electric field do positive or negative work on the proton?
(b) Does the electric potential energy of the proton increase or decrease?
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Potential Energy of two point charges

Consider two charges q1 and q2 at a distance r .

They repel each other. Bringing them to that configuration
requires work.

r
q1 q2
+ +

Fig. 24-15 Two charges held a
fixed distance r apart.

The electric potential energy of a system of fixed point charges is equal to the work
that must be done by an external agent to assemble the system, bringing each charge in
from an infinite distance.

24-11 Electric Potential Energy of a System 
of Point Charges

In Section 24-2, we discussed the electric potential energy of a charged particle as
an electrostatic force does work on it. In that section, we assumed that the charges
that produced the force were fixed in place, so that neither the force nor the corre-
sponding electric field could be influenced by the presence of the test charge. In
this section we can take a broader view, to find the electric potential energy of a
system of charges due to the electric field produced by those same charges.

For a simple example, suppose you push together two bodies that have
charges of the same electrical sign.The work that you must do is stored as electric
potential energy in the two-body system (provided the kinetic energy of the bod-
ies does not change). If you later release the charges, you can recover this stored
energy, in whole or in part, as kinetic energy of the charged bodies as they rush
away from each other.

We define the electric potential energy of a system of point charges, held in
fixed positions by forces not specified, as follows:
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Sample Problem

try about that axis. Thus, we want the component Ez of in
the direction of z.This component is the negative of the rate
at which the electric potential changes with distance z.

Calculation: Thus, from the last of Eqs.24-41,we can write

(Answer)

This is the same expression that we derived in Section 22-7
by integration, using Coulomb’s law.

 !
"

2#0
 !1 $

z2z2 %  R2 ".

 Ez ! $
&V
&z

! $
"

2#0
 

d
dz

 (2z2 % R2 $ z)

E
:

Additional examples, video, and practice available at WileyPLUS

Finding the field from the potential

The electric potential at any point on the central axis of a
uniformly charged disk is given by Eq. 24-37,

Starting with this expression, derive an expression for the
electric field at any point on the axis of the disk.

We want the electric field as a function of distance z along
the axis of the disk. For any value of z, the direction of 
must be along that axis because the disk has circular symme-

E
:

E
:

V !
"

2#0
 (√z2 % R2 $ z).

KEY I DEAS

We assume that the charges are stationary both in their initial infinitely distant
positions and in their final assembled configuration.

Figure 24-15 shows two point charges q1 and q2, separated by a distance r. To
find the electric potential energy of this two-charge system, we must mentally build
the system, starting with both charges infinitely far away and at rest.When we bring
q1 in from infinity and put it in place, we do no work because no electrostatic force
acts on q1. However, when we next bring q2 in from infinity and put it in place, we
must do work because q1 exerts an electrostatic force on q2 during the move.

We can calculate that work with Eq. 24-8 by dropping the minus sign (so that
the equation gives the work we do rather than the field’s work) and substituting q2

for the general charge q. Our work is then equal to q2V, where V is the potential that
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Define U(∞) = 0 so that U(r) = ∆U = U(r) − U(∞)

Then, the potential energy of two point charges is:

U(r) =
kq1q2
r



Potential Energy of many point charges

Suppose we have three point charges.

Let

U12 =
k q1q2
r12

Then the total potential energy of the configuration is:

Unet = U12 + U13 + U23

Just add up all the pairwise potential energies!



Potential Energy

We already talked about the potential energy charge has due to
the electric field of other charges in its vicinity.

Now, we think about the potential energy of a dipole in an electric
field.



Electric Dipole in an Electric Field

Remember:

electric dipole

A pair of charges of equal magnitude q but opposite sign,
separated by a distance, d .

A water molecule is an example
594 CHAPTE R 22 E LECTR IC F I E LDS

22-9 A Dipole in an Electric Field
We have defined the electric dipole moment of an electric dipole to be a vector that
points from the negative to the positive end of the dipole.As you will see, the behavior
of a dipole in a uniform external electric field can be described completely in terms
of the two vectors and ,with no need of any details about the dipole’s structure.

A molecule of water (H2O) is an electric dipole; Fig. 22-18 shows why. There
the black dots represent the oxygen nucleus (having eight protons) and the two
hydrogen nuclei (having one proton each). The colored enclosed areas represent
the regions in which electrons can be located around the nuclei.

In a water molecule, the two hydrogen atoms and the oxygen atom do not
lie on a straight line but form an angle of about 105°, as shown in Fig. 22-18. As
a result, the molecule has a definite “oxygen side” and “hydrogen side.”
Moreover, the 10 electrons of the molecule tend to remain closer to the oxygen
nucleus than to the hydrogen nuclei. This makes the oxygen side of the molecule
slightly more negative than the hydrogen side and creates an electric dipole
moment that points along the symmetry axis of the molecule as shown.
If the water molecule is placed in an external electric field, it behaves as would be
expected of the more abstract electric dipole of Fig. 22-8.

To examine this behavior, we now consider such an abstract dipole in a uniform
external electric field , as shown in Fig. 22-19a.We assume that the dipole is a rigid
structure that consists of two centers of opposite charge, each of magnitude q, sepa-
rated by a distance d.The dipole moment makes an angle u with field .

Electrostatic forces act on the charged ends of the dipole. Because the
electric field is uniform, those forces act in opposite directions (as shown in
Fig. 22-19a) and with the same magnitude F ! qE. Thus, because the field is
uniform, the net force on the dipole from the field is zero and the center of mass
of the dipole does not move. However, the forces on the charged ends do produce
a net torque t: on the dipole about its center of mass. The center of mass lies on
the line connecting the charged ends, at some distance x from one end and thus
a distance d " x from the other end. From Eq. 10-39 (t ! rF sin f), we can write
the magnitude of the net torque t: as

t ! Fx sin u # F(d " x) sin u ! Fd sin u. (22-32)

We can also write the magnitude of t: in terms of the magnitudes of the elec-
tric field E and the dipole moment p ! qd. To do so, we substitute qE for F and
p/q for d in Eq. 22-32, finding that the magnitude of t: is

t ! pE sin u. (22-33)

We can generalize this equation to vector form as

(torque on a dipole). (22-34)

Vectors p: and are shown in Fig. 22-19b. The torque acting on a dipole tends to
rotate p: (hence the dipole) into the direction of field , thereby reducing u. In
Fig. 22-19, such rotation is clockwise. As we discussed in Chapter 10, we can rep-
resent a torque that gives rise to a clockwise rotation by including a minus sign
with the magnitude of the torque.With that notation, the torque of Fig. 22-19 is

t ! "pE sin u. (22-35)

Potential Energy of an Electric Dipole
Potential energy can be associated with the orientation of an electric dipole in an
electric field. The dipole has its least potential energy when it is in its equilibrium
orientation, which is when its moment p: is lined up with the field (thenE
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Fig. 22-18 A molecule of H2O, showing
the three nuclei (represented by dots) and
the regions in which the electrons can be lo-
cated.The electric dipole moment p: points
from the (negative) oxygen side to the (pos-
itive) hydrogen side of the molecule.
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Fig. 22-19 (a) An electric dipole in a
uniform external electric field E
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ters of equal but opposite charge are sepa-
rated by distance d. The line between them
represents their rigid connection. (b) Field
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by the symbol !.
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Electric Dipole in an Electric Field
Because the net charge of a dipole is zero, the net force is zero
also. But there is a torque!
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θ is the angle between the p and E

τ = Fd sin θ

= (qE )d sin θ

and p = qd

τ = pE sin θ clockwise

(It is clockwise for this diagram, but
in general you must consider the
direction of the field and the
orientation of the dipole.)

τττ = p× E



Electric Dipole in an Electric Field

We can also find an expression for the potential energy of a dipole
in an E-field.
Define U = 0 when θ = 90◦ (the dipole is ⊥ to the field lines).

U = −pE cos θ

U = −p · E



Question: Electric Dipole in an Electric Field
The figure shows four orientations of an electric dipole in an
external electric field. Rank the orientations according to the
magnitude of the torque on the dipole, greatest first.

59522-9 A DI POLE I N AN E LECTR IC F I E LD
PART 3

). It has greater potential energy in all other orientations. Thus
the dipole is like a pendulum, which has its least gravitational potential energy in
its equilibrium orientation—at its lowest point. To rotate the dipole or the
pendulum to any other orientation requires work by some external agent.

In any situation involving potential energy, we are free to define the zero-
potential-energy configuration in a perfectly arbitrary way because only differ-
ences in potential energy have physical meaning. It turns out that the expres-
sion for the potential energy of an electric dipole in an external electric field is
simplest if we choose the potential energy to be zero when the angle u in Fig.
22-19 is 90°. We then can find the potential energy U of the dipole at any other
value of u with Eq. 8-1 (!U " #W) by calculating the work W done by the field
on the dipole when the dipole is rotated to that value of u from 90°.With the aid
of Eq. 10-53 (W " !t du) and Eq. 22-35, we find that the potential energy U at
any angle u is

(22-36)

Evaluating the integral leads to

U " #pE cos u. (22-37)

We can generalize this equation to vector form as

(potential energy of a dipole). (22-38)

Equations 22-37 and 22-38 show us that the potential energy of the dipole is least
( ) when ( and are in the same direction); the potential energy is
greatest ( ) when 180° ( and are in opposite directions).

When a dipole rotates from an initial orientation ui to another orientation uf,
the work W done on the dipole by the electric field is

W " #!U " #(Uf # Ui), (22-39)

where Uf and Ui are calculated with Eq. 22-38. If the change in orientation is
caused by an applied torque (commonly said to be due to an external agent), then
the work Wa done on the dipole by the applied torque is the negative of the work
done on the dipole by the field; that is,

Wa " #W " (Uf # Ui). (22-40)

Microwave Cooking
Food can be warmed and cooked in a microwave oven if the food contains water
because water molecules are electric dipoles. When you turn on the oven, the mi-
crowave source sets up a rapidly oscillating electric field within the oven and
thus also within the food. From Eq. 22-34, we see that any electric field pro-
duces a torque on an electric dipole moment to align with . Because the
oven’s oscillates, the water molecules continuously flip-flop in a frustrated at-
tempt to align with .

Energy is transferred from the electric field to the thermal energy of the water
(and thus of the food) where three water molecules happened to have bonded to-
gether to form a group. The flip-flop breaks some of the bonds. When the mole-
cules reform the bonds, energy is transferred to the random motion of the group
and then to the surrounding molecules. Soon, the thermal energy of the water is
enough to cook the food. Sometimes the heating is surprising. If you heat a jelly
donut, for example, the jelly (which holds a lot of water) heats far more than the
donut material (which holds much less water). Although the exterior of the donut
may not be hot, biting into the jelly can burn you. If water molecules were not
electric dipoles, we would not have microwave ovens.
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CHECKPOINT 4

The figure shows four orientations of an
electric dipole in an external electric
field. Rank the orientations according
to (a) the magnitude of the torque on
the dipole and (b) the potential energy
of the dipole, greatest first.
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Question: Electric Dipole in an Electric Field
The figure shows four orientations of an electric dipole in an
external electric field. Rank the orientations according to the
magnitude of the torque on the dipole, greatest first.

59522-9 A DI POLE I N AN E LECTR IC F I E LD
PART 3

). It has greater potential energy in all other orientations. Thus
the dipole is like a pendulum, which has its least gravitational potential energy in
its equilibrium orientation—at its lowest point. To rotate the dipole or the
pendulum to any other orientation requires work by some external agent.

In any situation involving potential energy, we are free to define the zero-
potential-energy configuration in a perfectly arbitrary way because only differ-
ences in potential energy have physical meaning. It turns out that the expres-
sion for the potential energy of an electric dipole in an external electric field is
simplest if we choose the potential energy to be zero when the angle u in Fig.
22-19 is 90°. We then can find the potential energy U of the dipole at any other
value of u with Eq. 8-1 (!U " #W) by calculating the work W done by the field
on the dipole when the dipole is rotated to that value of u from 90°.With the aid
of Eq. 10-53 (W " !t du) and Eq. 22-35, we find that the potential energy U at
any angle u is

(22-36)

Evaluating the integral leads to

U " #pE cos u. (22-37)

We can generalize this equation to vector form as

(potential energy of a dipole). (22-38)

Equations 22-37 and 22-38 show us that the potential energy of the dipole is least
( ) when ( and are in the same direction); the potential energy is
greatest ( ) when 180° ( and are in opposite directions).

When a dipole rotates from an initial orientation ui to another orientation uf,
the work W done on the dipole by the electric field is

W " #!U " #(Uf # Ui), (22-39)

where Uf and Ui are calculated with Eq. 22-38. If the change in orientation is
caused by an applied torque (commonly said to be due to an external agent), then
the work Wa done on the dipole by the applied torque is the negative of the work
done on the dipole by the field; that is,

Wa " #W " (Uf # Ui). (22-40)

Microwave Cooking
Food can be warmed and cooked in a microwave oven if the food contains water
because water molecules are electric dipoles. When you turn on the oven, the mi-
crowave source sets up a rapidly oscillating electric field within the oven and
thus also within the food. From Eq. 22-34, we see that any electric field pro-
duces a torque on an electric dipole moment to align with . Because the
oven’s oscillates, the water molecules continuously flip-flop in a frustrated at-
tempt to align with .

Energy is transferred from the electric field to the thermal energy of the water
(and thus of the food) where three water molecules happened to have bonded to-
gether to form a group. The flip-flop breaks some of the bonds. When the mole-
cules reform the bonds, energy is transferred to the random motion of the group
and then to the surrounding molecules. Soon, the thermal energy of the water is
enough to cook the food. Sometimes the heating is surprising. If you heat a jelly
donut, for example, the jelly (which holds a lot of water) heats far more than the
donut material (which holds much less water). Although the exterior of the donut
may not be hot, biting into the jelly can burn you. If water molecules were not
electric dipoles, we would not have microwave ovens.
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CHECKPOINT 4

The figure shows four orientations of an
electric dipole in an external electric
field. Rank the orientations according
to (a) the magnitude of the torque on
the dipole and (b) the potential energy
of the dipole, greatest first.
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Question: Electric Dipole in an Electric Field
The figure shows four orientations of an electric dipole in an
external electric field. Rank the orientations according to the
potential energy of the dipole, greatest first.

59522-9 A DI POLE I N AN E LECTR IC F I E LD
PART 3

). It has greater potential energy in all other orientations. Thus
the dipole is like a pendulum, which has its least gravitational potential energy in
its equilibrium orientation—at its lowest point. To rotate the dipole or the
pendulum to any other orientation requires work by some external agent.

In any situation involving potential energy, we are free to define the zero-
potential-energy configuration in a perfectly arbitrary way because only differ-
ences in potential energy have physical meaning. It turns out that the expres-
sion for the potential energy of an electric dipole in an external electric field is
simplest if we choose the potential energy to be zero when the angle u in Fig.
22-19 is 90°. We then can find the potential energy U of the dipole at any other
value of u with Eq. 8-1 (!U " #W) by calculating the work W done by the field
on the dipole when the dipole is rotated to that value of u from 90°.With the aid
of Eq. 10-53 (W " !t du) and Eq. 22-35, we find that the potential energy U at
any angle u is

(22-36)

Evaluating the integral leads to

U " #pE cos u. (22-37)

We can generalize this equation to vector form as

(potential energy of a dipole). (22-38)

Equations 22-37 and 22-38 show us that the potential energy of the dipole is least
( ) when ( and are in the same direction); the potential energy is
greatest ( ) when 180° ( and are in opposite directions).

When a dipole rotates from an initial orientation ui to another orientation uf,
the work W done on the dipole by the electric field is

W " #!U " #(Uf # Ui), (22-39)

where Uf and Ui are calculated with Eq. 22-38. If the change in orientation is
caused by an applied torque (commonly said to be due to an external agent), then
the work Wa done on the dipole by the applied torque is the negative of the work
done on the dipole by the field; that is,

Wa " #W " (Uf # Ui). (22-40)

Microwave Cooking
Food can be warmed and cooked in a microwave oven if the food contains water
because water molecules are electric dipoles. When you turn on the oven, the mi-
crowave source sets up a rapidly oscillating electric field within the oven and
thus also within the food. From Eq. 22-34, we see that any electric field pro-
duces a torque on an electric dipole moment to align with . Because the
oven’s oscillates, the water molecules continuously flip-flop in a frustrated at-
tempt to align with .

Energy is transferred from the electric field to the thermal energy of the water
(and thus of the food) where three water molecules happened to have bonded to-
gether to form a group. The flip-flop breaks some of the bonds. When the mole-
cules reform the bonds, energy is transferred to the random motion of the group
and then to the surrounding molecules. Soon, the thermal energy of the water is
enough to cook the food. Sometimes the heating is surprising. If you heat a jelly
donut, for example, the jelly (which holds a lot of water) heats far more than the
donut material (which holds much less water). Although the exterior of the donut
may not be hot, biting into the jelly can burn you. If water molecules were not
electric dipoles, we would not have microwave ovens.
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The figure shows four orientations of an
electric dipole in an external electric
field. Rank the orientations according
to (a) the magnitude of the torque on
the dipole and (b) the potential energy
of the dipole, greatest first.
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Question: Electric Dipole in an Electric Field
The figure shows four orientations of an electric dipole in an
external electric field. Rank the orientations according to the
potential energy of the dipole, greatest first.
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). It has greater potential energy in all other orientations. Thus
the dipole is like a pendulum, which has its least gravitational potential energy in
its equilibrium orientation—at its lowest point. To rotate the dipole or the
pendulum to any other orientation requires work by some external agent.

In any situation involving potential energy, we are free to define the zero-
potential-energy configuration in a perfectly arbitrary way because only differ-
ences in potential energy have physical meaning. It turns out that the expres-
sion for the potential energy of an electric dipole in an external electric field is
simplest if we choose the potential energy to be zero when the angle u in Fig.
22-19 is 90°. We then can find the potential energy U of the dipole at any other
value of u with Eq. 8-1 (!U " #W) by calculating the work W done by the field
on the dipole when the dipole is rotated to that value of u from 90°.With the aid
of Eq. 10-53 (W " !t du) and Eq. 22-35, we find that the potential energy U at
any angle u is

(22-36)

Evaluating the integral leads to

U " #pE cos u. (22-37)

We can generalize this equation to vector form as

(potential energy of a dipole). (22-38)

Equations 22-37 and 22-38 show us that the potential energy of the dipole is least
( ) when ( and are in the same direction); the potential energy is
greatest ( ) when 180° ( and are in opposite directions).

When a dipole rotates from an initial orientation ui to another orientation uf,
the work W done on the dipole by the electric field is

W " #!U " #(Uf # Ui), (22-39)

where Uf and Ui are calculated with Eq. 22-38. If the change in orientation is
caused by an applied torque (commonly said to be due to an external agent), then
the work Wa done on the dipole by the applied torque is the negative of the work
done on the dipole by the field; that is,

Wa " #W " (Uf # Ui). (22-40)

Microwave Cooking
Food can be warmed and cooked in a microwave oven if the food contains water
because water molecules are electric dipoles. When you turn on the oven, the mi-
crowave source sets up a rapidly oscillating electric field within the oven and
thus also within the food. From Eq. 22-34, we see that any electric field pro-
duces a torque on an electric dipole moment to align with . Because the
oven’s oscillates, the water molecules continuously flip-flop in a frustrated at-
tempt to align with .

Energy is transferred from the electric field to the thermal energy of the water
(and thus of the food) where three water molecules happened to have bonded to-
gether to form a group. The flip-flop breaks some of the bonds. When the mole-
cules reform the bonds, energy is transferred to the random motion of the group
and then to the surrounding molecules. Soon, the thermal energy of the water is
enough to cook the food. Sometimes the heating is surprising. If you heat a jelly
donut, for example, the jelly (which holds a lot of water) heats far more than the
donut material (which holds much less water). Although the exterior of the donut
may not be hot, biting into the jelly can burn you. If water molecules were not
electric dipoles, we would not have microwave ovens.

E
:

E
:

E
:

p:p:
E
:

E
:

E
:

p:$ "U " pE
E
:

p:$ " 0U " #pE

U " #p:
 
! E

:

U " #W " #"$

90%

 & d$ " "$

90%
 pE sin $ d$.

&: " p: " E
:

" 0

CHECKPOINT 4

The figure shows four orientations of an
electric dipole in an external electric
field. Rank the orientations according
to (a) the magnitude of the torque on
the dipole and (b) the potential energy
of the dipole, greatest first.

Eθ
θ

(1)

(3)

(2)

(4)

+ +

+ +

θ
θ

halliday_c22_580-604hr.qxd  7-12-2009  14:16  Page 595

(A) 1, 2, 3, 4

(B) 1 and 3, 2 and 4←
(C) 2 and 4, 1 and 3

(D) all the same
1Page 595, Halliday, Resnick, Walker.



Microwave Ovens

An application of the fact that a dipole experiences a torque in an
electric field is microwave cooking.

Microwave ovens produce electric fields that change direction
rapidly.

Since water molecules are dipoles, they begin to rotate to align
with the field, back and forth.

This motion becomes thermal energy in the food.



Summary

• electric potential energy

Homework Halliday, Resnick, Walker:

• work through the sample problems on page 643 and 644

• Ch 24, onward from page 646. Problems: 98, 102

• Ch 22, onward from page 597. Problems: 57


