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Last time

• electric potential energy

• potential energy of a pair of charges

• potential energy of a configuration of many charges

• dipole in an electric field



Overview

• Electric potential

• Equipotential surfaces

• relating potenital and electric field



Electric Potential

Electric potential is a new quantity that relates the effect of a
charge configuration to the potential energy that a test charge
would have in that environment.

It is denoted V .

electric potential, V

the potential energy per unit charge:

V =
U

q

V has a unique value at any point in an electric field.

It is characteristic only of the electric field, meaning it can be
determined just from the field.



Electric Potential

Potential is potential energy per unit charge:

V =
U

q

The units are Volts, V .

1 V = 1 J/C = 1 A Ω = 1 kg m2

A s3

Volts are also the units of potential difference, the change in
potential: ∆V .



Electric Potential and Potential Energy

Electric potential gives the potential energy that would be
associated with test charge q0 if it were at a certain point P.

UP,q0 = q0Vp
 25.3 Electric Potential and Potential Energy Due to Point Charges 753

 We obtain the electric potential resulting from two or more point charges by 
applying the superposition principle. That is, the total electric potential at some 
point P due to several point charges is the sum of the potentials due to the individual 
charges. For a group of point charges, we can write the total electric potential at P as

 V 5 ke a
i

 
qi

ri
 (25.12)

Figure 25.8a shows a charge q1, which sets up an electric field throughout space. 
The charge also establishes an electric potential at all points, including point P, 
where the electric potential is V1. Now imagine that an external agent brings a 
charge q2 from infinity to point P. The work that must be done to do this is given 
by Equation 25.4, W 5 q2DV. This work represents a transfer of energy across the 
boundary of the two-charge system, and the energy appears in the system as poten-
tial energy U when the particles are separated by a distance r12 as in Figure 25.8b. 
From Equation 8.2, we have W 5 DU. Therefore, the electric potential energy of a 
pair of point charges1 can be found as follows:

 DU 5 W 5 q2DV    S   U 2 0 5 q 2 ake

q 1

r12
2 0b 

 U 5 ke 
q1q2

r12
 (25.13)

If the charges are of the same sign, then U is positive. Positive work must be done by 
an external agent on the system to bring the two charges near each other (because 
charges of the same sign repel). If the charges are of opposite sign, as in Figure 25.8b, 
then U is negative. Negative work is done by an external agent against the attractive 
force between the charges of opposite sign as they are brought near each other; a force 
must be applied opposite the displacement to prevent q2 from accelerating toward q1.
 If the system consists of more than two charged particles, we can obtain the total 
potential energy of the system by calculating U for every pair of charges and sum-
ming the terms algebraically. For example, the total potential energy of the system 
of three charges shown in Figure 25.9 is

 U 5 ke aq1q2

r12
1

q1q3

r13
1

q2q3

r23
b  (25.14)

Physically, this result can be interpreted as follows. Imagine q1 is fixed at the posi-
tion shown in Figure 25.9 but q2 and q3 are at infinity. The work an external agent 
must do to bring q2 from infinity to its position near q1 is keq1q2/r12, which is the first 
term in Equation 25.14. The last two terms represent the work required to bring q3 
from infinity to its position near q1 and q2. (The result is independent of the order 
in which the charges are transported.)

�W  Electric potential due to  
several point charges

1The expression for the electric potential energy of a system made up of two point charges, Equation 25.13, is of the 
same form as the equation for the gravitational potential energy of a system made up of two point masses, 2Gm1m2/r 
(see Chapter 13). The similarity is not surprising considering that both expressions are derived from an inverse-
square force law.
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Figure 25.8 (a) Charge q1  
establishes an electric potential 
V1 at point P. (b) Charge q2 is 
brought from infinity to point P.
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The potential energy of this 
system of charges is given by 
Equation 25.14.

Figure 25.9  Three point 
charges are fixed at the positions 
shown.

1Figure from Serway and Jewett, 9th ed.
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For a point charge q2, its potential energy when near another point
charge q1 is

U =
k q1q2

r

We say that the electric potential at point P due to q1 is

V =
k q1
r

so that if a charge q2 is placed there:

q2V = q2

(
k q1
r

)
= U

gives the potential energy of the 2-charge configuration!



Electric Potential and Potential Energy
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Electric Field and Electric Potential

Potential, V , is potential energy per unit charge:

U = qV

Electric field, E, is force per unit charge:

F = q E

Notice the relation! Both quantities are defined so that we can
predict physical quantities associated with putting a charge at a
certain point.



Electric Field and Electric Potential

Table of quantities for the field and potential of a point charge Q.

electric field electric potential

at point P E = k Q
r2 V = k Q

r

charge q0 at P Fq0 =
k Q q0
r2 U = k Q q0

r



Equipotential Surfaces

The fields from charges extend out in 3 dimensions.

We can find 2-dimensional surfaces of constant electric potential.

These surfaces are called equipotentials.

750 Chapter 25 Electric Potential

Example 25.1   The Electric Field Between Two Parallel Plates of Opposite Charge

A battery has a specified potential difference DV between its terminals and establishes that potential difference between 
conductors attached to the terminals. A 12-V battery is connected between two parallel plates as shown in Figure 25.5. 
The separation between the plates is d 5 0.30 cm, and we assume the electric field between the plates to be uniform. 
(This assumption is reasonable if the plate separation is small relative to the plate dimensions and we do not consider 
locations near the plate edges.) Find the magnitude of the electric field between the plates.

A system consisting of a negative charge and an electric field gains electric potential 
energy when the charge moves in the direction of the field. If a negative charge is 
released from rest in an electric field, it accelerates in a direction opposite the direc-
tion of the field. For the negative charge to move in the direction of the field, an 
external agent must apply a force and do positive work on the charge.
 Now consider the more general case of a charged particle that moves between ! 
and " in a uniform electric field such that the vector sS is not parallel to the field 
lines as shown in Figure 25.3. In this case, Equation 25.3 gives

 DV 5 23
"

!

E
S

? d sS 5 2 E
S

?3
"

!

d sS 5 2 E
S

? sS (25.8)

where again E
S

 was removed from the integral because it is constant. The change in 
potential energy of the charge–field system is

 DU 5 q DV 5 2q E
S

? sS  (25.9)

 Finally, we conclude from Equation 25.8 that all points in a plane perpendicular 
to a uniform electric field are at the same electric potential. We can see that in 
Figure 25.3, where the potential difference V" 2 V! is equal to the potential dif-
ference V# 2 V!. (Prove this fact to yourself by working out two dot products for 
E
S

? sS: one for sS!S", where the angle u between E
S

 and sS is arbitrary as shown in 
Figure 25.3, and one for sS!S#, where u 5 0.) Therefore, V" 5 V#. The name equi-
potential surface is given to any surface consisting of a continuous distribution of 
points having the same electric potential.
 The equipotential surfaces associated with a uniform electric field consist of a 
family of parallel planes that are all perpendicular to the field. Equipotential sur-
faces associated with fields having other symmetries are described in later sections.

Q uick Quiz 25.2  The labeled points in Figure 25.4 are on a series of equipoten-
tial surfaces associated with an electric field. Rank (from greatest to least) the 
work done by the electric field on a positively charged particle that moves from 
! to ", from " to #, from # to $, and from $ to %.

  Change in potential between X
two points in a uniform 

electric field

9 V 

8 V 

7 V 

6 V 

%

$

"

!

#

Figure 25.4  (Quick Quiz 25.2) 
Four equipotential surfaces.

d!
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#u

E
S

 

sS 

Point " is at a lower electric 
potential than point !.

Points " and # are at the 
same  electric potential.

Figure 25.3  A uniform 
electric field directed along 
the positive x axis. Three 
points in the electric field 
are labeled.

Sketching them sheds light on the potential energy a test charge
would have at certain points: in particular, it is takes a particular
constant value for any point on a surface.



Equipotential Surfaces: Examples
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on a charged particle as the particle moves from one end to the other of paths
I and II is zero because each of these paths begins and ends on the same
equipotential surface and thus there is no net change in potential. The work
done as the charged particle moves from one end to the other of paths III and
IV is not zero but has the same value for both these paths because the initial
and final potentials are identical for the two paths; that is, paths III and IV
connect the same pair of equipotential surfaces.

From symmetry, the equipotential surfaces produced by a point charge or
a spherically symmetrical charge distribution are a family of concentric
spheres. For a uniform electric field, the surfaces are a family of planes per-
pendicular to the field lines. In fact, equipotential surfaces are always perpen-
dicular to electric field lines and thus to , which is always tangent to these
lines. If were not perpendicular to an equipotential surface, it would have a
component lying along that surface. This component would then do work on a
charged particle as it moved along the surface. However, by Eq. 24-7 work
cannot be done if the surface is truly an equipotential surface; the only possi-
ble conclusion is that must be everywhere perpendicular to the surface.
Figure 24-3 shows electric field lines and cross sections of the equipotential
surfaces for a uniform electric field and for the field associated with a point
charge and with an electric dipole.
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Fig. 24-3 Electric field lines (purple) and cross sections of equipotential surfaces (gold)
for (a) a uniform electric field, (b) the field due to a point charge, and (c) the field due to
an electric dipole.
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1Figure from Halliday, Resnick, Walker.
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Equipotential surfaces are always perpendicular to field lines.

If a charge is moved along an equipotential surface the work done
by the force of the electrostatic field is zero.



Work and Potential

Recall, since the electrostatic force is a conservative force:

WE = −∆UE

WE is the “internal work”, Wint

So we can relate work to potential difference:

WE = −q ∆V

If we move a charge along an equipotential surface, ∆V = 0 so
WE = 0.



Work and Potential

WE = −q ∆V

But also (assuming F is constant)

WE = Fd cos θ

−q ∆V = q E d cos θ

dividing both sides by q gives:

∆V = −E · d



Work and Potential

WE = −q ∆V

But also (assuming F is constant)

WE = Fd cos θ

−q ∆V = q E d cos θ

dividing both sides by q gives:

∆V = −E · d



Equipotentials

I 

II 

III IV 

V1 

V2 

V3 

V4 

Equal work is done along
these paths between the
same surfaces.

No work is done along
this path on an
equipotential surface.

No work is done along this path 
that returns to the same surface.

63124-4 EQU I POTE NTIAL S U R FACE S
PART 3

the charge while the electric field does work W on it. By the work–kinetic energy
theorem of Eq. 7-10, the change !K in the kinetic energy of the particle is

!K " Kf # Ki " Wapp $ W. (24-11)

Now suppose the particle is stationary before and after the move. Then Kf and
Ki are both zero, and Eq. 24-11 reduces to

Wapp " #W. (24-12)

In words, the work Wapp done by our applied force during the move is equal to
the negative of the work W done by the electric field—provided there is no
change in kinetic energy.

By using Eq. 24-12 to substitute Wapp into Eq. 24-1, we can relate the work
done by our applied force to the change in the potential energy of the particle
during the move.We find

!U " Uf # Ui " Wapp. (24-13)

By similarly using Eq. 24-12 to substitute Wapp into Eq. 24-7, we can relate our work
Wapp to the electric potential difference !V between the initial and final locations of
the particle.We find

Wapp " q !V. (24-14)

Wapp can be positive, negative, or zero depending on the signs and magnitudes
of q and !V.

24-4 Equipotential Surfaces
Adjacent points that have the same electric potential form an equipotential
surface, which can be either an imaginary surface or a real, physical surface. No
net work W is done on a charged particle by an electric field when the particle
moves between two points i and f on the same equipotential surface. This follows
from Eq. 24-7, which tells us that W must be zero if Vf " Vi. Because of the path
independence of work (and thus of potential energy and potential), W " 0 for
any path connecting points i and f on a given equipotential surface regardless of
whether that path lies entirely on that surface.

Figure 24-2 shows a family of equipotential surfaces associated with the elec-
tric field due to some distribution of charges. The work done by the electric field

CHECKPOINT 2

In the figure of Checkpoint 1, we move
the proton from point i to point f in a
uniform electric field directed as
shown. (a) Does our force do positive
or negative work? (b) Does the proton
move to a point of higher or lower po-
tential?

Fig. 24-2 Portions of four equipotential surfaces at electric potentials V1 " 100 V, V2 "
80 V, V3 " 60 V, and V4 " 40 V. Four paths along which a test charge may move are shown.
Two electric field lines are also indicated.
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No work is done by the electrostatic force moving a charge along
an equipotential.

The same work is done moving a charge from one equipotential to
another, regardless of the path you move it along!



Example

Sample Problem

Finding the potential change from the electric field

(a) Figure 24-5a shows two points i and f in a uniform electric
field . The points lie on the same electric field line (not
shown) and are separated by a distance d. Find the potential
difference Vf ! Vi by moving a positive test charge q0 from i to
f along the path shown, which is parallel to the field direction.

We can find the potential difference between any two points
in an electric field by integrating along a path con-
necting those two points according to Eq. 24-18.

Calculations: We begin by mentally moving a test charge
q0 along that path, from initial point i to final point f. As we
move such a test charge along the path in Fig. 24-5a, its dif-
ferential displacement always has the same direction
as .Thus, the angle u between and is zero and the dot
product in Eq. 24-18 is

(24-20)

Equations 24-18 and 24-20 then give us

(24-21)

Since the field is uniform, E is constant over the path and
can be moved outside the integral, giving us

(Answer)

in which the integral is simply the length d of the path. The
minus sign in the result shows that the potential at point f in
Fig. 24-5a is lower than the potential at point i.This is a general

Vf ! Vi " !E !f

i
ds " !Ed,

Vf ! Vi " !!f

i
E
:

! d s: " !!f

i
E ds.

E
:

! d s: " E ds cos # " E ds.

d s:E
:

E
:

d s:

E
:

! d s:

E
:
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(a) (b) 

d

i

f

q0
d 

i 
 

f 

q0 
 

q0 
 

c 

45° 

45° +

+ 

+ 

ds

ds 
 

ds 
 

E

E 

E 

The electric field points from 
higher potential to lower potential.

The field is perpendicular to this ic path, 
so there is no change in the potential.

The field has a component
along this cf path, so there
is a  change in the potential.

Higher potential

Lower potential

result:The potential always decreases along a path that extends
in the direction of the electric field lines.

(b) Now find the potential difference Vf ! Vi by moving the
positive test charge q0 from i to f along the path icf shown in
Fig.24-5b.

Calculations: The Key Idea of (a) applies here too, except
now we move the test charge along a path that consists of
two lines: ic and cf. At all points along line ic, the displace-
ment of the test charge is perpendicular to . Thus, the
angle u between and is 90°, and the dot product 
is 0. Equation 24-18 then tells us that points i and c are at the
same potential: Vc ! Vi " 0.

For line cf we have u " 45° and, from Eq. 24-18,

The integral in this equation is just the length of line cf ;
from Fig. 24-5b, that length is d/cos 45°.Thus,

(Answer)

This is the same result we obtained in (a), as it must be; the
potential difference between two points does not depend on
the path connecting them. Moral:When you want to find the
potential difference between two points by moving a test
charge between them, you can save time and work by choos-
ing a path that simplifies the use of Eq. 24-18.

Vf ! Vi " !E(cos 45$) 
d

cos 45$
" !Ed.

 " !E(cos 45$) !f

c
ds.

Vf ! Vi " !!f

c
E
:

! d s: " !!f

c
E(cos 45$) ds

E
:

! d s:d s:E
:

E
:

d s:

KEY I DEA

Fig. 24-5 (a) A test charge q0

moves in a straight line from point i
to point f, along the direction of a
uniform external electric field. (b)
Charge q0 moves along path icf in the
same electric field.
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Question
The figure shows a family of parallel equipotential surfaces (in
cross section) and five paths along which we shall move an
electron from one surface to another.

24-5 Calculating the Potential from the Field
We can calculate the potential difference between any two points i and f in an
electric field if we know the electric field vector all along any path connecting
those points. To make the calculation, we find the work done on a positive test
charge by the field as the charge moves from i to f, and then use Eq. 24-7.

Consider an arbitrary electric field, represented by the field lines in Fig. 24-4,
and a positive test charge q0 that moves along the path shown from point i to
point f. At any point on the path, an electrostatic force acts on the charge as it
moves through a differential displacement . From Chapter 7, we know that the
differential work dW done on a particle by a force during a displacement is
given by the dot product of the force and the displacement:

(24-15)

For the situation of Fig. 24-4, and Eq. 24-15 becomes

(24-16)

To find the total work W done on the particle by the field as the particle moves
from point i to point f, we sum—via integration—the differential works done on
the charge as it moves through all the displacements along the path:

If we substitute the total work W from Eq. 24-17 into Eq. 24-7, we find

(24-18)

Thus, the potential difference Vf ! Vi between any two points i and f in an electric
field is equal to the negative of the line integral (meaning the integral along a
particular path) of from i to f. However, because the electrostatic force is
conservative, all paths (whether easy or difficult to use) yield the same result.

Equation 24-18 allows us to calculate the difference in potential between any
two points in the field. If we set potential Vi " 0, then Eq. 24-18 becomes

(24-19)

in which we have dropped the subscript f on Vf . Equation 24-19 gives us the
potential V at any point f in the electric field relative to the zero potential at point i.
If we let point i be at infinity, then Eq. 24-19 gives us the potential V at any point f
relative to the zero potential at infinity.

V " !!f

i
E
:

! d s:,

E
:
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i
E
:
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W " q0 !f

i
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:
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dW " q0E
:

! d s:.

F
:

" q0E
:

dW " F
:

! d s:.

d s:F
:

d s:
q0E

:

E
:

CHECKPOINT 3

The figure here shows a family of par-
allel equipotential surfaces (in cross
section) and five paths along which we
shall move an electron from one sur-
face to another. (a) What is the direc-
tion of the electric field associated with
the surfaces? (b) For each path, is the
work we do positive, negative, or zero?
(c) Rank the paths according to the
work we do, greatest first.

90 V 80 V 70 V 60 V 50 V 40 V

5

3
4

2

1

63324-5 CALCU LATI NG TH E POTE NTIAL FROM TH E F I E LD
PART 3

Fig. 24-4 A test charge q0 moves
from point i to point f along the path
shown in a nonuniform electric field.
During a displacement , an elec-
trostatic force acts on the test
charge.This force points in the direc-
tion of the field line at the location of
the test charge.

q0E
:

d s:

i

f

ds
q0

q0E

Field linePath

+

(24-17)
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1-(a) What is the direction of the electric field associated with the
surfaces?

(A) rightwards

(B) leftwards

(C) upwards

(D) downwards
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Question
The figure shows a family of parallel equipotential surfaces (in
cross section) and five paths along which we shall move an
electron from one surface to another.

24-5 Calculating the Potential from the Field
We can calculate the potential difference between any two points i and f in an
electric field if we know the electric field vector all along any path connecting
those points. To make the calculation, we find the work done on a positive test
charge by the field as the charge moves from i to f, and then use Eq. 24-7.

Consider an arbitrary electric field, represented by the field lines in Fig. 24-4,
and a positive test charge q0 that moves along the path shown from point i to
point f. At any point on the path, an electrostatic force acts on the charge as it
moves through a differential displacement . From Chapter 7, we know that the
differential work dW done on a particle by a force during a displacement is
given by the dot product of the force and the displacement:

(24-15)

For the situation of Fig. 24-4, and Eq. 24-15 becomes

(24-16)

To find the total work W done on the particle by the field as the particle moves
from point i to point f, we sum—via integration—the differential works done on
the charge as it moves through all the displacements along the path:

If we substitute the total work W from Eq. 24-17 into Eq. 24-7, we find

(24-18)

Thus, the potential difference Vf ! Vi between any two points i and f in an electric
field is equal to the negative of the line integral (meaning the integral along a
particular path) of from i to f. However, because the electrostatic force is
conservative, all paths (whether easy or difficult to use) yield the same result.

Equation 24-18 allows us to calculate the difference in potential between any
two points in the field. If we set potential Vi " 0, then Eq. 24-18 becomes

(24-19)

in which we have dropped the subscript f on Vf . Equation 24-19 gives us the
potential V at any point f in the electric field relative to the zero potential at point i.
If we let point i be at infinity, then Eq. 24-19 gives us the potential V at any point f
relative to the zero potential at infinity.
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CHECKPOINT 3

The figure here shows a family of par-
allel equipotential surfaces (in cross
section) and five paths along which we
shall move an electron from one sur-
face to another. (a) What is the direc-
tion of the electric field associated with
the surfaces? (b) For each path, is the
work we do positive, negative, or zero?
(c) Rank the paths according to the
work we do, greatest first.
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Fig. 24-4 A test charge q0 moves
from point i to point f along the path
shown in a nonuniform electric field.
During a displacement , an elec-
trostatic force acts on the test
charge.This force points in the direc-
tion of the field line at the location of
the test charge.

q0E
:

d s:

i

f

ds
q0

q0E

Field linePath

+

(24-17)
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1-(a) What is the direction of the electric field associated with the
surfaces?

(A) rightwards←
(B) leftwards

(C) upwards

(D) downwards
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Question
The figure shows a family of parallel equipotential surfaces (in
cross section) and five paths along which we shall move an
electron from one surface to another.

24-5 Calculating the Potential from the Field
We can calculate the potential difference between any two points i and f in an
electric field if we know the electric field vector all along any path connecting
those points. To make the calculation, we find the work done on a positive test
charge by the field as the charge moves from i to f, and then use Eq. 24-7.

Consider an arbitrary electric field, represented by the field lines in Fig. 24-4,
and a positive test charge q0 that moves along the path shown from point i to
point f. At any point on the path, an electrostatic force acts on the charge as it
moves through a differential displacement . From Chapter 7, we know that the
differential work dW done on a particle by a force during a displacement is
given by the dot product of the force and the displacement:

(24-15)

For the situation of Fig. 24-4, and Eq. 24-15 becomes

(24-16)

To find the total work W done on the particle by the field as the particle moves
from point i to point f, we sum—via integration—the differential works done on
the charge as it moves through all the displacements along the path:

If we substitute the total work W from Eq. 24-17 into Eq. 24-7, we find

(24-18)

Thus, the potential difference Vf ! Vi between any two points i and f in an electric
field is equal to the negative of the line integral (meaning the integral along a
particular path) of from i to f. However, because the electrostatic force is
conservative, all paths (whether easy or difficult to use) yield the same result.

Equation 24-18 allows us to calculate the difference in potential between any
two points in the field. If we set potential Vi " 0, then Eq. 24-18 becomes

(24-19)

in which we have dropped the subscript f on Vf . Equation 24-19 gives us the
potential V at any point f in the electric field relative to the zero potential at point i.
If we let point i be at infinity, then Eq. 24-19 gives us the potential V at any point f
relative to the zero potential at infinity.
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CHECKPOINT 3

The figure here shows a family of par-
allel equipotential surfaces (in cross
section) and five paths along which we
shall move an electron from one sur-
face to another. (a) What is the direc-
tion of the electric field associated with
the surfaces? (b) For each path, is the
work we do positive, negative, or zero?
(c) Rank the paths according to the
work we do, greatest first.

90 V 80 V 70 V 60 V 50 V 40 V
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Fig. 24-4 A test charge q0 moves
from point i to point f along the path
shown in a nonuniform electric field.
During a displacement , an elec-
trostatic force acts on the test
charge.This force points in the direc-
tion of the field line at the location of
the test charge.

q0E
:

d s:

i

f

ds
q0

q0E

Field linePath

+

(24-17)
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2-(c) Rank the paths according to the work we do, greatest first.

(A) 1, 2, 3, 4, 5

(B) 2, 4, 3, 5, 1

(C) 4, (1, 2, and 5), 3

(D) 3, (1, 2, and 5), 4
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Question
The figure shows a family of parallel equipotential surfaces (in
cross section) and five paths along which we shall move an
electron from one surface to another.

24-5 Calculating the Potential from the Field
We can calculate the potential difference between any two points i and f in an
electric field if we know the electric field vector all along any path connecting
those points. To make the calculation, we find the work done on a positive test
charge by the field as the charge moves from i to f, and then use Eq. 24-7.

Consider an arbitrary electric field, represented by the field lines in Fig. 24-4,
and a positive test charge q0 that moves along the path shown from point i to
point f. At any point on the path, an electrostatic force acts on the charge as it
moves through a differential displacement . From Chapter 7, we know that the
differential work dW done on a particle by a force during a displacement is
given by the dot product of the force and the displacement:

(24-15)

For the situation of Fig. 24-4, and Eq. 24-15 becomes

(24-16)

To find the total work W done on the particle by the field as the particle moves
from point i to point f, we sum—via integration—the differential works done on
the charge as it moves through all the displacements along the path:

If we substitute the total work W from Eq. 24-17 into Eq. 24-7, we find

(24-18)

Thus, the potential difference Vf ! Vi between any two points i and f in an electric
field is equal to the negative of the line integral (meaning the integral along a
particular path) of from i to f. However, because the electrostatic force is
conservative, all paths (whether easy or difficult to use) yield the same result.

Equation 24-18 allows us to calculate the difference in potential between any
two points in the field. If we set potential Vi " 0, then Eq. 24-18 becomes

(24-19)

in which we have dropped the subscript f on Vf . Equation 24-19 gives us the
potential V at any point f in the electric field relative to the zero potential at point i.
If we let point i be at infinity, then Eq. 24-19 gives us the potential V at any point f
relative to the zero potential at infinity.
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CHECKPOINT 3

The figure here shows a family of par-
allel equipotential surfaces (in cross
section) and five paths along which we
shall move an electron from one sur-
face to another. (a) What is the direc-
tion of the electric field associated with
the surfaces? (b) For each path, is the
work we do positive, negative, or zero?
(c) Rank the paths according to the
work we do, greatest first.
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Fig. 24-4 A test charge q0 moves
from point i to point f along the path
shown in a nonuniform electric field.
During a displacement , an elec-
trostatic force acts on the test
charge.This force points in the direc-
tion of the field line at the location of
the test charge.
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ds
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(24-17)
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2-(c) Rank the paths according to the work we do, greatest first.

(A) 1, 2, 3, 4, 5

(B) 2, 4, 3, 5, 1

(C) 4, (1, 2, and 5), 3

(D) 3, (1, 2, and 5), 4←
1Halliday, Resnick, Walker, page 633.



Potential from many charges

The electric potential from many point charges could be found by
adding up the potential due to each separately:

Vnet = V1 + V2 + ... + Vn

This is

Vnet =
k q1
r1

+
k q2
r2

+ ... +
k q3
r3

Notice that this is a scalar equation, not a vector equation.



Question

The figure shows three arrangements of two protons. Rank the
arrangements according to the net electric potential produced at
point P by the protons, greatest first.
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24-7 Potential Due to a Group of Point Charges
We can find the net potential at a point due to a group of point charges with the
help of the superposition principle. Using Eq. 24-26 with the sign of the charge
included, we calculate separately the potential resulting from each charge at
the given point.Then we sum the potentials. For n charges, the net potential is

(n point charges). (24-27)

Here qi is the value of the ith charge and ri is the radial distance of the given point
from the ith charge. The sum in Eq. 24-27 is an algebraic sum, not a vector sum
like the sum that would be used to calculate the electric field resulting from a group
of point charges. Herein lies an important computational advantage of potential
over electric field: It is a lot easier to sum several scalar quantities than to sum sev-
eral vector quantities whose directions and components must be considered.

V ! !
n

i!1
 Vi !

1
4"#0

 !
n

i!1

qi

ri

CHECKPOINT 4

The figure here shows
three arrangements of
two protons. Rank the
arrangements accord-
ing to the net electric
potential produced at point P by the protons, greatest first.

P
d

D

(b)
P

Dd
D

d

P
(a) (c)

Sample Problem

(Because electric potential is a scalar, the orientations of the
point charges do not matter.)

Calculations: From Eq. 24-27, we have

The distance r is , which is 0.919 m, and the sum of the
charges is

Thus,

(Answer)

Close to any of the three positive charges in Fig. 24-8a, the
potential has very large positive values. Close to the single nega-
tive charge, the potential has very large negative values.
Therefore, there must be points within the square that have the
same intermediate potential as that at point P.The curve in Fig.
24-8b shows the intersection of the plane of the figure with the
equipotential surface that contains point P.Any point along that
curve has the same potential as point P.

 " 350 V.

 V !
(8.99 $ 109 N %m2/C2)(36 $ 10&9 C)

0.919 m

 ! 36 $ 10&9 C.

q1 ' q2 ' q3 ' q4 ! (12 & 24 ' 31 ' 17) $ 10&9 C

d/√ 2
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1
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 # q1

r
'
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r
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q3

r
'

q4

r $.

Net potential of several charged particles

What is the electric potential at point P, located at the cen-
ter of the square of point charges shown in Fig. 24-8a? The
distance d is 1.3 m, and the charges are

The electric potential V at point P is the algebraic sum of
the electric potentials contributed by the four point charges.

q2 ! &24 nC,  q4 ! '17 nC.

q1 ! '12 nC,  q3 ! '31 nC,

KEY I DEA

Fig. 24-8 (a) Four point charges are held fixed at the cor-
ners of a square. (b) The closed curve is a cross section, in the
plane of the figure, of the equipotential surface that contains
point P. (The curve is drawn only roughly.)

d d

d

d

P

q1 q2

q3 q4

P

q1 q2

q3 q4

V = 350 V

(a) (b)

Additional examples, video, and practice available at WileyPLUS
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(A) a, b, c

(B) c, b, a

(C) b, (a and c)

(D) all the same
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Question

The figure shows three arrangements of two protons. Rank the
arrangements according to the net electric potential produced at
point P by the protons, greatest first.
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24-7 Potential Due to a Group of Point Charges
We can find the net potential at a point due to a group of point charges with the
help of the superposition principle. Using Eq. 24-26 with the sign of the charge
included, we calculate separately the potential resulting from each charge at
the given point.Then we sum the potentials. For n charges, the net potential is

(n point charges). (24-27)

Here qi is the value of the ith charge and ri is the radial distance of the given point
from the ith charge. The sum in Eq. 24-27 is an algebraic sum, not a vector sum
like the sum that would be used to calculate the electric field resulting from a group
of point charges. Herein lies an important computational advantage of potential
over electric field: It is a lot easier to sum several scalar quantities than to sum sev-
eral vector quantities whose directions and components must be considered.
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CHECKPOINT 4

The figure here shows
three arrangements of
two protons. Rank the
arrangements accord-
ing to the net electric
potential produced at point P by the protons, greatest first.

P
d

D

(b)
P

Dd
D

d

P
(a) (c)

Sample Problem

(Because electric potential is a scalar, the orientations of the
point charges do not matter.)

Calculations: From Eq. 24-27, we have

The distance r is , which is 0.919 m, and the sum of the
charges is

Thus,

(Answer)

Close to any of the three positive charges in Fig. 24-8a, the
potential has very large positive values. Close to the single nega-
tive charge, the potential has very large negative values.
Therefore, there must be points within the square that have the
same intermediate potential as that at point P.The curve in Fig.
24-8b shows the intersection of the plane of the figure with the
equipotential surface that contains point P.Any point along that
curve has the same potential as point P.

 " 350 V.

 V !
(8.99 $ 109 N %m2/C2)(36 $ 10&9 C)

0.919 m

 ! 36 $ 10&9 C.
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Net potential of several charged particles

What is the electric potential at point P, located at the cen-
ter of the square of point charges shown in Fig. 24-8a? The
distance d is 1.3 m, and the charges are

The electric potential V at point P is the algebraic sum of
the electric potentials contributed by the four point charges.

q2 ! &24 nC,  q4 ! '17 nC.

q1 ! '12 nC,  q3 ! '31 nC,

KEY I DEA

Fig. 24-8 (a) Four point charges are held fixed at the cor-
ners of a square. (b) The closed curve is a cross section, in the
plane of the figure, of the equipotential surface that contains
point P. (The curve is drawn only roughly.)
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Additional examples, video, and practice available at WileyPLUS
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(A) a, b, c

(B) c, b, a

(C) b, (a and c)

(D) all the same←
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Summary

• introduced electric potential

• related potential and work

• related potential and field

Homework Halliday, Resnick, Walker:

• Ch 24, onward from page 647. Questions: 1, 5; Problems: 1,
5, 17, 34


