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Last time

• electric potential

• Electric potential from many charges



Overview

• Electric potential between charged plates

• Potential of charged conductor

• Conductor in a field

• Capacitance

• Capacitance of a parallel plate capacitor



Potential Difference across a pair of charged plates

Earlier we found:
∆V = −E d cos θ

If we have a pair of charged plates at a separation, d , there is a
uniform E-field between them: E = σ

ε0
.
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23-8 Applying Gauss’ Law: Planar Symmetry
Nonconducting Sheet
Figure 23-15 shows a portion of a thin, infinite, nonconducting sheet with a uni-
form (positive) surface charge density s. A sheet of thin plastic wrap, uniformly
charged on one side, can serve as a simple model. Let us find the electric field 
a distance r in front of the sheet.

A useful Gaussian surface is a closed cylinder with end caps of area A,
arranged to pierce the sheet perpendicularly as shown. From symmetry, must
be perpendicular to the sheet and hence to the end caps. Furthermore, since the
charge is positive, is directed away from the sheet, and thus the electric field
lines pierce the two Gaussian end caps in an outward direction. Because the field
lines do not pierce the curved surface, there is no flux through this portion of the
Gaussian surface.Thus is simply E dA; then Gauss’ law,

becomes

where sA is the charge enclosed by the Gaussian surface.This gives

(sheet of charge). (23-13)

Since we are considering an infinite sheet with uniform charge density, this result
holds for any point at a finite distance from the sheet. Equation 23-13 agrees with
Eq. 22-27, which we found by integration of electric field components.

Two Conducting Plates
Figure 23-16a shows a cross section of a thin, infinite conducting plate with excess
positive charge. From Section 23-6 we know that this excess charge lies on the
surface of the plate. Since the plate is thin and very large, we can assume that
essentially all the excess charge is on the two large faces of the plate.

If there is no external electric field to force the positive charge into some par-
ticular distribution, it will spread out on the two faces with a uniform surface
charge density of magnitude s1. From Eq. 23-11 we know that just outside the
plate this charge sets up an electric field of magnitude E ! s1/"0. Because the
excess charge is positive, the field is directed away from the plate.

Figure 23-16b shows an identical plate with excess negative charge having
the same magnitude of surface charge density s1. The only difference is that now
the electric field is directed toward the plate.

Suppose we arrange for the plates of Figs. 23-16a and b to be close to each
other and parallel (Fig. 23-16c). Since the plates are conductors, when we bring
them into this arrangement, the excess charge on one plate attracts the excess
charge on the other plate, and all the excess charge moves onto the inner faces of
the plates as in Fig. 23-16c.With twice as much charge now on each inner face, the
new surface charge density (call it s) on each inner face is twice s1.Thus, the elec-
tric field at any point between the plates has the magnitude

(23-14)

This field is directed away from the positively charged plate and toward the nega-
tively charged plate. Since no excess charge is left on the outer faces, the electric
field to the left and right of the plates is zero.
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Fig. 23-15 (a) Perspective view and (b)
side view of a portion of a very large, thin
plastic sheet, uniformly charged on one
side to surface charge density s.A closed
cylindrical Gaussian surface passes through
the sheet and is perpendicular to it.
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Fig. 23-16 (a) A thin, very large conduct-
ing plate with excess positive charge. (b) An
identical plate with excess negative charge.
(c) The two plates arranged so they are par-
allel and close.
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Potential Difference across a pair of charged plates

∆V = −E d cos θ632 CHAPTE R 24 E LECTR IC POTE NTIAL

on a charged particle as the particle moves from one end to the other of paths
I and II is zero because each of these paths begins and ends on the same
equipotential surface and thus there is no net change in potential. The work
done as the charged particle moves from one end to the other of paths III and
IV is not zero but has the same value for both these paths because the initial
and final potentials are identical for the two paths; that is, paths III and IV
connect the same pair of equipotential surfaces.

From symmetry, the equipotential surfaces produced by a point charge or
a spherically symmetrical charge distribution are a family of concentric
spheres. For a uniform electric field, the surfaces are a family of planes per-
pendicular to the field lines. In fact, equipotential surfaces are always perpen-
dicular to electric field lines and thus to , which is always tangent to these
lines. If were not perpendicular to an equipotential surface, it would have a
component lying along that surface. This component would then do work on a
charged particle as it moved along the surface. However, by Eq. 24-7 work
cannot be done if the surface is truly an equipotential surface; the only possi-
ble conclusion is that must be everywhere perpendicular to the surface.
Figure 24-3 shows electric field lines and cross sections of the equipotential
surfaces for a uniform electric field and for the field associated with a point
charge and with an electric dipole.
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E
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Equipotential surface 

Field line 
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+ 

+

Fig. 24-3 Electric field lines (purple) and cross sections of equipotential surfaces (gold)
for (a) a uniform electric field, (b) the field due to a point charge, and (c) the field due to
an electric dipole.
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The potential difference between the two plates, separation, d :

|∆V | = E d



Question

Consider three pairs of parallel plates with the same separation.
The electric field between the plates is uniform and perpendicular
to the plates.
(a) Rank the pairs according to the magnitude of the electric field
between the plates, greatest first.

64124-10 CALCU LATI NG TH E F I E LD FROM TH E POTE NTIAL
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24-10 Calculating the Field from the Potential
In Section 24-5, you saw how to find the potential at a point f if you know
the electric field along a path from a reference point to point f. In this section,
we propose to go the other way—that is, to find the electric field when we know
the potential. As Fig. 24-3 shows, solving this problem graphically is easy: If we
know the potential V at all points near an assembly of charges, we can draw in
a family of equipotential surfaces. The electric field lines, sketched perpendicular
to those surfaces, reveal the variation of .What we are seeking here is the math-
ematical equivalent of this graphical procedure.

Figure 24-14 shows cross sections of a family of closely spaced equipo-
tential surfaces, the potential difference between each pair of adjacent surfaces
being dV.As the figure suggests, the field at any point P is perpendicular to the
equipotential surface through P.

Suppose that a positive test charge q0 moves through a displacement 
from one equipotential surface to the adjacent surface. From Eq. 24-7, we see that
the work the electric field does on the test charge during the move is !q0 dV.
From Eq. 24-16 and Fig. 24-14, we see that the work done by the electric field may
also be written as the scalar product or q0E(cos u) ds. Equating these
two expressions for the work yields

!q0 dV " q0E(cos u) ds, (24-38)

or (24-39)

Since E cos u is the component of in the direction of Eq. 24-39 becomes

(24-40)

We have added a subscript to E and switched to the partial derivative symbols
to emphasize that Eq. 24-40 involves only the variation of V along a specified
axis (here called the s axis) and only the component of along that axis. In
words, Eq. 24-40 (which is essentially the reverse operation of Eq. 24-18)
states:
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The component of in any direction is the negative of the rate at which the electric
potential changes with distance in that direction.
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Fig. 24-14 A test charge q0 moves a 
distance from one equipotential surface
to another. (The separation between the 
surfaces has been exaggerated for clarity.)
The displacement makes an angle u with
the direction of the electric field .E

:
ds:

ds:

If we take the s axis to be, in turn, the x, y, and z axes, we find that the x, y, and
z components of at any point are

(24-41)

Thus, if we know V for all points in the region around a charge distribution—that
is, if we know the function V(x, y, z)—we can find the components of , and thus

itself, at any point by taking partial derivatives.
For the simple situation in which the electric field is uniform, Eq. 24-40

becomes

(24-42)

where s is perpendicular to the equipotential surfaces. The component of the
electric field is zero in any direction parallel to the equipotential surfaces because
there is no change in potential along the surfaces.

E " !
%V
%s

,

E
:

E
:

E
:

Ex " !
#V
#x

;  Ey " !
#V
#y

;  Ez " !
#V
#z

.

E
:

CHECKPOINT 6

The figure shows three pairs of parallel
plates with the same separation, and the
electric potential of each plate. The elec-
tric field between the plates is uniform
and perpendicular to the plates. (a) Rank
the pairs according to the magnitude of
the electric field between the plates,
greatest first. (b) For which pair is the
electric field pointing rightward? (c) If an
electron is released midway between the
third pair of plates, does it remain there,
move rightward at constant speed, move
leftward at constant speed, accelerate
rightward, or accelerate leftward?

–50 V +150 V –20 V +200 V
(1) (2)

–200 V –400 V
(3)
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(A) 1, 2, 3

(B) (1 and 3), 2

(C) 2, (1 and 3)

(D) 3, 2, 1



Question

Consider three pairs of parallel plates with the same separation.
The electric field between the plates is uniform and perpendicular
to the plates.
(a) Rank the pairs according to the magnitude of the electric field
between the plates, greatest first.
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24-10 Calculating the Field from the Potential
In Section 24-5, you saw how to find the potential at a point f if you know
the electric field along a path from a reference point to point f. In this section,
we propose to go the other way—that is, to find the electric field when we know
the potential. As Fig. 24-3 shows, solving this problem graphically is easy: If we
know the potential V at all points near an assembly of charges, we can draw in
a family of equipotential surfaces. The electric field lines, sketched perpendicular
to those surfaces, reveal the variation of .What we are seeking here is the math-
ematical equivalent of this graphical procedure.

Figure 24-14 shows cross sections of a family of closely spaced equipo-
tential surfaces, the potential difference between each pair of adjacent surfaces
being dV.As the figure suggests, the field at any point P is perpendicular to the
equipotential surface through P.

Suppose that a positive test charge q0 moves through a displacement 
from one equipotential surface to the adjacent surface. From Eq. 24-7, we see that
the work the electric field does on the test charge during the move is !q0 dV.
From Eq. 24-16 and Fig. 24-14, we see that the work done by the electric field may
also be written as the scalar product or q0E(cos u) ds. Equating these
two expressions for the work yields

!q0 dV " q0E(cos u) ds, (24-38)

or (24-39)

Since E cos u is the component of in the direction of Eq. 24-39 becomes

(24-40)

We have added a subscript to E and switched to the partial derivative symbols
to emphasize that Eq. 24-40 involves only the variation of V along a specified
axis (here called the s axis) and only the component of along that axis. In
words, Eq. 24-40 (which is essentially the reverse operation of Eq. 24-18)
states:
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potential changes with distance in that direction.
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Fig. 24-14 A test charge q0 moves a 
distance from one equipotential surface
to another. (The separation between the 
surfaces has been exaggerated for clarity.)
The displacement makes an angle u with
the direction of the electric field .E

:
ds:

ds:

If we take the s axis to be, in turn, the x, y, and z axes, we find that the x, y, and
z components of at any point are

(24-41)

Thus, if we know V for all points in the region around a charge distribution—that
is, if we know the function V(x, y, z)—we can find the components of , and thus

itself, at any point by taking partial derivatives.
For the simple situation in which the electric field is uniform, Eq. 24-40

becomes

(24-42)

where s is perpendicular to the equipotential surfaces. The component of the
electric field is zero in any direction parallel to the equipotential surfaces because
there is no change in potential along the surfaces.
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CHECKPOINT 6

The figure shows three pairs of parallel
plates with the same separation, and the
electric potential of each plate. The elec-
tric field between the plates is uniform
and perpendicular to the plates. (a) Rank
the pairs according to the magnitude of
the electric field between the plates,
greatest first. (b) For which pair is the
electric field pointing rightward? (c) If an
electron is released midway between the
third pair of plates, does it remain there,
move rightward at constant speed, move
leftward at constant speed, accelerate
rightward, or accelerate leftward?

–50 V +150 V –20 V +200 V
(1) (2)

–200 V –400 V
(3)
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(A) 1, 2, 3

(B) (1 and 3), 2

(C) 2, (1 and 3)←
(D) 3, 2, 1



Question

Consider three pairs of parallel plates with the same separation.
The electric field between the plates is uniform and perpendicular
to the plates.
(b) For which pair is the electric field pointing rightward?
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24-10 Calculating the Field from the Potential
In Section 24-5, you saw how to find the potential at a point f if you know
the electric field along a path from a reference point to point f. In this section,
we propose to go the other way—that is, to find the electric field when we know
the potential. As Fig. 24-3 shows, solving this problem graphically is easy: If we
know the potential V at all points near an assembly of charges, we can draw in
a family of equipotential surfaces. The electric field lines, sketched perpendicular
to those surfaces, reveal the variation of .What we are seeking here is the math-
ematical equivalent of this graphical procedure.

Figure 24-14 shows cross sections of a family of closely spaced equipo-
tential surfaces, the potential difference between each pair of adjacent surfaces
being dV.As the figure suggests, the field at any point P is perpendicular to the
equipotential surface through P.

Suppose that a positive test charge q0 moves through a displacement 
from one equipotential surface to the adjacent surface. From Eq. 24-7, we see that
the work the electric field does on the test charge during the move is !q0 dV.
From Eq. 24-16 and Fig. 24-14, we see that the work done by the electric field may
also be written as the scalar product or q0E(cos u) ds. Equating these
two expressions for the work yields

!q0 dV " q0E(cos u) ds, (24-38)

or (24-39)

Since E cos u is the component of in the direction of Eq. 24-39 becomes

(24-40)

We have added a subscript to E and switched to the partial derivative symbols
to emphasize that Eq. 24-40 involves only the variation of V along a specified
axis (here called the s axis) and only the component of along that axis. In
words, Eq. 24-40 (which is essentially the reverse operation of Eq. 24-18)
states:
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The component of in any direction is the negative of the rate at which the electric
potential changes with distance in that direction.
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Fig. 24-14 A test charge q0 moves a 
distance from one equipotential surface
to another. (The separation between the 
surfaces has been exaggerated for clarity.)
The displacement makes an angle u with
the direction of the electric field .E

:
ds:

ds:

If we take the s axis to be, in turn, the x, y, and z axes, we find that the x, y, and
z components of at any point are

(24-41)

Thus, if we know V for all points in the region around a charge distribution—that
is, if we know the function V(x, y, z)—we can find the components of , and thus

itself, at any point by taking partial derivatives.
For the simple situation in which the electric field is uniform, Eq. 24-40

becomes

(24-42)

where s is perpendicular to the equipotential surfaces. The component of the
electric field is zero in any direction parallel to the equipotential surfaces because
there is no change in potential along the surfaces.
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CHECKPOINT 6

The figure shows three pairs of parallel
plates with the same separation, and the
electric potential of each plate. The elec-
tric field between the plates is uniform
and perpendicular to the plates. (a) Rank
the pairs according to the magnitude of
the electric field between the plates,
greatest first. (b) For which pair is the
electric field pointing rightward? (c) If an
electron is released midway between the
third pair of plates, does it remain there,
move rightward at constant speed, move
leftward at constant speed, accelerate
rightward, or accelerate leftward?

–50 V +150 V –20 V +200 V
(1) (2)

–200 V –400 V
(3)
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(A) 1

(B) 2

(C) 3



Question

Consider three pairs of parallel plates with the same separation.
The electric field between the plates is uniform and perpendicular
to the plates.
(b) For which pair is the electric field pointing rightward?
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24-10 Calculating the Field from the Potential
In Section 24-5, you saw how to find the potential at a point f if you know
the electric field along a path from a reference point to point f. In this section,
we propose to go the other way—that is, to find the electric field when we know
the potential. As Fig. 24-3 shows, solving this problem graphically is easy: If we
know the potential V at all points near an assembly of charges, we can draw in
a family of equipotential surfaces. The electric field lines, sketched perpendicular
to those surfaces, reveal the variation of .What we are seeking here is the math-
ematical equivalent of this graphical procedure.

Figure 24-14 shows cross sections of a family of closely spaced equipo-
tential surfaces, the potential difference between each pair of adjacent surfaces
being dV.As the figure suggests, the field at any point P is perpendicular to the
equipotential surface through P.

Suppose that a positive test charge q0 moves through a displacement 
from one equipotential surface to the adjacent surface. From Eq. 24-7, we see that
the work the electric field does on the test charge during the move is !q0 dV.
From Eq. 24-16 and Fig. 24-14, we see that the work done by the electric field may
also be written as the scalar product or q0E(cos u) ds. Equating these
two expressions for the work yields

!q0 dV " q0E(cos u) ds, (24-38)

or (24-39)

Since E cos u is the component of in the direction of Eq. 24-39 becomes

(24-40)

We have added a subscript to E and switched to the partial derivative symbols
to emphasize that Eq. 24-40 involves only the variation of V along a specified
axis (here called the s axis) and only the component of along that axis. In
words, Eq. 24-40 (which is essentially the reverse operation of Eq. 24-18)
states:
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The component of in any direction is the negative of the rate at which the electric
potential changes with distance in that direction.

E
:

s
q0

P θ

Two
equipotential

surfaces

+
ds

E

Fig. 24-14 A test charge q0 moves a 
distance from one equipotential surface
to another. (The separation between the 
surfaces has been exaggerated for clarity.)
The displacement makes an angle u with
the direction of the electric field .E

:
ds:

ds:

If we take the s axis to be, in turn, the x, y, and z axes, we find that the x, y, and
z components of at any point are

(24-41)

Thus, if we know V for all points in the region around a charge distribution—that
is, if we know the function V(x, y, z)—we can find the components of , and thus

itself, at any point by taking partial derivatives.
For the simple situation in which the electric field is uniform, Eq. 24-40

becomes

(24-42)

where s is perpendicular to the equipotential surfaces. The component of the
electric field is zero in any direction parallel to the equipotential surfaces because
there is no change in potential along the surfaces.
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CHECKPOINT 6

The figure shows three pairs of parallel
plates with the same separation, and the
electric potential of each plate. The elec-
tric field between the plates is uniform
and perpendicular to the plates. (a) Rank
the pairs according to the magnitude of
the electric field between the plates,
greatest first. (b) For which pair is the
electric field pointing rightward? (c) If an
electron is released midway between the
third pair of plates, does it remain there,
move rightward at constant speed, move
leftward at constant speed, accelerate
rightward, or accelerate leftward?

–50 V +150 V –20 V +200 V
(1) (2)

–200 V –400 V
(3)
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Question

Consider three pairs of parallel plates with the same separation.
The electric field between the plates is uniform and perpendicular
to the plates.
(c) If an electron is released midway between the third pair of
plates, does it
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24-10 Calculating the Field from the Potential
In Section 24-5, you saw how to find the potential at a point f if you know
the electric field along a path from a reference point to point f. In this section,
we propose to go the other way—that is, to find the electric field when we know
the potential. As Fig. 24-3 shows, solving this problem graphically is easy: If we
know the potential V at all points near an assembly of charges, we can draw in
a family of equipotential surfaces. The electric field lines, sketched perpendicular
to those surfaces, reveal the variation of .What we are seeking here is the math-
ematical equivalent of this graphical procedure.

Figure 24-14 shows cross sections of a family of closely spaced equipo-
tential surfaces, the potential difference between each pair of adjacent surfaces
being dV.As the figure suggests, the field at any point P is perpendicular to the
equipotential surface through P.

Suppose that a positive test charge q0 moves through a displacement 
from one equipotential surface to the adjacent surface. From Eq. 24-7, we see that
the work the electric field does on the test charge during the move is !q0 dV.
From Eq. 24-16 and Fig. 24-14, we see that the work done by the electric field may
also be written as the scalar product or q0E(cos u) ds. Equating these
two expressions for the work yields

!q0 dV " q0E(cos u) ds, (24-38)

or (24-39)

Since E cos u is the component of in the direction of Eq. 24-39 becomes

(24-40)

We have added a subscript to E and switched to the partial derivative symbols
to emphasize that Eq. 24-40 involves only the variation of V along a specified
axis (here called the s axis) and only the component of along that axis. In
words, Eq. 24-40 (which is essentially the reverse operation of Eq. 24-18)
states:
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The component of in any direction is the negative of the rate at which the electric
potential changes with distance in that direction.
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Fig. 24-14 A test charge q0 moves a 
distance from one equipotential surface
to another. (The separation between the 
surfaces has been exaggerated for clarity.)
The displacement makes an angle u with
the direction of the electric field .E

:
ds:

ds:

If we take the s axis to be, in turn, the x, y, and z axes, we find that the x, y, and
z components of at any point are

(24-41)

Thus, if we know V for all points in the region around a charge distribution—that
is, if we know the function V(x, y, z)—we can find the components of , and thus

itself, at any point by taking partial derivatives.
For the simple situation in which the electric field is uniform, Eq. 24-40

becomes

(24-42)

where s is perpendicular to the equipotential surfaces. The component of the
electric field is zero in any direction parallel to the equipotential surfaces because
there is no change in potential along the surfaces.
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CHECKPOINT 6

The figure shows three pairs of parallel
plates with the same separation, and the
electric potential of each plate. The elec-
tric field between the plates is uniform
and perpendicular to the plates. (a) Rank
the pairs according to the magnitude of
the electric field between the plates,
greatest first. (b) For which pair is the
electric field pointing rightward? (c) If an
electron is released midway between the
third pair of plates, does it remain there,
move rightward at constant speed, move
leftward at constant speed, accelerate
rightward, or accelerate leftward?

–50 V +150 V –20 V +200 V
(1) (2)

–200 V –400 V
(3)
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(A) remain there

(B) move at constant speed

(C) accelerate rightward, or

(D) accelerate leftward?



Question

Consider three pairs of parallel plates with the same separation.
The electric field between the plates is uniform and perpendicular
to the plates.
(c) If an electron is released midway between the third pair of
plates, does it
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24-10 Calculating the Field from the Potential
In Section 24-5, you saw how to find the potential at a point f if you know
the electric field along a path from a reference point to point f. In this section,
we propose to go the other way—that is, to find the electric field when we know
the potential. As Fig. 24-3 shows, solving this problem graphically is easy: If we
know the potential V at all points near an assembly of charges, we can draw in
a family of equipotential surfaces. The electric field lines, sketched perpendicular
to those surfaces, reveal the variation of .What we are seeking here is the math-
ematical equivalent of this graphical procedure.

Figure 24-14 shows cross sections of a family of closely spaced equipo-
tential surfaces, the potential difference between each pair of adjacent surfaces
being dV.As the figure suggests, the field at any point P is perpendicular to the
equipotential surface through P.

Suppose that a positive test charge q0 moves through a displacement 
from one equipotential surface to the adjacent surface. From Eq. 24-7, we see that
the work the electric field does on the test charge during the move is !q0 dV.
From Eq. 24-16 and Fig. 24-14, we see that the work done by the electric field may
also be written as the scalar product or q0E(cos u) ds. Equating these
two expressions for the work yields

!q0 dV " q0E(cos u) ds, (24-38)

or (24-39)

Since E cos u is the component of in the direction of Eq. 24-39 becomes

(24-40)

We have added a subscript to E and switched to the partial derivative symbols
to emphasize that Eq. 24-40 involves only the variation of V along a specified
axis (here called the s axis) and only the component of along that axis. In
words, Eq. 24-40 (which is essentially the reverse operation of Eq. 24-18)
states:
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.

d s:,E
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E cos $ " !
dV
ds
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E
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E
:

The component of in any direction is the negative of the rate at which the electric
potential changes with distance in that direction.

E
:

s
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P θ

Two
equipotential

surfaces

+
ds

E

Fig. 24-14 A test charge q0 moves a 
distance from one equipotential surface
to another. (The separation between the 
surfaces has been exaggerated for clarity.)
The displacement makes an angle u with
the direction of the electric field .E

:
ds:

ds:

If we take the s axis to be, in turn, the x, y, and z axes, we find that the x, y, and
z components of at any point are

(24-41)

Thus, if we know V for all points in the region around a charge distribution—that
is, if we know the function V(x, y, z)—we can find the components of , and thus

itself, at any point by taking partial derivatives.
For the simple situation in which the electric field is uniform, Eq. 24-40

becomes

(24-42)

where s is perpendicular to the equipotential surfaces. The component of the
electric field is zero in any direction parallel to the equipotential surfaces because
there is no change in potential along the surfaces.
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CHECKPOINT 6

The figure shows three pairs of parallel
plates with the same separation, and the
electric potential of each plate. The elec-
tric field between the plates is uniform
and perpendicular to the plates. (a) Rank
the pairs according to the magnitude of
the electric field between the plates,
greatest first. (b) For which pair is the
electric field pointing rightward? (c) If an
electron is released midway between the
third pair of plates, does it remain there,
move rightward at constant speed, move
leftward at constant speed, accelerate
rightward, or accelerate leftward?

–50 V +150 V –20 V +200 V
(1) (2)

–200 V –400 V
(3)
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(A) remain there

(B) move at constant speed

(C) accelerate rightward, or

(D) accelerate leftward? ←



From earlier: some Implications of Gauss’s Law

• If an excess charge is placed on an isolated conductor, that
amount of charge will move entirely to the surface of the
conductor. None of the excess charge will be found within the
body of the conductor.

• A shell of uniform charge attracts or repels a charged particle
that is outside the shell as if all the shell’s charge were
concentrated at the center of the shell.

• If a charged particle is located inside a shell of uniform charge,
there is no electrostatic force on the particle from the shell.



Conductor in an Electric field
The E-field inside an isolated conductor at equilibrium is zero.

eg. an isolated conductor with excess charge:

1Figure from Openstax College Physics.

E = 0



Potential due to an Isolated Charged Conductor
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perpendicular to the displacement d sS; therefore, E
S

? d sS 5 0. Using this result and 
Equation 25.3, we conclude that the potential difference between ! and " is nec-
essarily zero:

 V" 2 V! 5 2 3
"

!

E
S

? d sS 5 0 

This result applies to any two points on the surface. Therefore, V is constant every-
where on the surface of a charged conductor in equilibrium. That is,

the surface of any charged conductor in electrostatic equilibrium is an equi-
potential surface: every point on the surface of a charged conductor in equi-
librium is at the same electric potential. Furthermore, because the electric 
field is zero inside the conductor, the electric potential is constant everywhere 
inside the conductor and equal to its value at the surface. 

Because of the constant value of the potential, no work is required to move a charge 
from the interior of a charged conductor to its surface.
 Consider a solid metal conducting sphere of radius R and total positive charge Q 
as shown in Figure 25.18a. As determined in part (A) of Example 24.3, the electric 
field outside the sphere is keQ /r 2 and points radially outward. Because the field 
outside a spherically symmetric charge distribution is identical to that of a point 
charge, we expect the potential to also be that of a point charge, keQ /r. At the 
surface of the conducting sphere in Figure 25.18a, the potential must be keQ /R. 
Because the entire sphere must be at the same potential, the potential at any point 
within the sphere must also be keQ /R. Figure 25.18b is a plot of the electric poten-
tial as a function of r, and Figure 25.18c shows how the electric field varies with r.
 When a net charge is placed on a spherical conductor, the surface charge density 
is uniform as indicated in Figure 25.18a. If the conductor is nonspherical as in Fig-
ure 25.17, however, the surface charge density is high where the radius of curvature 
is small (as noted in Section 24.4) and low where the radius of curvature is large. 
Because the electric field immediately outside the conductor is proportional to the 
surface charge density, the electric field is large near convex points having small radii 
of curvature and reaches very high values at sharp points. In Example 25.8, the rela-
tionship between electric field and radius of curvature is explored mathematically.
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Figure 25.18  (a) The excess 
charge on a conducting sphere of 
radius R is uniformly distributed 
on its surface. (b) Electric potential 
versus distance r from the center 
of the charged conducting sphere. 
(c) Electric field magnitude versus 
distance r from the center of the 
charged conducting sphere.

Example 25.8   Two Connected Charged Spheres

Two spherical conductors of radii r1 and r2 are separated by a distance much 
greater than the radius of either sphere. The spheres are connected by a con-
ducting wire as shown in Figure 25.19. The charges on the spheres in equilib-
rium are q1 and q2, respectively, and they are uniformly charged. Find the ratio 
of the magnitudes of the electric fields at the surfaces of the spheres.

Conceptualize  Imagine the spheres are much farther apart than shown in Fig-
ure 25.19. Because they are so far apart, the field of one does not affect the 
charge distribution on the other. The conducting wire between them ensures 
that both spheres have the same electric potential.

Categorize  Because the spheres are so far apart, we model the charge dis-
tribution on them as spherically symmetric, and we can model the field and 
potential outside the spheres to be that due to point charges.

S O L U T I O N

r1

q1

r2
q2

Figure 25.19  (Example 25.8) Two 
charged spherical conductors connected 
by a conducting wire. The spheres are at 
the same electric potential V.

Analyze  Set the electric potentials at the surfaces of the 
spheres equal to each other:

V 5 ke 
q1

r1
5 ke 

q2

r2

1Figure from Serway & Jewett, 9th ed.



Potential due to an Isolated Charged Conductor

Because all excess charge flows to the outside, in the interior, the
electric field is zero.
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Fig. 24-18 (a) A plot of V(r) both
inside and outside a charged spheri-
cal shell of radius 1.0 m. (b) A plot of
E(r) for the same shell.Fig. 24-19 A large spark

jumps to a car’s body and then
exits by moving across the
insulating left front tire (note
the flash there), leaving the per-
son inside unharmed. (Courtesy
Westinghouse Electric
Corporation)

Figure 24-18a is a plot of potential against radial distance r from the center
for an isolated spherical conducting shell of 1.0 m radius, having a charge of
1.0 mC. For points outside the shell, we can calculate V(r) from Eq. 24-26 because
the charge q behaves for such external points as if it were concentrated at the
center of the shell. That equation holds right up to the surface of the shell. Now
let us push a small test charge through the shell—assuming a small hole exists—
to its center. No extra work is needed to do this because no net electric force acts
on the test charge once it is inside the shell. Thus, the potential at all points inside
the shell has the same value as that on the surface, as Fig. 24-18a shows.

Figure 24-18b shows the variation of electric field with radial distance for the
same shell. Note that E ! 0 everywhere inside the shell.The curves of Fig. 24-18b
can be derived from the curve of Fig. 24-18a by differentiating with respect to r,
using Eq. 24-40 (recall that the derivative of any constant is zero). The curve of
Fig. 24-18a can be derived from the curves of Fig. 24-18b by integrating with
respect to r, using Eq. 24-19.

Fig. 24-20 An uncharged conduc-
tor is suspended in an external elec-
tric field.The free electrons in the
conductor distribute themselves on
the surface as shown, so as to reduce
the net electric field inside the con-
ductor to zero and make the net field
at the surface perpendicular to the
surface.
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–––––––––– –

–
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Spark Discharge from a Charged Conductor
On nonspherical conductors, a surface charge does not distribute itself uniformly
over the surface of the conductor.At sharp points or sharp edges, the surface charge
density—and thus the external electric field, which is proportional to it—may reach
very high values.The air around such sharp points or edges may become ionized, pro-
ducing the corona discharge that golfers and mountaineers see on the tips of bushes,
golf clubs, and rock hammers when thunderstorms threaten. Such corona discharges,
like hair that stands on end, are often the precursors of lightning strikes. In such cir-
cumstances, it is wise to enclose yourself in a cavity inside a conducting shell, where
the electric field is guaranteed to be zero. A car (unless it is a convertible or made
with a plastic body) is almost ideal (Fig.24-19).

Isolated Conductor in an External Electric Field
If an isolated conductor is placed in an external electric field, as in Fig. 24-20, all
points of the conductor still come to a single potential regardless of whether the
conductor has an excess charge. The free conduction electrons distribute them-
selves on the surface in such a way that the electric field they produce at interior
points cancels the external electric field that would otherwise be there.
Furthermore, the electron distribution causes the net electric field at all points on
the surface to be perpendicular to the surface. If the conductor in Fig. 24-20 could
be somehow removed, leaving the surface charges frozen in place, the internal
and external electric field would remain absolutely unchanged.
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Fig. 24-18 (a) A plot of V(r) both
inside and outside a charged spheri-
cal shell of radius 1.0 m. (b) A plot of
E(r) for the same shell.Fig. 24-19 A large spark

jumps to a car’s body and then
exits by moving across the
insulating left front tire (note
the flash there), leaving the per-
son inside unharmed. (Courtesy
Westinghouse Electric
Corporation)

Figure 24-18a is a plot of potential against radial distance r from the center
for an isolated spherical conducting shell of 1.0 m radius, having a charge of
1.0 mC. For points outside the shell, we can calculate V(r) from Eq. 24-26 because
the charge q behaves for such external points as if it were concentrated at the
center of the shell. That equation holds right up to the surface of the shell. Now
let us push a small test charge through the shell—assuming a small hole exists—
to its center. No extra work is needed to do this because no net electric force acts
on the test charge once it is inside the shell. Thus, the potential at all points inside
the shell has the same value as that on the surface, as Fig. 24-18a shows.

Figure 24-18b shows the variation of electric field with radial distance for the
same shell. Note that E ! 0 everywhere inside the shell.The curves of Fig. 24-18b
can be derived from the curve of Fig. 24-18a by differentiating with respect to r,
using Eq. 24-40 (recall that the derivative of any constant is zero). The curve of
Fig. 24-18a can be derived from the curves of Fig. 24-18b by integrating with
respect to r, using Eq. 24-19.

Fig. 24-20 An uncharged conduc-
tor is suspended in an external elec-
tric field.The free electrons in the
conductor distribute themselves on
the surface as shown, so as to reduce
the net electric field inside the con-
ductor to zero and make the net field
at the surface perpendicular to the
surface.
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Spark Discharge from a Charged Conductor
On nonspherical conductors, a surface charge does not distribute itself uniformly
over the surface of the conductor.At sharp points or sharp edges, the surface charge
density—and thus the external electric field, which is proportional to it—may reach
very high values.The air around such sharp points or edges may become ionized, pro-
ducing the corona discharge that golfers and mountaineers see on the tips of bushes,
golf clubs, and rock hammers when thunderstorms threaten. Such corona discharges,
like hair that stands on end, are often the precursors of lightning strikes. In such cir-
cumstances, it is wise to enclose yourself in a cavity inside a conducting shell, where
the electric field is guaranteed to be zero. A car (unless it is a convertible or made
with a plastic body) is almost ideal (Fig.24-19).

Isolated Conductor in an External Electric Field
If an isolated conductor is placed in an external electric field, as in Fig. 24-20, all
points of the conductor still come to a single potential regardless of whether the
conductor has an excess charge. The free conduction electrons distribute them-
selves on the surface in such a way that the electric field they produce at interior
points cancels the external electric field that would otherwise be there.
Furthermore, the electron distribution causes the net electric field at all points on
the surface to be perpendicular to the surface. If the conductor in Fig. 24-20 could
be somehow removed, leaving the surface charges frozen in place, the internal
and external electric field would remain absolutely unchanged.
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Since ∆V = −E d cos θ the potential inside the conductor is
constant.

1Figure from Halliday, Resnick, Walker, 9th ed.



Charge distribution on a conductor
The electric potential is constant everywhere on a conductor
(including the surface!), but the charge distribution may vary.
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25.6 Electric Potential Due to a Charged Conductor
In Section 24.4, we found that when a solid conductor in equilibrium carries a net 
charge, the charge resides on the conductor’s outer surface. Furthermore, the elec-
tric field just outside the conductor is perpendicular to the surface and the field 
inside is zero.
 We now generate another property of a charged conductor, related to electric 
potential. Consider two points ! and " on the surface of a charged conductor as 
shown in Figure 25.17. Along a surface path connecting these points, E

S
 is always 

What if you were asked to find the electric 
field at point P ? Would that be a simple calculation?

Answer  Calculating the electric field by means of Equa-
tion 23.11 would be a little messy. There is no symmetry 
to appeal to, and the integration over the line of charge 
would represent a vector addition of electric fields at point 
P. Using Equation 25.18, you could find Ey by replacing a 
with y in Equation 25.25 and performing the differentia-
tion with respect to y. Because the charged rod in Figure 

WHAT IF ? 25.16 lies entirely to the right of x 5 0, the electric field at 
point P would have an x component to the left if the rod is 
charged positively. You cannot use Equation 25.18 to find 
the x component of the field, however, because the poten-
tial due to the rod was evaluated at a specific value of  
x (x 5 0) rather than a general value of x. You would have 
to find the potential as a function of both x and y to be 
able to find the x and y components of the electric field 
using Equation 25.18.

Evaluate the result between the limits: V 5 ke 
Q
,

 3ln 1, 1 "a 2 1 ,2 2 2 ln a 4 5 ke 
Q
,

  ln a, 1 "a 2 1 ,2

a b  (25.25)

Noting that ke and l 5 Q /, are constants and can be 
removed from the integral, evaluate the integral with 
the help of Appendix B:

V 5 ke l 3
,

0
  

dx"a 2 1 x 2
5 ke 

Q
,

  ln 1x 1 "a 2 1 x 2 2 ` ,
0

Find the total potential at P by integrating this expres-
sion over the limits x 5 0 to x 5 ,:

V 5 3
,

0
 ke 

l dx"a 2 1 x 2

Find the potential at P due to one segment of the rod  
at an arbitrary position x :

dV 5 ke 
dq
r

5 ke 
l dx"a 2 1 x 2

Pitfall Prevention 25.6
Potential May Not Be Zero  
The electric potential inside the 
conductor is not necessarily zero 
in Figure 25.17, even though the 
electric field is zero. Equation 
25.15 shows that a zero value of 
the field results in no change in 
the potential from one point 
to another inside the conduc-
tor. Therefore, the potential 
everywhere inside the conductor, 
including the surface, has the 
same value, which may or may not 
be zero, depending on where the 
zero of potential is defined.

Notice from the spacing of the 
positive signs that the surface 
charge density is nonuniform.
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Figure 25.17  An arbitrarily shaped conductor carrying a 
positive charge. When the conductor is in electrostatic equi-
librium, all the charge resides at the surface, E

S
5 0 inside 

the conductor, and the direction of E
S

 immediately outside 
the conductor is perpendicular to the surface. The electric 
potential is constant inside the conductor and is equal to the 
potential at the surface. 

Finalize  If , ,, a, the potential at P should approach that of a point charge because the rod is very short compared 
to the distance from the rod to P.  By using a series expansion for the natural logarithm from Appendix B.5, it is easy 
to show that Equation 25.25 becomes V = keQ /a.

 

▸ 25.7 c o n t i n u e d



Charge distribution on a conductor

An illustrative example (25.8), electric field around conductor.
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perpendicular to the displacement d sS; therefore, E
S

? d sS 5 0. Using this result and 
Equation 25.3, we conclude that the potential difference between ! and " is nec-
essarily zero:

 V" 2 V! 5 2 3
"

!

E
S

? d sS 5 0 

This result applies to any two points on the surface. Therefore, V is constant every-
where on the surface of a charged conductor in equilibrium. That is,

the surface of any charged conductor in electrostatic equilibrium is an equi-
potential surface: every point on the surface of a charged conductor in equi-
librium is at the same electric potential. Furthermore, because the electric 
field is zero inside the conductor, the electric potential is constant everywhere 
inside the conductor and equal to its value at the surface. 

Because of the constant value of the potential, no work is required to move a charge 
from the interior of a charged conductor to its surface.
 Consider a solid metal conducting sphere of radius R and total positive charge Q 
as shown in Figure 25.18a. As determined in part (A) of Example 24.3, the electric 
field outside the sphere is keQ /r 2 and points radially outward. Because the field 
outside a spherically symmetric charge distribution is identical to that of a point 
charge, we expect the potential to also be that of a point charge, keQ /r. At the 
surface of the conducting sphere in Figure 25.18a, the potential must be keQ /R. 
Because the entire sphere must be at the same potential, the potential at any point 
within the sphere must also be keQ /R. Figure 25.18b is a plot of the electric poten-
tial as a function of r, and Figure 25.18c shows how the electric field varies with r.
 When a net charge is placed on a spherical conductor, the surface charge density 
is uniform as indicated in Figure 25.18a. If the conductor is nonspherical as in Fig-
ure 25.17, however, the surface charge density is high where the radius of curvature 
is small (as noted in Section 24.4) and low where the radius of curvature is large. 
Because the electric field immediately outside the conductor is proportional to the 
surface charge density, the electric field is large near convex points having small radii 
of curvature and reaches very high values at sharp points. In Example 25.8, the rela-
tionship between electric field and radius of curvature is explored mathematically.
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Figure 25.18  (a) The excess 
charge on a conducting sphere of 
radius R is uniformly distributed 
on its surface. (b) Electric potential 
versus distance r from the center 
of the charged conducting sphere. 
(c) Electric field magnitude versus 
distance r from the center of the 
charged conducting sphere.

Example 25.8   Two Connected Charged Spheres

Two spherical conductors of radii r1 and r2 are separated by a distance much 
greater than the radius of either sphere. The spheres are connected by a con-
ducting wire as shown in Figure 25.19. The charges on the spheres in equilib-
rium are q1 and q2, respectively, and they are uniformly charged. Find the ratio 
of the magnitudes of the electric fields at the surfaces of the spheres.

Conceptualize  Imagine the spheres are much farther apart than shown in Fig-
ure 25.19. Because they are so far apart, the field of one does not affect the 
charge distribution on the other. The conducting wire between them ensures 
that both spheres have the same electric potential.

Categorize  Because the spheres are so far apart, we model the charge dis-
tribution on them as spherically symmetric, and we can model the field and 
potential outside the spheres to be that due to point charges.

S O L U T I O N

r1

q1

r2
q2

Figure 25.19  (Example 25.8) Two 
charged spherical conductors connected 
by a conducting wire. The spheres are at 
the same electric potential V.

Analyze  Set the electric potentials at the surfaces of the 
spheres equal to each other:

V 5 ke 
q1

r1
5 ke 

q2

r2

At all points on the object V is
constant.

V1 = V2

keq1
r1

=
keq2
r2

q1
q2

=
r1
r2

Since r2 < r1, q1 > q2 .

And
σ1

σ2
=

r2
r1

⇒ sharper curvature of surface,
higher charge density
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An illustrative example (25.8), electric field around conductor.
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perpendicular to the displacement d sS; therefore, E
S

? d sS 5 0. Using this result and 
Equation 25.3, we conclude that the potential difference between ! and " is nec-
essarily zero:

 V" 2 V! 5 2 3
"

!

E
S

? d sS 5 0 

This result applies to any two points on the surface. Therefore, V is constant every-
where on the surface of a charged conductor in equilibrium. That is,

the surface of any charged conductor in electrostatic equilibrium is an equi-
potential surface: every point on the surface of a charged conductor in equi-
librium is at the same electric potential. Furthermore, because the electric 
field is zero inside the conductor, the electric potential is constant everywhere 
inside the conductor and equal to its value at the surface. 

Because of the constant value of the potential, no work is required to move a charge 
from the interior of a charged conductor to its surface.
 Consider a solid metal conducting sphere of radius R and total positive charge Q 
as shown in Figure 25.18a. As determined in part (A) of Example 24.3, the electric 
field outside the sphere is keQ /r 2 and points radially outward. Because the field 
outside a spherically symmetric charge distribution is identical to that of a point 
charge, we expect the potential to also be that of a point charge, keQ /r. At the 
surface of the conducting sphere in Figure 25.18a, the potential must be keQ /R. 
Because the entire sphere must be at the same potential, the potential at any point 
within the sphere must also be keQ /R. Figure 25.18b is a plot of the electric poten-
tial as a function of r, and Figure 25.18c shows how the electric field varies with r.
 When a net charge is placed on a spherical conductor, the surface charge density 
is uniform as indicated in Figure 25.18a. If the conductor is nonspherical as in Fig-
ure 25.17, however, the surface charge density is high where the radius of curvature 
is small (as noted in Section 24.4) and low where the radius of curvature is large. 
Because the electric field immediately outside the conductor is proportional to the 
surface charge density, the electric field is large near convex points having small radii 
of curvature and reaches very high values at sharp points. In Example 25.8, the rela-
tionship between electric field and radius of curvature is explored mathematically.
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Figure 25.18  (a) The excess 
charge on a conducting sphere of 
radius R is uniformly distributed 
on its surface. (b) Electric potential 
versus distance r from the center 
of the charged conducting sphere. 
(c) Electric field magnitude versus 
distance r from the center of the 
charged conducting sphere.

Example 25.8   Two Connected Charged Spheres

Two spherical conductors of radii r1 and r2 are separated by a distance much 
greater than the radius of either sphere. The spheres are connected by a con-
ducting wire as shown in Figure 25.19. The charges on the spheres in equilib-
rium are q1 and q2, respectively, and they are uniformly charged. Find the ratio 
of the magnitudes of the electric fields at the surfaces of the spheres.

Conceptualize  Imagine the spheres are much farther apart than shown in Fig-
ure 25.19. Because they are so far apart, the field of one does not affect the 
charge distribution on the other. The conducting wire between them ensures 
that both spheres have the same electric potential.

Categorize  Because the spheres are so far apart, we model the charge dis-
tribution on them as spherically symmetric, and we can model the field and 
potential outside the spheres to be that due to point charges.

S O L U T I O N

r1

q1

r2
q2

Figure 25.19  (Example 25.8) Two 
charged spherical conductors connected 
by a conducting wire. The spheres are at 
the same electric potential V.

Analyze  Set the electric potentials at the surfaces of the 
spheres equal to each other:

V 5 ke 
q1

r1
5 ke 

q2

r2

At all points on the object V is
constant.

V1 = V2

E1r1 = E2r2

E1

E2
=

r2
r1

Since r2 < r1, E1 < E2 .

⇒ sharper curvature of surface,
stronger electric field



Corona Discharge

A corona discharge occurs when a conductor at a very high
potential ionizes a fluid (eg. air) that surrounds it.

The fields that form around sharp edges of the conductor are high
enough to form small plasma regions, but not full electric
breakdown.

• responsible for significant power losses in high voltage lines

• useful for
• pool sanitation
• ozone manufacture
• ionizers
• air purifiers
• nitrogen lasers (TEA lasers)



Corona Discharge

A corona discharge occurs when a conductor at a very high
potential ionizes a fluid (eg. air) that surrounds it.

The fields that form around sharp edges of the conductor are high
enough to form small plasma regions, but not full electric
breakdown.

• responsible for significant power losses in high voltage lines

• useful for
• pool sanitation
• ozone manufacture
• ionizers
• air purifiers
• nitrogen lasers (TEA lasers)



Coronal Discharge

1Photo “Wartenburg Pinwheel” by Giles Read. 30–50kV



Corona Discharge

Fork in a microwave.

(Microwave ovens generate electric fields.)

https://www.youtube.com/watch?v=b1MFWbX3Bfc

https://www.youtube.com/watch?v=b1MFWbX3Bfc


Capacitance

capacitor

Any two isolated conductors separated by some distance that store
charges of equal magnitude and opposite sign.

(When the capacitor is discharged this stored charge is 0.) 65725-2 CAPACITANCE
PART 3

HALLIDAY REVISED

shape. No matter what their geometry, flat or not, we call these conductors
plates.

Figure 25-3a shows a less general but more conventional arrangement, called
a parallel-plate capacitor, consisting of two parallel conducting plates of area
A separated by a distance d. The symbol we use to represent a capacitor (!") is
based on the structure of a parallel-plate capacitor but is used for capacitors of all
geometries. We assume for the time being that no material medium (such as glass
or plastic) is present in the region between the plates. In Section 25-6, we shall
remove this restriction.

When a capacitor is charged, its plates have charges of equal magnitudes but
opposite signs: !q and "q. However, we refer to the charge of a capacitor as
being q, the absolute value of these charges on the plates. (Note that q is not the
net charge on the capacitor, which is zero.)

Because the plates are conductors, they are equipotential surfaces; all points on a
plate are at the same electric potential. Moreover, there is a potential difference be-
tween the two plates. For historical reasons, we represent the absolute value of this
potential difference with V rather than with the #V we used in previous notation.

The charge q and the potential difference V for a capacitor are proportional
to each other; that is,

q $ CV. (25-1)

The proportionality constant C is called the capacitance of the capacitor. Its
value depends only on the geometry of the plates and not on their charge or
potential difference. The capacitance is a measure of how much charge must be
put on the plates to produce a certain potential difference between them: The
greater the capacitance, the more charge is required.

The SI unit of capacitance that follows from Eq. 25-1 is the coulomb per volt.
This unit occurs so often that it is given a special name, the farad (F):

1 farad $ 1 F $ 1 coulomb per volt $ 1 C/V. (25-2)

As you will see, the farad is a very large unit. Submultiples of the farad, such as
the microfarad (1 mF $ 10"6 F) and the picofarad (1 pF $ 10"12 F), are more
convenient units in practice.

Charging a Capacitor
One way to charge a capacitor is to place it in an electric circuit with a battery.
An electric circuit is a path through which charge can flow. A battery is a device

Fig. 25-3 (a) A parallel-plate capacitor, made up of two plates of area A separated by
a distance d.The charges on the facing plate surfaces have the same magnitude q but
opposite signs. (b) As the field lines show, the electric field due to the charged plates is
uniform in the central region between the plates.The field is not uniform at the edges of
the plates, as indicated by the “fringing” of the field lines there.

Area A  V

d

Top side of
bottom
plate has
charge –q

A

–q

+q

(b)(a)

Bottom side of
top plate has
charge +q

Electric field lines
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The capacitance of a capacitor relates the potential difference
across the capacitor to its stored charge.



Capacitors

Usually capacitors are diagrammed and thought of as parallel
sheets of equal area, but paired, isolated conductors of any shape
can act as capacitors.

C H A P T E R
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C A P A C I TA N C E25
W H AT  I S  P H YS I C S ?25-1 One goal of physics is to provide the basic science for practical devices

designed by engineers. The focus of this chapter is on one extremely common 
example—the capacitor, a device in which electrical energy can be stored. For ex-
ample, the batteries in a camera store energy in the photoflash unit by charging a
capacitor. The batteries can supply energy at only a modest rate, too slowly for
the photoflash unit to emit a flash of light. However, once the capacitor is
charged, it can supply energy at a much greater rate when the photoflash unit is
triggered—enough energy to allow the unit to emit a burst of bright light.

The physics of capacitors can be generalized to other devices and to any situ-
ation involving electric fields. For example, Earth’s atmospheric electric field is
modeled by meteorologists as being produced by a huge spherical capacitor that
partially discharges via lightning. The charge that skis collect as they slide along
snow can be modeled as being stored in a capacitor that frequently discharges as
sparks (which can be seen by nighttime skiers on dry snow).

The first step in our discussion of capacitors is to determine how much
charge can be stored.This “how much” is called capacitance.

25-2 Capacitance
Figure 25-1 shows some of the many sizes and shapes of capacitors. Figure 25-2
shows the basic elements of any capacitor — two isolated conductors of any

Fig. 25-1 An assortment of capacitors.

Fig. 25-2 Two conductors, isolated
electrically from each other and from
their surroundings, form a capacitor.
When the capacitor is charged, the
charges on the conductors, or plates as
they are called, have the same magni-
tude q but opposite signs.
(Paul Silvermann/Fundamental
Photographs)

+q –q
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Capacitors

When a capacitor is charged is has a net charge +q on one plate
and a net charge −q on the other plate.

An electric field exists between the plates.

For the case of parallel sheet plates, the field is uniform, except at
the edges of the plates. 65725-2 CAPACITANCE

PART 3

HALLIDAY REVISED
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plate are at the same electric potential. Moreover, there is a potential difference be-
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potential difference with V rather than with the #V we used in previous notation.
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As you will see, the farad is a very large unit. Submultiples of the farad, such as
the microfarad (1 mF $ 10"6 F) and the picofarad (1 pF $ 10"12 F), are more
convenient units in practice.

Charging a Capacitor
One way to charge a capacitor is to place it in an electric circuit with a battery.
An electric circuit is a path through which charge can flow. A battery is a device

Fig. 25-3 (a) A parallel-plate capacitor, made up of two plates of area A separated by
a distance d.The charges on the facing plate surfaces have the same magnitude q but
opposite signs. (b) As the field lines show, the electric field due to the charged plates is
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Charge of a Capacitor

The net charge on a capacitor is zero: (+q) + (−q) = 0.

However, when we speak of the charge of a capacitor, q, we
mean that the absolute value of the charge on either plate is q.

The charge on this capacitor is q:

C H A P T E R
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example—the capacitor, a device in which electrical energy can be stored. For ex-
ample, the batteries in a camera store energy in the photoflash unit by charging a
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partially discharges via lightning. The charge that skis collect as they slide along
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Potential Difference

The potential difference between two points a and b is the
difference between the electric potential at a and the potential at
b.

∆V = Vb − Va

This can be positive or negative, but very, very often, people also
just are interested in the magnitude of it, so quote it as:

|∆V | = |Vb − Va|

The book uses V instead of ∆V for the potential difference from
here on out. We will stick with ∆V .

What the book does can be a bit confusing, but unfortunately it is
almost universally done when talking about circuits.



Capacitance

When a battery is connected to a pair of plates so that one plate is
connected to the positive terminal of the battery and the other is
connected to the negative terminal, the plates become charged.

778 Chapter 26 Capacitance and Dielectrics

 What determines how much charge is on the plates of a capacitor for a given volt-
age? Experiments show that the quantity of charge Q on a capacitor1 is linearly pro-
portional to the potential difference between the conductors; that is, Q ~ DV. The 
proportionality constant depends on the shape and separation of the conductors.2 
This relationship can be written as Q 5 C DV if we define capacitance as follows:

The capacitance C of a capacitor is defined as the ratio of the magnitude of 
the charge on either conductor to the magnitude of the potential difference 
between the conductors:

 C ;
Q

DV
 (26.1)

By definition capacitance is always a positive quantity. Furthermore, the charge Q and the 
potential difference DV are always expressed in Equation 26.1 as positive quantities.
 From Equation 26.1, we see that capacitance has SI units of coulombs per volt. 
Named in honor of Michael Faraday, the SI unit of capacitance is the farad (F):

 1 F 5 1 C/V  

The farad is a very large unit of capacitance. In practice, typical devices have capac-
itances ranging from microfarads (1026 F) to picofarads (10212 F). We shall use the 
symbol mF to represent microfarads. In practice, to avoid the use of Greek letters, 
physical capacitors are often labeled “mF” for microfarads and “mmF” for micromi-
crofarads or, equivalently, “pF” for picofarads.
 Let’s consider a capacitor formed from a pair of parallel plates as shown in Figure 
26.2. Each plate is connected to one terminal of a battery, which acts as a source of 
potential difference. If the capacitor is initially uncharged, the battery establishes 
an electric field in the connecting wires when the connections are made. Let’s focus 
on the plate connected to the negative terminal of the battery. The electric field in 
the wire applies a force on electrons in the wire immediately outside this plate; this 
force causes the electrons to move onto the plate. The movement continues until 
the plate, the wire, and the terminal are all at the same electric potential. Once this 
equilibrium situation is attained, a potential difference no longer exists between 
the terminal and the plate; as a result, no electric field is present in the wire and 

Definition of capacitance X

Pitfall Prevention 26.1
Capacitance Is a Capacity To 
understand capacitance, think of 
similar notions that use a similar 
word. The capacity of a milk carton 
is the volume of milk it can store. 
The heat capacity of an object is 
the amount of energy an object 
can store per unit of temperature 
difference. The capacitance of a 
capacitor is the amount of charge 
the capacitor can store per unit of 
potential difference.

Pitfall Prevention 26.2
Potential Difference Is DV, Not V  
We use the symbol DV for the 
potential difference across a cir-
cuit element or a device because 
this notation is consistent with our 
definition of potential difference 
and with the meaning of the delta 
sign. It is a common but confus-
ing practice to use the symbol V 
without the delta sign for both a 
potential and a potential differ-
ence! Keep that in mind if you 
consult other texts.

1Although the total charge on the capacitor is zero (because there is as much excess positive charge on one conduc-
tor as there is excess negative charge on the other), it is common practice to refer to the magnitude of the charge on 

either conductor as “the charge on the capacitor.” 
2The proportionality between Q and DV can be proven from Coulomb’s law or by experiment.

!Q

"Q

When the capacitor is charged, the 
conductors carry charges of equal 
magnitude and opposite sign.

Figure 26.1  A capacitor 
consists of two conductors. 

d

!Q
"Q

Area # A

" !

When the capacitor is connected 
to the terminals of a battery, 
electrons transfer between the 
plates and the wires so that the 
plates become charged.

Figure 26.2  A parallel-plate 
capacitor consists of two parallel 
conducting plates, each of area A, 
separated by a distance d. 

1Diagram from Serway & Jewett, 9th ed, page 778.



Capacitance

capacitance, C

The constant of proportionality relating the charge of the capacitor
to the potential difference across it:

q = C |∆V | ; C =
Q

|∆V |

Capacitance is always positive by convention.

where ∆V is the potential difference between one plate of the
capacitor and the other.

Capacitance is measured in Farads. 1 F = 1 C/V.

C is a property of the geometry of the capacitor.



Capacitance Questions

A capacitor is altered so that the charge q is doubled on the plates,
while the potential difference ∆V is held constant. Capacitance:

(A) increases

(B) decreases

(C) remains the same
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Capacitance Questions

A capacitor is altered so that the potential difference V is tripled
across the plates, while the charge q is held constant. Capacitance:

(A) increases

(B) decreases

(C) remains the same

1Halliday, Resnick, Walker, page 658.
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Capacitance Questions

If the potential difference is fixed, eg. the capacitor plates are
charged by a constant 9 V battery, does capacitance

(A) increase

(B) decrease

(C) remain the same

when the separation of the plates d is doubled?

1Halliday, Resnick, Walker, page 661.
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Capacitance Questions

If the potential difference is fixed, eg. the capacitor plate are
charged by a constant 9 V battery, does capacitance

(A) increase←
(B) decrease

(C) remain the same

when the area of the plates A is doubled?



Capacitance

q = C |∆V | ⇒ C =
q

|∆V |

C is a property of the geometry of the capacitor.

A particular capacitor will have a particular fixed value of C , just
like a given resistor will have a constant value of resistance R.

For a parallel plate capacitor:

C =
ε0A

d

where d is the separation distance of the plates and A is the area
of each plate



Capacitance

Capacitors with different construction will have different values of
C .

For example,
for a cylinderical capacitor of length L, inner radius a and outer
radius b:

C = 2πε0
L

ln(b/a)

for a spherical capacitor of inner radius a and outer radius b:

C = 4πε0
ab

b − a

for an isolated charged sphere of radius R:

C = 4πε0R
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Parallel Plate Capacitor

Back to the parallel plate capacitor:

C =
ε0A

d

Let’s justify why this expression should hold.

From Guass’s law:
Q = ε0ΦE

Q = ε0EA
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Back to the parallel plate capacitor:
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ε0A

d

Let’s justify why this expression should hold.

From Guass’s law:
Q = ε0ΦE

Q = ε0EA



Parallel Plate Capacitor

Also:
|∆V | = Ed

Taking the ratio gives:
Q

∆V
=
ε0A

d

Confirming that

C =
ε0A

d

since C = Q/(∆V ).



Parallel Plate Capacitor

In particular, notice that we used expressions for

the charge on a parallel plate capacitor:

q = ε0EA

and the potential difference across the plates of a parallel plate
capacitor:

|∆V | = Ed



Circuits

Circuits consist of electrical components connected by wires.

Some types of components: batteries, resistors, capacitors,
lightbulbs, LEDs, diodes, inductors, transistors, chips, etc.

The wires in circuits can be thought of as channels for an electric
field that distributes charge to (or charge flow through) the
components.



Circuit component symbols

battery ∆V

782 Chapter 26 Capacitance and Dielectrics

26.3 Combinations of Capacitors
Two or more capacitors often are combined in electric circuits. We can calculate 
the equivalent capacitance of certain combinations using methods described in 
this section. Throughout this section, we assume the capacitors to be combined are 
initially uncharged.
 In studying electric circuits, we use a simplified pictorial representation called a 
circuit diagram. Such a diagram uses circuit symbols to represent various circuit 
elements. The circuit symbols are connected by straight lines that represent the 
wires between the circuit elements. The circuit symbols for capacitors, batteries, 
and switches as well as the color codes used for them in this text are given in Fig-
ure 26.6. The symbol for the capacitor reflects the geometry of the most common 
model for a capacitor, a pair of parallel plates. The positive terminal of the battery 
is at the higher potential and is represented in the circuit symbol by the longer line.

Parallel Combination
Two capacitors connected as shown in Figure 26.7a are known as a parallel combi-
nation of capacitors. Figure 26.7b shows a circuit diagram for this combination of 
capacitors. The left plates of the capacitors are connected to the positive terminal of 
the battery by a conducting wire and are therefore both at the same electric potential 

Substitute the absolute value of DV into Equation 26.1: C 5
Q

DV
5

Q0 Vb 2 Va 0 5
ab

ke 1b 2 a 2  (26.6)

Apply the result of Example 24.3 for the electric field 
outside a spherically symmetric charge distribution  
and note that E

S
 is parallel to d sS along a radial line:

Vb 2 Va 5 2 3
b

a
 Er dr 5 2keQ 3

b

a
 
dr
r 2 5 keQ c1r d b

a

(1)   Vb 2 Va 5 keQ a1
b

2
1
ab 5 keQ 

a 2 b
ab

Write an expression for the potential difference between 
the two conductors from Equation 25.3:

Vb 2 Va 5 2 3
b

a
E
S

? d sS

Finalize  The capacitance depends on a and b as expected. The potential difference between the spheres in Equation 
(1) is negative because Q is positive and b . a. Therefore, in Equation 26.6, when we take the absolute value, we change 
a 2 b to b 2 a. The result is a positive number.

 If the radius b of the outer sphere approaches infinity, what does the capacitance become?

Answer  In Equation 26.6, we let b S `:

C 5 lim
b S `

  ab
ke 1b 2 a 2 5

ab
ke 1b 2 5

a
ke

5 4pP0a

Notice that this expression is the same as Equation 26.2, the capacitance of an isolated spherical conductor.

WHAT IF ?

Capacitor
symbol

Battery
symbol

symbol
Switch Open

Closed

!

"

Figure 26.6  Circuit symbols for 
capacitors, batteries, and switches. 
Notice that capacitors are in 
blue, batteries are in green, and 
switches are in red. The closed 
switch can carry current, whereas 
the open one cannot.

 

▸ 26.2 c o n t i n u e d

Categorize  Because of the spherical symmetry of the sys-
tem, we can use results from previous studies of spherical 
systems to find the capacitance.

Analyze  As shown in Chapter 24, the direction of the 
electric field outside a spherically symmetric charge 
distribution is radial and its magnitude is given by the 
expression E 5 keQ /r 2. In this case, this result applies to 
the field between the spheres (a , r , b).

a

b

!Q

"Q

Figure 26.5  (Example 26.2) 
A spherical capacitor consists of 
an inner sphere of radius a sur-
rounded by a concentric spherical 
shell of radius b. The electric field 
between the spheres is directed 
radially outward when the inner 
sphere is positively charged.

capacitor C
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the battery by a conducting wire and are therefore both at the same electric potential 

Substitute the absolute value of DV into Equation 26.1: C 5
Q

DV
5

Q0 Vb 2 Va 0 5
ab

ke 1b 2 a 2  (26.6)

Apply the result of Example 24.3 for the electric field 
outside a spherically symmetric charge distribution  
and note that E

S
 is parallel to d sS along a radial line:
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b
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Write an expression for the potential difference between 
the two conductors from Equation 25.3:

Vb 2 Va 5 2 3
b

a
E
S

? d sS

Finalize  The capacitance depends on a and b as expected. The potential difference between the spheres in Equation 
(1) is negative because Q is positive and b . a. Therefore, in Equation 26.6, when we take the absolute value, we change 
a 2 b to b 2 a. The result is a positive number.

 If the radius b of the outer sphere approaches infinity, what does the capacitance become?

Answer  In Equation 26.6, we let b S `:

C 5 lim
b S `

  ab
ke 1b 2 a 2 5

ab
ke 1b 2 5

a
ke

5 4pP0a

Notice that this expression is the same as Equation 26.2, the capacitance of an isolated spherical conductor.
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Figure 26.6  Circuit symbols for 
capacitors, batteries, and switches. 
Notice that capacitors are in 
blue, batteries are in green, and 
switches are in red. The closed 
switch can carry current, whereas 
the open one cannot.
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Categorize  Because of the spherical symmetry of the sys-
tem, we can use results from previous studies of spherical 
systems to find the capacitance.

Analyze  As shown in Chapter 24, the direction of the 
electric field outside a spherically symmetric charge 
distribution is radial and its magnitude is given by the 
expression E 5 keQ /r 2. In this case, this result applies to 
the field between the spheres (a , r , b).

a

b

!Q

"Q

Figure 26.5  (Example 26.2) 
A spherical capacitor consists of 
an inner sphere of radius a sur-
rounded by a concentric spherical 
shell of radius b. The electric field 
between the spheres is directed 
radially outward when the inner 
sphere is positively charged.

switch S

782 Chapter 26 Capacitance and Dielectrics

26.3 Combinations of Capacitors
Two or more capacitors often are combined in electric circuits. We can calculate 
the equivalent capacitance of certain combinations using methods described in 
this section. Throughout this section, we assume the capacitors to be combined are 
initially uncharged.
 In studying electric circuits, we use a simplified pictorial representation called a 
circuit diagram. Such a diagram uses circuit symbols to represent various circuit 
elements. The circuit symbols are connected by straight lines that represent the 
wires between the circuit elements. The circuit symbols for capacitors, batteries, 
and switches as well as the color codes used for them in this text are given in Fig-
ure 26.6. The symbol for the capacitor reflects the geometry of the most common 
model for a capacitor, a pair of parallel plates. The positive terminal of the battery 
is at the higher potential and is represented in the circuit symbol by the longer line.

Parallel Combination
Two capacitors connected as shown in Figure 26.7a are known as a parallel combi-
nation of capacitors. Figure 26.7b shows a circuit diagram for this combination of 
capacitors. The left plates of the capacitors are connected to the positive terminal of 
the battery by a conducting wire and are therefore both at the same electric potential 

Substitute the absolute value of DV into Equation 26.1: C 5
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ke 1b 2 a 2  (26.6)

Apply the result of Example 24.3 for the electric field 
outside a spherically symmetric charge distribution  
and note that E
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 is parallel to d sS along a radial line:
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Write an expression for the potential difference between 
the two conductors from Equation 25.3:

Vb 2 Va 5 2 3
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Finalize  The capacitance depends on a and b as expected. The potential difference between the spheres in Equation 
(1) is negative because Q is positive and b . a. Therefore, in Equation 26.6, when we take the absolute value, we change 
a 2 b to b 2 a. The result is a positive number.

 If the radius b of the outer sphere approaches infinity, what does the capacitance become?

Answer  In Equation 26.6, we let b S `:

C 5 lim
b S `

  ab
ke 1b 2 a 2 5

ab
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5 4pP0a

Notice that this expression is the same as Equation 26.2, the capacitance of an isolated spherical conductor.
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Figure 26.6  Circuit symbols for 
capacitors, batteries, and switches. 
Notice that capacitors are in 
blue, batteries are in green, and 
switches are in red. The closed 
switch can carry current, whereas 
the open one cannot.
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Categorize  Because of the spherical symmetry of the sys-
tem, we can use results from previous studies of spherical 
systems to find the capacitance.

Analyze  As shown in Chapter 24, the direction of the 
electric field outside a spherically symmetric charge 
distribution is radial and its magnitude is given by the 
expression E 5 keQ /r 2. In this case, this result applies to 
the field between the spheres (a , r , b).
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!Q

"Q

Figure 26.5  (Example 26.2) 
A spherical capacitor consists of 
an inner sphere of radius a sur-
rounded by a concentric spherical 
shell of radius b. The electric field 
between the spheres is directed 
radially outward when the inner 
sphere is positively charged.

resistor R
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 Today, thousands of superconductors are known, and as Table 27.3 illustrates, 
the critical temperatures of recently discovered superconductors are substantially 
higher than initially thought possible. Two kinds of superconductors are recog-
nized. The more recently identified ones are essentially ceramics with high criti-
cal temperatures, whereas superconducting materials such as those observed by 
Kamerlingh-Onnes are metals. If a room-temperature superconductor is ever iden-
tified, its effect on technology could be tremendous.
 The value of Tc is sensitive to chemical composition, pressure, and molecular 
structure. Copper, silver, and gold, which are excellent conductors, do not exhibit 
superconductivity.
 One truly remarkable feature of superconductors is that once a current is set up 
in them, it persists without any applied potential difference (because R 5 0). Steady cur-
rents have been observed to persist in superconducting loops for several years with 
no apparent decay!
 An important and useful application of superconductivity is in the development 
of superconducting magnets, in which the magnitudes of the magnetic field are 
approximately ten times greater than those produced by the best normal elec-
tromagnets. Such superconducting magnets are being considered as a means of 
storing energy. Superconducting magnets are currently used in medical magnetic 
resonance imaging, or MRI, units, which produce high-quality images of internal 
organs without the need for excessive exposure of patients to x-rays or other harm-
ful radiation.

27.6 Electrical Power
In typical electric circuits, energy TET is transferred by electrical transmission from 
a source such as a battery to some device such as a lightbulb or a radio receiver. 
Let’s determine an expression that will allow us to calculate the rate of this energy 
transfer. First, consider the simple circuit in Figure 27.11, where energy is delivered 
to a resistor. (Resistors are designated by the circuit symbol .) Because the 
connecting wires also have resistance, some energy is delivered to the wires and 
some to the resistor. Unless noted otherwise, we shall assume the resistance of the 
wires is small compared with the resistance of the circuit element so that the energy 
delivered to the wires is negligible.
 Imagine following a positive quantity of charge Q moving clockwise around the 
circuit in Figure 27.11 from point a through the battery and resistor back to point a. 
We identify the entire circuit as our system. As the charge moves from a to b through 
the battery, the electric potential energy of the system increases by an amount Q DV 

Table 27.3 Critical Temperatures 
for Various Superconductors
Material Tc  (K)

HgBa2Ca2Cu3O8 134
Tl—Ba—Ca—Cu—O 125
Bi—Sr—Ca—Cu—O 105
YBa2Cu3O7 92
Nb3Ge 23.2
Nb3Sn 18.05
Nb 9.46
Pb 7.18
Hg 4.15
Sn 3.72
Al 1.19
Zn 0.88

A small permanent magnet levi-
tated above a disk of the super-
conductor YBa2Cu3O7, which is in 
liquid nitrogen at 77 K.
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The direction of the 
effective flow of positive 
charge is clockwise.

Figure 27.11 A circuit consist-
ing of a resistor of resistance R 
and a battery having a potential 
difference DV across its terminals.
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32.5 Oscillations in an LC Circuit
When a capacitor is connected to an inductor as illustrated in Figure 32.10, the 
combination is an LC circuit. If the capacitor is initially charged and the switch is 
then closed, both the current in the circuit and the charge on the capacitor oscil-
late between maximum positive and negative values. If the resistance of the cir-
cuit is zero, no energy is transformed to internal energy. In the following analysis, 
the resistance in the circuit is neglected. We also assume an idealized situation in 
which energy is not radiated away from the circuit. This radiation mechanism is 
discussed in Chapter 34.
 Assume the capacitor has an initial charge Q max (the maximum charge) and 
the switch is open for t , 0 and then closed at t 5 0. Let’s investigate what happens 
from an energy viewpoint.
 When the capacitor is fully charged, the energy U in the circuit is stored in 
the capacitor’s electric field and is equal to Q 2

max/2C (Eq. 26.11). At this time, the 
current in the circuit is zero; therefore, no energy is stored in the inductor. After 
the switch is closed, the rate at which charges leave or enter the capacitor plates 
(which is also the rate at which the charge on the capacitor changes) is equal to 
the current in the circuit. After the switch is closed and the capacitor begins to 
discharge, the energy stored in its electric field decreases. The capacitor’s dis-
charge represents a current in the circuit, and some energy is now stored in the 
magnetic field of the inductor. Therefore, energy is transferred from the electric 
field of the capacitor to the magnetic field of the inductor. When the capacitor 
is fully discharged, it stores no energy. At this time, the current reaches its maxi-
mum value and all the energy in the circuit is stored in the inductor. The cur-
rent continues in the same direction, decreasing in magnitude, with the capacitor 
eventually becoming fully charged again but with the polarity of its plates now 
opposite the initial polarity. This process is followed by another discharge until 
the circuit returns to its original state of maximum charge Q max and the plate 
polarity shown in Figure 32.10. The energy continues to oscillate between induc-
tor and capacitor.
 The oscillations of the LC circuit are an electromagnetic analog to the mechani-
cal oscillations of the particle in simple harmonic motion studied in Chapter 15. 
Much of what was discussed there is applicable to LC oscillations. For example, we 
investigated the effect of driving a mechanical oscillator with an external force, 

S

LC
Q max

!

"

Figure 32.10  A simple LC cir-
cuit. The capacitor has an initial 
charge Q max, and the switch is 
open for t , 0 and then closed at 
t 5 0.

Find the mutual inductance, noting that the magnetic 
flux FBH through the handle’s coil caused by the mag-
netic field of the base coil is BA:

M 5
NHFBH

i
5

NH BA
i

5 m0 
NBNH

,
 A

Use Equation 30.17 to express the magnetic field in the 
interior of the base solenoid:

B 5 m0 
NB

,
 i

Wireless charging is used in a number of other “cordless” devices. One significant example is the inductive charging 
used by some manufacturers of electric cars that avoids direct metal-to-metal contact between the car and the charg-
ing apparatus.

Conceptualize  Be sure you can identify the two coils in the situation and understand that a changing current in one 
coil induces a current in the second coil.

Categorize  We will determine the result using concepts discussed in this section, so we categorize this example as a 
substitution problem.

S O L U T I O N

 

▸ 32.5 c o n t i n u e d
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26.3 Combinations of Capacitors
Two or more capacitors often are combined in electric circuits. We can calculate 
the equivalent capacitance of certain combinations using methods described in 
this section. Throughout this section, we assume the capacitors to be combined are 
initially uncharged.
 In studying electric circuits, we use a simplified pictorial representation called a 
circuit diagram. Such a diagram uses circuit symbols to represent various circuit 
elements. The circuit symbols are connected by straight lines that represent the 
wires between the circuit elements. The circuit symbols for capacitors, batteries, 
and switches as well as the color codes used for them in this text are given in Fig-
ure 26.6. The symbol for the capacitor reflects the geometry of the most common 
model for a capacitor, a pair of parallel plates. The positive terminal of the battery 
is at the higher potential and is represented in the circuit symbol by the longer line.

Parallel Combination
Two capacitors connected as shown in Figure 26.7a are known as a parallel combi-
nation of capacitors. Figure 26.7b shows a circuit diagram for this combination of 
capacitors. The left plates of the capacitors are connected to the positive terminal of 
the battery by a conducting wire and are therefore both at the same electric potential 

Substitute the absolute value of DV into Equation 26.1: C 5
Q

DV
5

Q0 Vb 2 Va 0 5
ab

ke 1b 2 a 2  (26.6)

Apply the result of Example 24.3 for the electric field 
outside a spherically symmetric charge distribution  
and note that E

S
 is parallel to d sS along a radial line:

Vb 2 Va 5 2 3
b

a
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b
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Write an expression for the potential difference between 
the two conductors from Equation 25.3:

Vb 2 Va 5 2 3
b

a
E
S

? d sS

Finalize  The capacitance depends on a and b as expected. The potential difference between the spheres in Equation 
(1) is negative because Q is positive and b . a. Therefore, in Equation 26.6, when we take the absolute value, we change 
a 2 b to b 2 a. The result is a positive number.

 If the radius b of the outer sphere approaches infinity, what does the capacitance become?

Answer  In Equation 26.6, we let b S `:

C 5 lim
b S `

  ab
ke 1b 2 a 2 5

ab
ke 1b 2 5

a
ke

5 4pP0a

Notice that this expression is the same as Equation 26.2, the capacitance of an isolated spherical conductor.
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Figure 26.6  Circuit symbols for 
capacitors, batteries, and switches. 
Notice that capacitors are in 
blue, batteries are in green, and 
switches are in red. The closed 
switch can carry current, whereas 
the open one cannot.
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Categorize  Because of the spherical symmetry of the sys-
tem, we can use results from previous studies of spherical 
systems to find the capacitance.

Analyze  As shown in Chapter 24, the direction of the 
electric field outside a spherically symmetric charge 
distribution is radial and its magnitude is given by the 
expression E 5 keQ /r 2. In this case, this result applies to 
the field between the spheres (a , r , b).

a

b

!Q

"Q

Figure 26.5  (Example 26.2) 
A spherical capacitor consists of 
an inner sphere of radius a sur-
rounded by a concentric spherical 
shell of radius b. The electric field 
between the spheres is directed 
radially outward when the inner 
sphere is positively charged.

Batteries cause a potential difference between two parts of the
circuit.

This drives a charge flow.



Circuits

The different elements can be combined together in various ways
to make complete circuits: paths for current to flow from one
terminal of a battery or power supply to the other.658 CHAPTE R 25 CAPACITANCE
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that maintains a certain potential difference between its terminals (points at
which charge can enter or leave the battery) by means of internal electrochemi-
cal reactions in which electric forces can move internal charge.

In Fig. 25-4a, a battery B, a switch S, an uncharged capacitor C, and inter-
connecting wires form a circuit. The same circuit is shown in the schematic dia-
gram of Fig. 25-4b, in which the symbols for a battery, a switch, and a capacitor
represent those devices. The battery maintains potential difference V between its
terminals. The terminal of higher potential is labeled ! and is often called the
positive terminal; the terminal of lower potential is labeled " and is often called
the negative terminal.

The circuit shown in Figs. 25-4a and b is said to be incomplete because
switch S is open; that is, the switch does not electrically connect the wires 
attached to it. When the switch is closed, electrically connecting those wires, the
circuit is complete and charge can then flow through the switch and the wires.
As we discussed in Chapter 21, the charge that can flow through a conductor,
such as a wire, is that of electrons. When the circuit of Fig. 25-4 is completed,
electrons are driven through the wires by an electric field that the battery sets
up in the wires. The field drives electrons from capacitor plate h to the positive
terminal of the battery; thus, plate h, losing electrons, becomes positively
charged. The field drives just as many electrons from the negative terminal of
the battery to capacitor plate l; thus, plate l, gaining electrons, becomes nega-
tively charged just as much as plate h, losing electrons, becomes positively
charged.

Initially, when the plates are uncharged, the potential difference between
them is zero. As the plates become oppositely charged, that potential differ-
ence increases until it equals the potential difference V between the terminals
of the battery. Then plate h and the positive terminal of the battery are at the
same potential, and there is no longer an electric field in the wire between
them. Similarly, plate l and the negative terminal reach the same potential,
and there is then no electric field in the wire between them. Thus, with the
field zero, there is no further drive of electrons. The capacitor is then said to
be fully charged, with a potential difference V and charge q that are related
by Eq. 25-1.

In this book we assume that during the charging of a capacitor and after-
ward, charge cannot pass from one plate to the other across the gap separating
them. Also, we assume that a capacitor can retain (or store) charge indefinitely,
until it is put into a circuit where it can be discharged.

Fig. 25-4 (a) Battery B, switch S, and plates h and l of capacitor C, connected in a cir-
cuit. (b) A schematic diagram with the circuit elements represented by their symbols.

(a)

–+
B

S

h
l

C

CHECKPOINT 1

Does the capacitance C of a capacitor increase, decrease, or remain the same (a) when
the charge q on it is doubled and (b) when the potential difference V across it is
tripled?

l

V+
–

(b)

C

B

Terminal

S

h

Terminal
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This circuit is said to be incomplete while the switch is open.



Flow of charge in a circuit

Conventional current is said to flow from the positive terminal to
the negative terminal.

However, actually it is negatively charged electrons that flow
through metal wires:

−
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conductor of cross-sectional area A (Fig. 27.2). The volume of a segment of the con-
ductor of length Dx (between the two circular cross sections shown in Fig. 27.2) is  
A  Dx. If n represents the number of mobile charge carriers per unit volume (in 
other words, the charge carrier density), the number of carriers in the segment is 
nA Dx. Therefore, the total charge DQ in this segment is

 DQ 5 (nA Dx)q 

where q is the charge on each carrier. If the carriers move with a velocity vSd paral-
lel to the axis of the cylinder, the magnitude of the displacement they experience 
in the x direction in a time interval Dt is Dx 5 vd Dt. Let Dt be the time interval 
required for the charge carriers in the segment to move through a displacement 
whose magnitude is equal to the length of the segment. This time interval is also 
the same as that required for all the charge carriers in the segment to pass through 
the circular area at one end. With this choice, we can write DQ as

 DQ 5 (nAvd Dt)q 

Dividing both sides of this equation by Dt, we find that the average current in the 
conductor is

 I avg 5
DQ
Dt

5 nqvdA  (27.4)

 In reality, the speed of the charge carriers vd is an average speed called the 
drift speed. To understand the meaning of drift speed, consider a conductor in 
which the charge carriers are free electrons. If the conductor is isolated—that 
is, the potential difference across it is zero—these electrons undergo random 
motion that is analogous to the motion of gas molecules. The electrons collide 
repeatedly with the metal atoms, and their resultant motion is complicated and 
zigzagged as in Figure 27.3a. As discussed earlier, when a potential difference 
is applied across the conductor (for example, by means of a battery), an electric 
field is set up in the conductor; this field exerts an electric force on the electrons, 
producing a current. In addition to the zigzag motion due to the collisions with 
the metal atoms, the electrons move slowly along the conductor (in a direction 
opposite that of E

S
) at the drift velocity vSd as shown in Figure 27.3b.

 You can think of the atom–electron collisions in a conductor as an effective 
internal friction (or drag force) similar to that experienced by a liquid’s mol-
ecules flowing through a pipe stuffed with steel wool. The energy transferred 
from the electrons to the metal atoms during collisions causes an increase in 
the atom’s vibrational energy and a corresponding increase in the conductor’s 
temperature.

Q uick Quiz 27.1  Consider positive and negative charges moving horizontally 
through the four regions shown in Figure 27.4. Rank the current in these four 
regions from highest to lowest.

A
q

vd  

!x

!t

"

"

vd
S

Figure 27.2  A segment of a uni-
form conductor of cross-sectional 
area A.
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The random motion of the 
charge carriers is modified by 
the field, and they have a drift 
velocity opposite the direction 
of the electric field.

Figure 27.3 (a) A schematic 
diagram of the random motion of 
two charge carriers in a conductor 
in the absence of an electric field. 
The drift velocity is zero. (b) The 
motion of the charge carriers in 
a conductor in the presence of an 
electric field. Because of the accel-
eration of the charge carriers due 
to the electric force, the paths are 
actually parabolic. The drift speed, 
however, is much smaller than the 
average speed, so the parabolic 
shape is not visible on this scale.
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Figure 27.4  (Quick Quiz 27.1) Charges move through four regions.
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1Figure from Serway and Jewett, 9th ed.



Series and Parallel

Series
When components are
connected one after the other
along a single path, they are
connected in series.

V

R1

R2

Parallel
When components are
connected side-by-side on
different paths, they are
connected in parallel.

R1 R2

V



Capacitors in Parallel

Capacitors in parallel all have the same potential difference
across them.

Three capacitors in parallel:
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When a potential difference V is applied across several capacitors connected in 
parallel, that potential difference V is applied across each capacitor.The total charge
q stored on the capacitors is the sum of the charges stored on all the capacitors.

When we analyze a circuit of capacitors in parallel, we can simplify it with
this mental replacement:

Capacitors connected in parallel can be replaced with an equivalent capacitor that
has the same total charge q and the same potential difference V as the actual 
capacitors.

(You might remember this result with the nonsense word “par-V,” which is close
to “party,” to mean “capacitors in parallel have the same V.”) Figure 25-8b shows
the equivalent capacitor (with equivalent capacitance Ceq) that has replaced the
three capacitors (with actual capacitances C1, C2, and C3) of Fig. 25-8a.

To derive an expression for Ceq in Fig. 25-8b, we first use Eq. 25-1 to find the
charge on each actual capacitor:

q1 ! C1V, q2 ! C2V, and q3 ! C3V.

The total charge on the parallel combination of Fig. 25-8a is then

q ! q1 " q2 " q3 ! (C1 " C2 " C3)V.

The equivalent capacitance, with the same total charge q and applied potential
difference V as the combination, is then

a result that we can easily extend to any number n of capacitors, as

(n capacitors in parallel). (25-19)

Thus, to find the equivalent capacitance of a parallel combination, we simply add
the individual capacitances.

Capacitors in Series
Figure 25-9a shows three capacitors connected in series to battery B.This description
has little to do with how the capacitors are drawn. Rather,“in series” means that the
capacitors are wired serially, one after the other, and that a potential difference V is
applied across the two ends of the series. (In Fig. 25-9a, this potential difference V is
maintained by battery B.) The potential differences that then exist across the capaci-
tors in the series produce identical charges q on them.

Ceq ! !
n

j!1
 Cj

Ceq !
q
V

 ! C1 " C2 " C3,

Fig. 25-8 (a) Three capacitors connected
in parallel to battery B.The battery main-
tains potential difference V across its termi-
nals and thus across each capacitor. (b) The
equivalent capacitor, with capacitance Ceq,
replaces the parallel combination.
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–q2 C2 
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+q1 

–q1 C1 

V 

Parallel capacitors and
their equivalent have
the same V (“par-V”).

When a potential difference V is applied across several capacitors connected in
series, the capacitors have identical charge q.The sum of the potential differences
across all the capacitors is equal to the applied potential difference V.

We can explain how the capacitors end up with identical charge by following
a chain reaction of events, in which the charging of each capacitor causes the
charging of the next capacitor. We start with capacitor 3 and work upward to
capacitor 1. When the battery is first connected to the series of capacitors, it
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Equivalent circuit:
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When a potential difference V is applied across several capacitors connected in 
parallel, that potential difference V is applied across each capacitor.The total charge
q stored on the capacitors is the sum of the charges stored on all the capacitors.

When we analyze a circuit of capacitors in parallel, we can simplify it with
this mental replacement:

Capacitors connected in parallel can be replaced with an equivalent capacitor that
has the same total charge q and the same potential difference V as the actual 
capacitors.

(You might remember this result with the nonsense word “par-V,” which is close
to “party,” to mean “capacitors in parallel have the same V.”) Figure 25-8b shows
the equivalent capacitor (with equivalent capacitance Ceq) that has replaced the
three capacitors (with actual capacitances C1, C2, and C3) of Fig. 25-8a.

To derive an expression for Ceq in Fig. 25-8b, we first use Eq. 25-1 to find the
charge on each actual capacitor:

q1 ! C1V, q2 ! C2V, and q3 ! C3V.

The total charge on the parallel combination of Fig. 25-8a is then

q ! q1 " q2 " q3 ! (C1 " C2 " C3)V.

The equivalent capacitance, with the same total charge q and applied potential
difference V as the combination, is then

a result that we can easily extend to any number n of capacitors, as

(n capacitors in parallel). (25-19)

Thus, to find the equivalent capacitance of a parallel combination, we simply add
the individual capacitances.

Capacitors in Series
Figure 25-9a shows three capacitors connected in series to battery B.This description
has little to do with how the capacitors are drawn. Rather,“in series” means that the
capacitors are wired serially, one after the other, and that a potential difference V is
applied across the two ends of the series. (In Fig. 25-9a, this potential difference V is
maintained by battery B.) The potential differences that then exist across the capaci-
tors in the series produce identical charges q on them.

Ceq ! !
n

j!1
 Cj

Ceq !
q
V

 ! C1 " C2 " C3,

Fig. 25-8 (a) Three capacitors connected
in parallel to battery B.The battery main-
tains potential difference V across its termi-
nals and thus across each capacitor. (b) The
equivalent capacitor, with capacitance Ceq,
replaces the parallel combination.
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Ceq
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+q1 

–q1 C1 

V 

Parallel capacitors and
their equivalent have
the same V (“par-V”).

When a potential difference V is applied across several capacitors connected in
series, the capacitors have identical charge q.The sum of the potential differences
across all the capacitors is equal to the applied potential difference V.

We can explain how the capacitors end up with identical charge by following
a chain reaction of events, in which the charging of each capacitor causes the
charging of the next capacitor. We start with capacitor 3 and work upward to
capacitor 1. When the battery is first connected to the series of capacitors, it
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We could replace all three capacitors in the circuit with one
equivalent capacitance. The current and potential difference in the
rest of the circuit is unchanged by this.

What would be the capacitance of this equivalent capacitor?



Capacitors in Parallel

Capacitors in parallel all have the same potential difference
across them.

Three capacitors in parallel:

66325-4 CAPACITORS I N PARALLE L AN D I N S E R I E S
PART 3
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When a potential difference V is applied across several capacitors connected in 
parallel, that potential difference V is applied across each capacitor.The total charge
q stored on the capacitors is the sum of the charges stored on all the capacitors.

When we analyze a circuit of capacitors in parallel, we can simplify it with
this mental replacement:

Capacitors connected in parallel can be replaced with an equivalent capacitor that
has the same total charge q and the same potential difference V as the actual 
capacitors.

(You might remember this result with the nonsense word “par-V,” which is close
to “party,” to mean “capacitors in parallel have the same V.”) Figure 25-8b shows
the equivalent capacitor (with equivalent capacitance Ceq) that has replaced the
three capacitors (with actual capacitances C1, C2, and C3) of Fig. 25-8a.

To derive an expression for Ceq in Fig. 25-8b, we first use Eq. 25-1 to find the
charge on each actual capacitor:

q1 ! C1V, q2 ! C2V, and q3 ! C3V.

The total charge on the parallel combination of Fig. 25-8a is then

q ! q1 " q2 " q3 ! (C1 " C2 " C3)V.

The equivalent capacitance, with the same total charge q and applied potential
difference V as the combination, is then

a result that we can easily extend to any number n of capacitors, as

(n capacitors in parallel). (25-19)

Thus, to find the equivalent capacitance of a parallel combination, we simply add
the individual capacitances.

Capacitors in Series
Figure 25-9a shows three capacitors connected in series to battery B.This description
has little to do with how the capacitors are drawn. Rather,“in series” means that the
capacitors are wired serially, one after the other, and that a potential difference V is
applied across the two ends of the series. (In Fig. 25-9a, this potential difference V is
maintained by battery B.) The potential differences that then exist across the capaci-
tors in the series produce identical charges q on them.
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 Cj

Ceq !
q
V

 ! C1 " C2 " C3,

Fig. 25-8 (a) Three capacitors connected
in parallel to battery B.The battery main-
tains potential difference V across its termi-
nals and thus across each capacitor. (b) The
equivalent capacitor, with capacitance Ceq,
replaces the parallel combination.
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Parallel capacitors and
their equivalent have
the same V (“par-V”).

When a potential difference V is applied across several capacitors connected in
series, the capacitors have identical charge q.The sum of the potential differences
across all the capacitors is equal to the applied potential difference V.

We can explain how the capacitors end up with identical charge by following
a chain reaction of events, in which the charging of each capacitor causes the
charging of the next capacitor. We start with capacitor 3 and work upward to
capacitor 1. When the battery is first connected to the series of capacitors, it
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Equivalent circuit:
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When a potential difference V is applied across several capacitors connected in 
parallel, that potential difference V is applied across each capacitor.The total charge
q stored on the capacitors is the sum of the charges stored on all the capacitors.

When we analyze a circuit of capacitors in parallel, we can simplify it with
this mental replacement:

Capacitors connected in parallel can be replaced with an equivalent capacitor that
has the same total charge q and the same potential difference V as the actual 
capacitors.

(You might remember this result with the nonsense word “par-V,” which is close
to “party,” to mean “capacitors in parallel have the same V.”) Figure 25-8b shows
the equivalent capacitor (with equivalent capacitance Ceq) that has replaced the
three capacitors (with actual capacitances C1, C2, and C3) of Fig. 25-8a.

To derive an expression for Ceq in Fig. 25-8b, we first use Eq. 25-1 to find the
charge on each actual capacitor:

q1 ! C1V, q2 ! C2V, and q3 ! C3V.

The total charge on the parallel combination of Fig. 25-8a is then

q ! q1 " q2 " q3 ! (C1 " C2 " C3)V.

The equivalent capacitance, with the same total charge q and applied potential
difference V as the combination, is then

a result that we can easily extend to any number n of capacitors, as

(n capacitors in parallel). (25-19)

Thus, to find the equivalent capacitance of a parallel combination, we simply add
the individual capacitances.

Capacitors in Series
Figure 25-9a shows three capacitors connected in series to battery B.This description
has little to do with how the capacitors are drawn. Rather,“in series” means that the
capacitors are wired serially, one after the other, and that a potential difference V is
applied across the two ends of the series. (In Fig. 25-9a, this potential difference V is
maintained by battery B.) The potential differences that then exist across the capaci-
tors in the series produce identical charges q on them.

Ceq ! !
n

j!1
 Cj

Ceq !
q
V

 ! C1 " C2 " C3,

Fig. 25-8 (a) Three capacitors connected
in parallel to battery B.The battery main-
tains potential difference V across its termi-
nals and thus across each capacitor. (b) The
equivalent capacitor, with capacitance Ceq,
replaces the parallel combination.
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Parallel capacitors and
their equivalent have
the same V (“par-V”).

When a potential difference V is applied across several capacitors connected in
series, the capacitors have identical charge q.The sum of the potential differences
across all the capacitors is equal to the applied potential difference V.

We can explain how the capacitors end up with identical charge by following
a chain reaction of events, in which the charging of each capacitor causes the
charging of the next capacitor. We start with capacitor 3 and work upward to
capacitor 1. When the battery is first connected to the series of capacitors, it
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We could replace all three capacitors in the circuit with one
equivalent capacitance. The current and potential difference in the
rest of the circuit is unchanged by this.

What would be the capacitance of this equivalent capacitor?



Capacitors in Parallel

Capacitors in parallel all have the same potential difference
across them.

∆V1 = ∆V2 = ∆V3 = ∆V

The total charge on the three capacitors is the sum of the charge
on each.

qnet = q1 + q2 + q3

where q1 = C1∆V .

Capacitance is C = q/(∆V ):

Ceq =
qnet
∆V



Capacitors in Parallel

Equivalent capacitance:

Ceq =
qnet
∆V

=
q1
∆V

+
q2
∆V

+
q3
∆V

= C1 + C2 + C3

So in general, for any number n of capacitors in parallel, the
effective capacitance of them all together is:

Ceq = C1 + C2 + ... + Cn =

n∑
i=1

Ci



Capacitors in Parallel

Equivalent capacitance:

Ceq =
qnet
∆V

=
q1
∆V

+
q2
∆V

+
q3
∆V

= C1 + C2 + C3

So in general, for any number n of capacitors in parallel, the
effective capacitance of them all together is:

Ceq = C1 + C2 + ... + Cn =

n∑
i=1

Ci



Capacitors in Series

Capacitors in series all store the same charge.

Three capacitors in series:
664 CHAPTE R 25 CAPACITANCE

HALLIDAY REVISED

produces charge !q on the bottom plate of capacitor 3. That charge then repels
negative charge from the top plate of capacitor 3 (leaving it with charge "q).The
repelled negative charge moves to the bottom plate of capacitor 2 (giving it
charge !q). That charge on the bottom plate of capacitor 2 then repels negative
charge from the top plate of capacitor 2 (leaving it with charge "q) to the bottom
plate of capacitor 1 (giving it charge !q). Finally, the charge on the bottom plate
of capacitor 1 helps move negative charge from the top plate of capacitor 1 to the
battery, leaving that top plate with charge "q.

Here are two important points about capacitors in series:

1. When charge is shifted from one capacitor to another in a series of capacitors,
it can move along only one route, such as from capacitor 3 to capacitor 2 in 
Fig. 25-9a. If there are additional routes, the capacitors are not in series.

2. The battery directly produces charges on only the two plates to which it is
connected (the bottom plate of capacitor 3 and the top plate of capacitor 1 in
Fig. 25-9a). Charges that are produced on the other plates are due merely to
the shifting of charge already there. For example, in Fig. 25-9a, the part of the
circuit enclosed by dashed lines is electrically isolated from the rest of the
circuit. Thus, the net charge of that part cannot be changed by the battery—
its charge can only be redistributed.

When we analyze a circuit of capacitors in series, we can simplify it with this
mental replacement:

(You might remember this with the nonsense word “seri-q” to mean “capacitors
in series have the same q.”) Figure 25-9b shows the equivalent capacitor (with
equivalent capacitance Ceq) that has replaced the three actual capacitors
(with actual capacitances C1, C2, and C3) of Fig. 25-9a.

To derive an expression for Ceq in Fig. 25-9b, we first use Eq. 25-1 to find the
potential difference of each actual capacitor:

The total potential difference V due to the battery is the sum of these three
potential differences.Thus,

The equivalent capacitance is then

or

We can easily extend this to any number n of capacitors as

(n capacitors in series). (25-20)

Using Eq. 25-20 you can show that the equivalent capacitance of a series of
capacitances is always less than the least capacitance in the series.

1
Ceq

# !
n

j#1

1
Cj

1
Ceq

#
1

C1
"

1
C2

"
1

C3
.

Ceq #
q
V

#
1

1/C1 " 1/C2 " 1/C3
,

V # V1 " V2 " V3 # q " 1
C1

"
1

C2
"

1
C3

#.

V1 #
q
C1

, V2 #
q
C2

, and V3 #
q
C3

.

Fig. 25-9 (a) Three capacitors con-
nected in series to battery B.The battery
maintains potential difference V between
the top and bottom plates of the series
combination. (b) The equivalent capacitor,
with capacitance Ceq, replaces the series
combination.

Capacitors that are connected in series can be replaced with an equivalent capacitor that
has the same charge q and the same total potential difference V as the actual series capacitors.

CHECKPOINT 3

A battery of potential V stores charge q
on a combination of two identical ca-
pacitors. What are the potential differ-
ence across and the charge on either ca-
pacitor if the capacitors are (a) in
parallel and (b) in series?

V 

(b) 

Ceq 

V 
+ 
– 

(a) 

B 

+q 

C1 

C2 

C3 

V1 

V2 

V3 

– 
+ 

B 

Terminal 

Terminal 

–q 

+q 

–q 

–q 

+q 

–q 

+q 

Series capacitors and
their equivalent have
the same q (“seri-q”).
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Equivalent circuit:
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produces charge !q on the bottom plate of capacitor 3. That charge then repels
negative charge from the top plate of capacitor 3 (leaving it with charge "q).The
repelled negative charge moves to the bottom plate of capacitor 2 (giving it
charge !q). That charge on the bottom plate of capacitor 2 then repels negative
charge from the top plate of capacitor 2 (leaving it with charge "q) to the bottom
plate of capacitor 1 (giving it charge !q). Finally, the charge on the bottom plate
of capacitor 1 helps move negative charge from the top plate of capacitor 1 to the
battery, leaving that top plate with charge "q.

Here are two important points about capacitors in series:

1. When charge is shifted from one capacitor to another in a series of capacitors,
it can move along only one route, such as from capacitor 3 to capacitor 2 in 
Fig. 25-9a. If there are additional routes, the capacitors are not in series.

2. The battery directly produces charges on only the two plates to which it is
connected (the bottom plate of capacitor 3 and the top plate of capacitor 1 in
Fig. 25-9a). Charges that are produced on the other plates are due merely to
the shifting of charge already there. For example, in Fig. 25-9a, the part of the
circuit enclosed by dashed lines is electrically isolated from the rest of the
circuit. Thus, the net charge of that part cannot be changed by the battery—
its charge can only be redistributed.

When we analyze a circuit of capacitors in series, we can simplify it with this
mental replacement:

(You might remember this with the nonsense word “seri-q” to mean “capacitors
in series have the same q.”) Figure 25-9b shows the equivalent capacitor (with
equivalent capacitance Ceq) that has replaced the three actual capacitors
(with actual capacitances C1, C2, and C3) of Fig. 25-9a.

To derive an expression for Ceq in Fig. 25-9b, we first use Eq. 25-1 to find the
potential difference of each actual capacitor:

The total potential difference V due to the battery is the sum of these three
potential differences.Thus,

The equivalent capacitance is then

or

We can easily extend this to any number n of capacitors as

(n capacitors in series). (25-20)

Using Eq. 25-20 you can show that the equivalent capacitance of a series of
capacitances is always less than the least capacitance in the series.
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Fig. 25-9 (a) Three capacitors con-
nected in series to battery B.The battery
maintains potential difference V between
the top and bottom plates of the series
combination. (b) The equivalent capacitor,
with capacitance Ceq, replaces the series
combination.

Capacitors that are connected in series can be replaced with an equivalent capacitor that
has the same charge q and the same total potential difference V as the actual series capacitors.

CHECKPOINT 3

A battery of potential V stores charge q
on a combination of two identical ca-
pacitors. What are the potential differ-
ence across and the charge on either ca-
pacitor if the capacitors are (a) in
parallel and (b) in series?
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Ceq 
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+ 
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+q 

C1 

C2 

C3 
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V2 

V3 

– 
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–q 

+q 

–q 

–q 

+q 

–q 

+q 

Series capacitors and
their equivalent have
the same q (“seri-q”).
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Capacitors in Series

Again, we could replace all three capacitors in the circuit with one
equivalent capacitance and we can find the capacitance of this
equivalent capacitor.

The sum of the potential differences across capacitors in series
is V , the battery’s supplied potential difference.

∆V = ∆V1 + ∆V2 + ∆V3

where ∆V1 = q/C1, etc.
Then,

Ceq =
q

∆V



Capacitors in Series

Equivalent capacitance:

Ceq =
q

∆V

=
q

∆V1 + ∆V2 + ∆V3

=

[
V1 + V2 + V3

q

]−1

=

[
∆V1

q
+
∆V2

q
+
∆V3

q

]−1

=

[
1

C1
+

1

C2
+

1

C3

]−1



Capacitors in Series

In general, for any number n of capacitors in series, we can always
relate the effective capacitance of them all together to the
individual capacitances by:

1

Ceq
=

1

C1
+

1

C2
+ ... +

1

Cn
=

n∑
i=1

1

Ci

The equivalent capacitance of capacitors in series is always less
than the smallest capacitance in the series.



Practice

A 5.0µF capacitor is connected in parallel with a 10µF capacitor.
What is the equivalent capacitance of this arrangement?

Ceq = 15 µF

A 5.0µF capacitor is connected in series with a 10µF capacitor.
What is the equivalent capacitance of this arrangement?

Ceq = 3.3 µF



Practice

A 5.0µF capacitor is connected in parallel with a 10µF capacitor.
What is the equivalent capacitance of this arrangement?

Ceq = 15 µF

A 5.0µF capacitor is connected in series with a 10µF capacitor.
What is the equivalent capacitance of this arrangement?

Ceq = 3.3 µF



Practice

A 5.0µF capacitor is connected in parallel with a 10µF capacitor.
What is the equivalent capacitance of this arrangement?

Ceq = 15 µF

A 5.0µF capacitor is connected in series with a 10µF capacitor.
What is the equivalent capacitance of this arrangement?

Ceq = 3.3 µF



Practice

A 5.0µF capacitor is connected in parallel with a 10µF capacitor.
What is the equivalent capacitance of this arrangement?

Ceq = 15 µF

A 5.0µF capacitor is connected in series with a 10µF capacitor.
What is the equivalent capacitance of this arrangement?

Ceq = 3.3 µF



More Practice

What is the equivalent capacitance of this arrangement?

Sample Problem

charge, capacitor 3 is not in series with capacitor 1 (or ca-
pacitor 2).

Are capacitor 1 and capacitor 2 in parallel? Yes.
Their top plates are directly wired together and their
bottom plates are directly wired together, and electric
potential is applied between the top-plate pair and the
bottom-plate pair. Thus, capacitor 1 and capacitor 2 are
in parallel, and Eq. 25-19 tells us that their equivalent ca-
pacitance C12 is

C12 ! C1 " C2 ! 12.0 mF " 5.30 mF ! 17.3 mF.

In Fig. 25-10b, we have replaced capacitors 1 and 2 with
their equivalent capacitor, called capacitor 12 (say “one
two” and not “twelve”). (The connections at points A and B
are exactly the same in Figs. 25-10a and b.)

Is capacitor 12 in series with capacitor 3? Again apply-
ing the test for series capacitances, we see that the charge
that shifts from the top plate of capacitor 3 must entirely go
to the bottom plate of capacitor 12. Thus, capacitor 12 and
capacitor 3 are in series, and we can replace them with their
equivalent C123 (“one two three”), as shown in Fig. 25-10c.

Capacitors in parallel and in series

(a) Find the equivalent capacitance for the combination of
capacitances shown in Fig. 25-10a, across which potential
difference V is applied.Assume

C1 ! 12.0 mF, C2 ! 5.30 mF, and C3 ! 4.50 mF.

KEY I DEA

(a)

C1 =
12.0 µF

C2 =
5.30 µF

C12 =
17.3 µF

C123 =
3.57 µF

C3 =
4.50 µF

C3 =
4.50 µF

A

B
B

A

(b) (c)

V

C12 =
17.3 µF

C3 =
4.50 µF

q3 =
44.6 µC

( f )

12.5 V

V
C123 =

3.57 µF
V123 =
12.5 V

(d)

12.5 V
C123 =

3.57 µF

q123 =
44.6 µC

q12 =
44.6 µC

C12 =
17.3 µF

V12 =
2.58 V

V3 =
9.92 V

C3 =
4.50 µF

q3 =
44.6 µC

(g)

12.5 V

q12 =
44.6 µC

V123 =
12.5 V

(e)

12.5 VV

(h)

C1 =
12.0 µF

V1 =
2.58 V

V2 =
2.58 V

V3 =
9.92 V

C2 =
5.30 µF

C3 =
4.50 µF

q3 =
44.6 µC12.5 V

(i )

C1 =
12.0 µF

q1 =
31.0 µC

q2 =
13.7 µC

V1 =
2.58 V

V2 =
2.58 V

V3 =
9.92 V

C2 =
5.30 µF

C3 =
4.50 µF

q3 =
44.6 µC12.5 V

We first reduce the
circuit to a single
capacitor.

Next, we work
backwards to the
desired capacitor.

Series capacitors and
their equivalent have
the same q (“seri-q”).

Parallel capacitors and
their equivalent have
the same V (“par-V”).

Applying V = q/C yields
the potential difference.

Applying q = CV
yields the charge.

Applying q = CV
yields the charge.

The equivalent of
parallel capacitors
is larger.

The equivalent of
series capacitors
is smaller.

66525-4 CAPACITORS I N PARALLE L AN D I N S E R I E S
PART 3

HALLIDAY REVISED

Fig. 25-10 (a) – (d) Three capacitors are reduced to one equivalent capacitor. (e) – (i)
Working backwards to get the charges.

A

Any capacitors connected in series can be replaced with
their equivalent capacitor, and any capacitors connected in
parallel can be replaced with their equivalent capacitor.
Therefore, we should first check whether any of the capaci-
tors in Fig. 25-10a are in parallel or series.

Finding equivalent capacitance: Capacitors 1 and 3 are
connected one after the other, but are they in series? No.
The potential V that is applied to the capacitors produces
charge on the bottom plate of capacitor 3. That charge
causes charge to shift from the top plate of capacitor 3.
However, note that the shifting charge can move to the
bottom plates of both capacitor 1 and capacitor 2.
Because there is more than one route for the shifting
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More Practice
When solving this type of problem, take an iterative approach.

Identify sets of capacitors that are in parallel, then series, then
parallel, etc. and at each step replace with the equivalent
capacitance:

 26.3 Combinations of Capacitors 785

Substituting this result into Equation 26.9, we have

 
Q

C eq
5

Q 1

C 1
1

Q 2

C 2
 

Canceling the charges because they are all the same gives

 
1

C eq
5

1
C1

1
1

C 2
 1series combination 2  

When this analysis is applied to three or more capacitors connected in series, the 
relationship for the equivalent capacitance is

 
1

C eq
5

1
C 1

1
1

C 2
1

1
C3

1 c  1series combination 2  (26.10)

This expression shows that (1) the inverse of the equivalent capacitance is the alge-
braic sum of the inverses of the individual capacitances and (2) the equivalent 
capacitance of a series combination is always less than any individual capacitance 
in the combination.

Q uick Quiz 26.3  Two capacitors are identical. They can be connected in series or 
in parallel. If you want the smallest equivalent capacitance for the combination, 
how should you connect them? (a) in series (b) in parallel (c) either way because 
both combinations have the same capacitance

�W  Equivalent capacitance for 
capacitors in series

Example 26.3   Equivalent Capacitance

Find the equivalent capacitance between a and b for the 
combination of capacitors shown in Figure 26.9a. All 
capacitances are in microfarads.

Conceptualize  Study Figure 26.9a carefully and make 
sure you understand how the capacitors are connected. 
Verify that there are only series and parallel connec-
tions between capacitors.

Categorize  Figure 26.9a shows that the circuit contains 
both series and parallel connections, so we use the 
rules for series and parallel combinations discussed in 
this section.

Analyze  Using Equations 26.8 and 26.10, we reduce the combination step by step as indicated in the figure. As you 
follow along below, notice that in each step we replace the combination of two capacitors in the circuit diagram with a 
single capacitor having the equivalent capacitance.

S O L U T I O N

4.0
4.0

8.0
8.0

ba

4.0

ba

2.0

6.0 ba

4.0

8.0

ba

2.0

6.0

3.0

1.0

a b c d

Figure 26.9  (Example 26.3) To find the equivalent capacitance 
of the capacitors in (a), we reduce the various combinations in 
steps as indicated in (b), (c), and (d), using the series and parallel 
rules described in the text. All capacitances are in microfarads.

The 1.0-mF and 3.0-mF capacitors (upper red-brown 
circle in Fig. 26.9a) are in parallel. Find the equivalent 
capacitance from Equation 26.8:

Ceq 5 C1 1 C 2 5 4.0 mF

The 2.0-mF and 6.0-mF capacitors (lower red-brown 
circle in Fig. 26.9a) are also in parallel:

Ceq 5 C1 1 C 2 5 8.0 mF 

The circuit now looks like Figure 26.9b. The two 4.0-mF 
capacitors (upper green circle in Fig. 26.9b) are in series. 
Find the equivalent capacitance from Equation 26.10:

 
1

C eq
5

1
C 1

1
1

C 2
5

1
4.0 mF

1
1

4.0 mF
5

1
2.0 mF

 C eq 5 2.0 mF

continued



More Practice

When solving this type of problem, take an iterative approach.

Identify sets of capacitors that are in parallel, then series, then
parallel, etc. and at each step replace with the equivalent
capacitance:

 26.3 Combinations of Capacitors 785

Substituting this result into Equation 26.9, we have

 
Q

C eq
5

Q 1

C 1
1

Q 2

C 2
 

Canceling the charges because they are all the same gives
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C eq
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1

C 2
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When this analysis is applied to three or more capacitors connected in series, the 
relationship for the equivalent capacitance is

 
1

C eq
5

1
C 1

1
1

C 2
1

1
C3

1 c  1series combination 2  (26.10)

This expression shows that (1) the inverse of the equivalent capacitance is the alge-
braic sum of the inverses of the individual capacitances and (2) the equivalent 
capacitance of a series combination is always less than any individual capacitance 
in the combination.

Q uick Quiz 26.3  Two capacitors are identical. They can be connected in series or 
in parallel. If you want the smallest equivalent capacitance for the combination, 
how should you connect them? (a) in series (b) in parallel (c) either way because 
both combinations have the same capacitance

�W  Equivalent capacitance for 
capacitors in series

Example 26.3   Equivalent Capacitance

Find the equivalent capacitance between a and b for the 
combination of capacitors shown in Figure 26.9a. All 
capacitances are in microfarads.

Conceptualize  Study Figure 26.9a carefully and make 
sure you understand how the capacitors are connected. 
Verify that there are only series and parallel connec-
tions between capacitors.

Categorize  Figure 26.9a shows that the circuit contains 
both series and parallel connections, so we use the 
rules for series and parallel combinations discussed in 
this section.

Analyze  Using Equations 26.8 and 26.10, we reduce the combination step by step as indicated in the figure. As you 
follow along below, notice that in each step we replace the combination of two capacitors in the circuit diagram with a 
single capacitor having the equivalent capacitance.

S O L U T I O N

4.0
4.0

8.0
8.0

ba

4.0

ba

2.0

6.0 ba

4.0

8.0

ba

2.0

6.0

3.0

1.0

a b c d

Figure 26.9  (Example 26.3) To find the equivalent capacitance 
of the capacitors in (a), we reduce the various combinations in 
steps as indicated in (b), (c), and (d), using the series and parallel 
rules described in the text. All capacitances are in microfarads.

The 1.0-mF and 3.0-mF capacitors (upper red-brown 
circle in Fig. 26.9a) are in parallel. Find the equivalent 
capacitance from Equation 26.8:

Ceq 5 C1 1 C 2 5 4.0 mF

The 2.0-mF and 6.0-mF capacitors (lower red-brown 
circle in Fig. 26.9a) are also in parallel:

Ceq 5 C1 1 C 2 5 8.0 mF 

The circuit now looks like Figure 26.9b. The two 4.0-mF 
capacitors (upper green circle in Fig. 26.9b) are in series. 
Find the equivalent capacitance from Equation 26.10:
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 C eq 5 2.0 mF

continued



More Practice

What is the equivalent capacitance of this arrangement:

Sample Problem

charge, capacitor 3 is not in series with capacitor 1 (or ca-
pacitor 2).

Are capacitor 1 and capacitor 2 in parallel? Yes.
Their top plates are directly wired together and their
bottom plates are directly wired together, and electric
potential is applied between the top-plate pair and the
bottom-plate pair. Thus, capacitor 1 and capacitor 2 are
in parallel, and Eq. 25-19 tells us that their equivalent ca-
pacitance C12 is

C12 ! C1 " C2 ! 12.0 mF " 5.30 mF ! 17.3 mF.

In Fig. 25-10b, we have replaced capacitors 1 and 2 with
their equivalent capacitor, called capacitor 12 (say “one
two” and not “twelve”). (The connections at points A and B
are exactly the same in Figs. 25-10a and b.)

Is capacitor 12 in series with capacitor 3? Again apply-
ing the test for series capacitances, we see that the charge
that shifts from the top plate of capacitor 3 must entirely go
to the bottom plate of capacitor 12. Thus, capacitor 12 and
capacitor 3 are in series, and we can replace them with their
equivalent C123 (“one two three”), as shown in Fig. 25-10c.

Capacitors in parallel and in series

(a) Find the equivalent capacitance for the combination of
capacitances shown in Fig. 25-10a, across which potential
difference V is applied.Assume

C1 ! 12.0 mF, C2 ! 5.30 mF, and C3 ! 4.50 mF.

KEY I DEA

(a)

C1 =
12.0 µF

C2 =
5.30 µF

C12 =
17.3 µF

C123 =
3.57 µF

C3 =
4.50 µF

C3 =
4.50 µF

A

B
B

A

(b) (c)

V

C12 =
17.3 µF

C3 =
4.50 µF

q3 =
44.6 µC

( f )

12.5 V

V
C123 =

3.57 µF
V123 =
12.5 V

(d)

12.5 V
C123 =

3.57 µF

q123 =
44.6 µC

q12 =
44.6 µC

C12 =
17.3 µF

V12 =
2.58 V

V3 =
9.92 V

C3 =
4.50 µF

q3 =
44.6 µC

(g)

12.5 V

q12 =
44.6 µC

V123 =
12.5 V

(e)

12.5 VV

(h)

C1 =
12.0 µF

V1 =
2.58 V

V2 =
2.58 V

V3 =
9.92 V

C2 =
5.30 µF

C3 =
4.50 µF

q3 =
44.6 µC12.5 V

(i )

C1 =
12.0 µF

q1 =
31.0 µC

q2 =
13.7 µC

V1 =
2.58 V

V2 =
2.58 V

V3 =
9.92 V

C2 =
5.30 µF

C3 =
4.50 µF

q3 =
44.6 µC12.5 V

We first reduce the
circuit to a single
capacitor.

Next, we work
backwards to the
desired capacitor.

Series capacitors and
their equivalent have
the same q (“seri-q”).

Parallel capacitors and
their equivalent have
the same V (“par-V”).

Applying V = q/C yields
the potential difference.

Applying q = CV
yields the charge.

Applying q = CV
yields the charge.

The equivalent of
parallel capacitors
is larger.

The equivalent of
series capacitors
is smaller.

66525-4 CAPACITORS I N PARALLE L AN D I N S E R I E S
PART 3

HALLIDAY REVISED

Fig. 25-10 (a) – (d) Three capacitors are reduced to one equivalent capacitor. (e) – (i)
Working backwards to get the charges.

A

Any capacitors connected in series can be replaced with
their equivalent capacitor, and any capacitors connected in
parallel can be replaced with their equivalent capacitor.
Therefore, we should first check whether any of the capaci-
tors in Fig. 25-10a are in parallel or series.

Finding equivalent capacitance: Capacitors 1 and 3 are
connected one after the other, but are they in series? No.
The potential V that is applied to the capacitors produces
charge on the bottom plate of capacitor 3. That charge
causes charge to shift from the top plate of capacitor 3.
However, note that the shifting charge can move to the
bottom plates of both capacitor 1 and capacitor 2.
Because there is more than one route for the shifting
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Summary

• Electric potential difference of charged plates

• electric potential and conductors

• capacitance

Homework
• worksheet

Halliday, Resnick, Walker:

• Ch 24, onward from page 651. Problems: 47, 59, 65, 73

• Ch 25, onward from page 675. Questions: 1; Problems: 1, 3,
5


