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Last time

• circuits

• capacitors in series and parallel



Warm Up Question

Two capacitors of values 4.0 nF and 6.0 nF are connected in a
circuit as shown:

784 Chapter 26 Capacitance and Dielectrics

the individual capacitances. Statement (2) makes sense because we are essentially 
combining the areas of all the capacitor plates when they are connected with con-
ducting wire, and capacitance of parallel plates is proportional to area (Eq. 26.3).

Series Combination
Two capacitors connected as shown in Figure 26.8a and the equivalent circuit dia-
gram in Figure 26.8b are known as a series combination of capacitors. The left 
plate of capacitor 1 and the right plate of capacitor 2 are connected to the termi-
nals of a battery. The other two plates are connected to each other and to nothing 
else; hence, they form an isolated system that is initially uncharged and must con-
tinue to have zero net charge. To analyze this combination, let’s first consider the 
uncharged capacitors and then follow what happens immediately after a battery is 
connected to the circuit. When the battery is connected, electrons are transferred 
out of the left plate of C1 and into the right plate of C 2. As this negative charge 
accumulates on the right plate of C 2, an equivalent amount of negative charge is 
forced off the left plate of C 2, and this left plate therefore has an excess positive 
charge. The negative charge leaving the left plate of C 2 causes negative charges 
to accumulate on the right plate of C1. As a result, both right plates end up with a 
charge 2Q  and both left plates end up with a charge 1Q . Therefore, the charges 
on capacitors connected in series are the same:

 Q 1 5 Q 2 5 Q  

where Q  is the charge that moved between a wire and the connected outside plate 
of one of the capacitors.
 Figure 26.8a shows the individual voltages DV 1 and DV 2 across the capacitors. 
These voltages add to give the total voltage DVtot across the combination:

 DVtot 5 DV1 1 DV2 5
Q 1

C1
1

Q 2

C 2
 (26.9)

In general, the total potential difference across any number of capacitors connected 
in series is the sum of the potential differences across the individual capacitors.
 Suppose the equivalent single capacitor in Figure 26.8c has the same effect on 
the circuit as the series combination when it is connected to the battery. After it is 
fully charged, the equivalent capacitor must have a charge of 2Q  on its right plate 
and a charge of 1Q  on its left plate. Applying the definition of capacitance to the 
circuit in Figure 26.8c gives
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A pictorial 
representation of two 
capacitors connected in 
series to a battery
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showing the two 
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Figure 26.8 Two capacitors 
connected in series. All three dia-
grams are equivalent.

(A) 4.0 nF

(B) 6.0 nF

(C) 10 nF

(D) 2.4 nF
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Overview

• practice with capacitors in circuits

• energy stored in a capacitor

• dielectrics



Capacitors in Series and Parallel
In general, for any number n of capacitors in series, we can always
relate the effective capacitance of them all together to the
individual capacitances by:

1

Ceq
=

1

C1
+

1

C2
+ ... +

1

Cn
=

n∑
i=1

1

Ci

The equivalent capacitance of capacitors in series is always less
than the smallest capacitance in the series.

And a reminder, in capacitors in parallel:

Ceq = C1 + C2 + ... + Cn =

n∑
i=1

Ci



More Practice with Multiple Capacitors

What is the equivalent capacitance of this arrangement?

Sample Problem

charge, capacitor 3 is not in series with capacitor 1 (or ca-
pacitor 2).

Are capacitor 1 and capacitor 2 in parallel? Yes.
Their top plates are directly wired together and their
bottom plates are directly wired together, and electric
potential is applied between the top-plate pair and the
bottom-plate pair. Thus, capacitor 1 and capacitor 2 are
in parallel, and Eq. 25-19 tells us that their equivalent ca-
pacitance C12 is

C12 ! C1 " C2 ! 12.0 mF " 5.30 mF ! 17.3 mF.

In Fig. 25-10b, we have replaced capacitors 1 and 2 with
their equivalent capacitor, called capacitor 12 (say “one
two” and not “twelve”). (The connections at points A and B
are exactly the same in Figs. 25-10a and b.)

Is capacitor 12 in series with capacitor 3? Again apply-
ing the test for series capacitances, we see that the charge
that shifts from the top plate of capacitor 3 must entirely go
to the bottom plate of capacitor 12. Thus, capacitor 12 and
capacitor 3 are in series, and we can replace them with their
equivalent C123 (“one two three”), as shown in Fig. 25-10c.

Capacitors in parallel and in series

(a) Find the equivalent capacitance for the combination of
capacitances shown in Fig. 25-10a, across which potential
difference V is applied.Assume

C1 ! 12.0 mF, C2 ! 5.30 mF, and C3 ! 4.50 mF.

KEY I DEA

(a)

C1 =
12.0 µF

C2 =
5.30 µF

C12 =
17.3 µF

C123 =
3.57 µF

C3 =
4.50 µF

C3 =
4.50 µF

A

B
B

A

(b) (c)

V

C12 =
17.3 µF

C3 =
4.50 µF

q3 =
44.6 µC

( f )

12.5 V

V
C123 =

3.57 µF
V123 =
12.5 V

(d)

12.5 V
C123 =

3.57 µF

q123 =
44.6 µC

q12 =
44.6 µC

C12 =
17.3 µF

V12 =
2.58 V

V3 =
9.92 V

C3 =
4.50 µF

q3 =
44.6 µC

(g)

12.5 V

q12 =
44.6 µC

V123 =
12.5 V

(e)

12.5 VV

(h)

C1 =
12.0 µF

V1 =
2.58 V

V2 =
2.58 V

V3 =
9.92 V

C2 =
5.30 µF

C3 =
4.50 µF

q3 =
44.6 µC12.5 V

(i )

C1 =
12.0 µF

q1 =
31.0 µC

q2 =
13.7 µC

V1 =
2.58 V

V2 =
2.58 V

V3 =
9.92 V

C2 =
5.30 µF

C3 =
4.50 µF

q3 =
44.6 µC12.5 V

We first reduce the
circuit to a single
capacitor.

Next, we work
backwards to the
desired capacitor.

Series capacitors and
their equivalent have
the same q (“seri-q”).

Parallel capacitors and
their equivalent have
the same V (“par-V”).

Applying V = q/C yields
the potential difference.

Applying q = CV
yields the charge.

Applying q = CV
yields the charge.

The equivalent of
parallel capacitors
is larger.

The equivalent of
series capacitors
is smaller.

66525-4 CAPACITORS I N PARALLE L AN D I N S E R I E S
PART 3

HALLIDAY REVISED

Fig. 25-10 (a) – (d) Three capacitors are reduced to one equivalent capacitor. (e) – (i)
Working backwards to get the charges.

A

Any capacitors connected in series can be replaced with
their equivalent capacitor, and any capacitors connected in
parallel can be replaced with their equivalent capacitor.
Therefore, we should first check whether any of the capaci-
tors in Fig. 25-10a are in parallel or series.

Finding equivalent capacitance: Capacitors 1 and 3 are
connected one after the other, but are they in series? No.
The potential V that is applied to the capacitors produces
charge on the bottom plate of capacitor 3. That charge
causes charge to shift from the top plate of capacitor 3.
However, note that the shifting charge can move to the
bottom plates of both capacitor 1 and capacitor 2.
Because there is more than one route for the shifting
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More Practice
When solving this type of problem, take an iterative approach.

Identify sets of capacitors that are in parallel, then series, then
parallel, etc. and at each step replace with the equivalent
capacitance:

 26.3 Combinations of Capacitors 785

Substituting this result into Equation 26.9, we have

 
Q

C eq
5

Q 1

C 1
1

Q 2

C 2
 

Canceling the charges because they are all the same gives

 
1

C eq
5

1
C1

1
1

C 2
 1series combination 2  

When this analysis is applied to three or more capacitors connected in series, the 
relationship for the equivalent capacitance is

 
1

C eq
5

1
C 1

1
1

C 2
1

1
C3

1 c  1series combination 2  (26.10)

This expression shows that (1) the inverse of the equivalent capacitance is the alge-
braic sum of the inverses of the individual capacitances and (2) the equivalent 
capacitance of a series combination is always less than any individual capacitance 
in the combination.

Q uick Quiz 26.3  Two capacitors are identical. They can be connected in series or 
in parallel. If you want the smallest equivalent capacitance for the combination, 
how should you connect them? (a) in series (b) in parallel (c) either way because 
both combinations have the same capacitance

�W  Equivalent capacitance for 
capacitors in series

Example 26.3   Equivalent Capacitance

Find the equivalent capacitance between a and b for the 
combination of capacitors shown in Figure 26.9a. All 
capacitances are in microfarads.

Conceptualize  Study Figure 26.9a carefully and make 
sure you understand how the capacitors are connected. 
Verify that there are only series and parallel connec-
tions between capacitors.

Categorize  Figure 26.9a shows that the circuit contains 
both series and parallel connections, so we use the 
rules for series and parallel combinations discussed in 
this section.

Analyze  Using Equations 26.8 and 26.10, we reduce the combination step by step as indicated in the figure. As you 
follow along below, notice that in each step we replace the combination of two capacitors in the circuit diagram with a 
single capacitor having the equivalent capacitance.

S O L U T I O N

4.0
4.0

8.0
8.0

ba

4.0

ba

2.0

6.0 ba

4.0

8.0

ba

2.0

6.0

3.0

1.0

a b c d

Figure 26.9  (Example 26.3) To find the equivalent capacitance 
of the capacitors in (a), we reduce the various combinations in 
steps as indicated in (b), (c), and (d), using the series and parallel 
rules described in the text. All capacitances are in microfarads.

The 1.0-mF and 3.0-mF capacitors (upper red-brown 
circle in Fig. 26.9a) are in parallel. Find the equivalent 
capacitance from Equation 26.8:

Ceq 5 C1 1 C 2 5 4.0 mF

The 2.0-mF and 6.0-mF capacitors (lower red-brown 
circle in Fig. 26.9a) are also in parallel:

Ceq 5 C1 1 C 2 5 8.0 mF 

The circuit now looks like Figure 26.9b. The two 4.0-mF 
capacitors (upper green circle in Fig. 26.9b) are in series. 
Find the equivalent capacitance from Equation 26.10:

 
1

C eq
5

1
C 1

1
1

C 2
5

1
4.0 mF

1
1

4.0 mF
5

1
2.0 mF

 C eq 5 2.0 mF

continued
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More Practice

What is the equivalent capacitance of this arrangement:

Sample Problem

charge, capacitor 3 is not in series with capacitor 1 (or ca-
pacitor 2).

Are capacitor 1 and capacitor 2 in parallel? Yes.
Their top plates are directly wired together and their
bottom plates are directly wired together, and electric
potential is applied between the top-plate pair and the
bottom-plate pair. Thus, capacitor 1 and capacitor 2 are
in parallel, and Eq. 25-19 tells us that their equivalent ca-
pacitance C12 is

C12 ! C1 " C2 ! 12.0 mF " 5.30 mF ! 17.3 mF.

In Fig. 25-10b, we have replaced capacitors 1 and 2 with
their equivalent capacitor, called capacitor 12 (say “one
two” and not “twelve”). (The connections at points A and B
are exactly the same in Figs. 25-10a and b.)

Is capacitor 12 in series with capacitor 3? Again apply-
ing the test for series capacitances, we see that the charge
that shifts from the top plate of capacitor 3 must entirely go
to the bottom plate of capacitor 12. Thus, capacitor 12 and
capacitor 3 are in series, and we can replace them with their
equivalent C123 (“one two three”), as shown in Fig. 25-10c.

Capacitors in parallel and in series

(a) Find the equivalent capacitance for the combination of
capacitances shown in Fig. 25-10a, across which potential
difference V is applied.Assume

C1 ! 12.0 mF, C2 ! 5.30 mF, and C3 ! 4.50 mF.

KEY I DEA

(a)

C1 =
12.0 µF

C2 =
5.30 µF

C12 =
17.3 µF

C123 =
3.57 µF

C3 =
4.50 µF

C3 =
4.50 µF

A

B
B

A

(b) (c)

V

C12 =
17.3 µF

C3 =
4.50 µF

q3 =
44.6 µC

( f )

12.5 V

V
C123 =

3.57 µF
V123 =
12.5 V

(d)

12.5 V
C123 =

3.57 µF

q123 =
44.6 µC

q12 =
44.6 µC

C12 =
17.3 µF

V12 =
2.58 V

V3 =
9.92 V

C3 =
4.50 µF

q3 =
44.6 µC

(g)

12.5 V

q12 =
44.6 µC

V123 =
12.5 V

(e)

12.5 VV

(h)

C1 =
12.0 µF

V1 =
2.58 V

V2 =
2.58 V

V3 =
9.92 V

C2 =
5.30 µF

C3 =
4.50 µF

q3 =
44.6 µC12.5 V

(i )

C1 =
12.0 µF

q1 =
31.0 µC

q2 =
13.7 µC

V1 =
2.58 V

V2 =
2.58 V

V3 =
9.92 V

C2 =
5.30 µF

C3 =
4.50 µF

q3 =
44.6 µC12.5 V

We first reduce the
circuit to a single
capacitor.

Next, we work
backwards to the
desired capacitor.

Series capacitors and
their equivalent have
the same q (“seri-q”).

Parallel capacitors and
their equivalent have
the same V (“par-V”).

Applying V = q/C yields
the potential difference.

Applying q = CV
yields the charge.

Applying q = CV
yields the charge.

The equivalent of
parallel capacitors
is larger.

The equivalent of
series capacitors
is smaller.

66525-4 CAPACITORS I N PARALLE L AN D I N S E R I E S
PART 3

HALLIDAY REVISED

Fig. 25-10 (a) – (d) Three capacitors are reduced to one equivalent capacitor. (e) – (i)
Working backwards to get the charges.

A

Any capacitors connected in series can be replaced with
their equivalent capacitor, and any capacitors connected in
parallel can be replaced with their equivalent capacitor.
Therefore, we should first check whether any of the capaci-
tors in Fig. 25-10a are in parallel or series.

Finding equivalent capacitance: Capacitors 1 and 3 are
connected one after the other, but are they in series? No.
The potential V that is applied to the capacitors produces
charge on the bottom plate of capacitor 3. That charge
causes charge to shift from the top plate of capacitor 3.
However, note that the shifting charge can move to the
bottom plates of both capacitor 1 and capacitor 2.
Because there is more than one route for the shifting

halliday_c25_656-681v2.qxd  23-11-2009  16:32  Page 665

Ceq = 3.57µF.
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What is the equivalent capacitance of this arrangement:
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Fig. 25-10 (a) – (d) Three capacitors are reduced to one equivalent capacitor. (e) – (i)
Working backwards to get the charges.

A

Any capacitors connected in series can be replaced with
their equivalent capacitor, and any capacitors connected in
parallel can be replaced with their equivalent capacitor.
Therefore, we should first check whether any of the capaci-
tors in Fig. 25-10a are in parallel or series.

Finding equivalent capacitance: Capacitors 1 and 3 are
connected one after the other, but are they in series? No.
The potential V that is applied to the capacitors produces
charge on the bottom plate of capacitor 3. That charge
causes charge to shift from the top plate of capacitor 3.
However, note that the shifting charge can move to the
bottom plates of both capacitor 1 and capacitor 2.
Because there is more than one route for the shifting
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Energy Stored in a Capacitor

A charged capacitor has an electric field between the plates. This
field can be thought of as storing potential energy.

The energy stored in a capacitor with charge q and capacitance C
is

U =
1

2

(
q2

C

)

Since q = CV we can also write this as:

U =
1

2
C (∆V )2



Stored Energy Example

Suppose a capacitor with a capacitance 12 pF is connected to a
9.0 V battery.

What is the energy stored in the capacitor’s electric field once the
capacitor is fully charged?

UE = 4.9× 10−10 J



Stored Energy Example

Suppose a capacitor with a capacitance 12 pF is connected to a
9.0 V battery.

What is the energy stored in the capacitor’s electric field once the
capacitor is fully charged?

UE = 4.9× 10−10 J



Energy Density

It is sometimes useful to be able to compare the energy stored in
different charged capacitors by their stored energy per unit volume.

We can link energy density to electric field strength.

This will make concrete the assertion that energy is stored in the
field.

For a parallel plate capacitor, energy density u is:

u =
U

Ad

(Ad is the volume between the capacitor plates.)
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Dielectrics

dielectric

an insulating material that can affects the strength of an electric
field passing through it

Different materials have different dielectric constants, κ.

κ tells us how the capacitance of a capacitor changes if the
material between the plates is changed.

For air κ ≈ 1. (It is 1 for a perfect vacuum.)

κ is never less than 1. It can be very large > 100.
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κ tells us how the capacitance of a capacitor changes if the
material between the plates is changed.

For air κ ≈ 1. (It is 1 for a perfect vacuum.)
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Dielectrics and Capacitance

dielectric

an insulating material that can affects the strength of an electric
field passing through it

The effect of sandwiching a dielectric in a capacitor is to change
the capacitance:

C → κC

κ is the dielectric constant.



Dielectric in a Capacitor

Capacitance C
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increase the capacitance of a capacitor, and some materials, such as strontium ti-
tanate, can increase the capacitance by more than two orders of magnitude.

Another effect of the introduction of a dielectric is to limit the potential
difference that can be applied between the plates to a certain value Vmax, called
the breakdown potential. If this value is substantially exceeded, the dielectric
material will break down and form a conducting path between the plates. Every
dielectric material has a characteristic dielectric strength, which is the maximum
value of the electric field that it can tolerate without breakdown. A few such
values are listed in Table 25-1.

As we discussed just after Eq. 25-18, the capacitance of any capacitor can be
written in the form C ! "0!, (25-26)

in which ! has the dimension of length. For example, ! ! A /d for a parallel-plate
capacitor. Faraday’s discovery was that, with a dielectric completely filling the
space between the plates, Eq. 25-26 becomes

C ! k"0! ! kCair, (25-27)
where Cair is the value of the capacitance with only air between the plates. For ex-
ample, if we fill a capacitor with strontium titanate, with a dielectric constant of
310, we multiply the capacitance by 310.

Figure 25-13 provides some insight into Faraday’s experiments. In 
Fig. 25-13a the battery ensures that the potential difference V between the plates
will remain constant. When a dielectric slab is inserted between the plates, the
charge q on the plates increases by a factor of k; the additional charge is delivered
to the capacitor plates by the battery. In Fig. 25-13b there is no battery, and there-
fore the charge q must remain constant when the dielectric slab is inserted; then
the potential difference V between the plates decreases by a factor of k.
Both these observations are consistent (through the relation q ! CV) with the
increase in capacitance caused by the dielectric.

Comparison of Eqs. 25-26 and 25-27 suggests that the effect of a dielectric
can be summed up in more general terms:

In a region completely filled by a dielectric material of dielectric constant k, all 
electrostatic equations containing the permittivity constant "0 are to be modified by 
replacing "0 with k"0.

Thus, the magnitude of the electric field produced by a point charge inside a
dielectric is given by this modified form of Eq. 23-15:

(25-28)

Also, the expression for the electric field just outside an isolated conductor
immersed in a dielectric (see Eq. 23-11) becomes

(25-29)

Because k is always greater than unity, both these equations show that for a fixed
distribution of charges, the effect of a dielectric is to weaken the electric field that
would otherwise be present.
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Fig. 25-13 (a) If the potential difference
between the plates of a capacitor is main-
tained, as by battery B, the effect of a dielec-
tric is to increase the charge on the plates.
(b) If the charge on the capacitor plates is
maintained, as in this case, the effect of a 
dielectric is to reduce the potential differ-
ence between the plates.The scale shown is
that of a potentiometer, a device used to 
measure potential difference (here, between
the plates).A capacitor cannot discharge
through a potentiometer.
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Capacitance κC
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increase the capacitance of a capacitor, and some materials, such as strontium ti-
tanate, can increase the capacitance by more than two orders of magnitude.

Another effect of the introduction of a dielectric is to limit the potential
difference that can be applied between the plates to a certain value Vmax, called
the breakdown potential. If this value is substantially exceeded, the dielectric
material will break down and form a conducting path between the plates. Every
dielectric material has a characteristic dielectric strength, which is the maximum
value of the electric field that it can tolerate without breakdown. A few such
values are listed in Table 25-1.

As we discussed just after Eq. 25-18, the capacitance of any capacitor can be
written in the form C ! "0!, (25-26)

in which ! has the dimension of length. For example, ! ! A /d for a parallel-plate
capacitor. Faraday’s discovery was that, with a dielectric completely filling the
space between the plates, Eq. 25-26 becomes

C ! k"0! ! kCair, (25-27)
where Cair is the value of the capacitance with only air between the plates. For ex-
ample, if we fill a capacitor with strontium titanate, with a dielectric constant of
310, we multiply the capacitance by 310.

Figure 25-13 provides some insight into Faraday’s experiments. In 
Fig. 25-13a the battery ensures that the potential difference V between the plates
will remain constant. When a dielectric slab is inserted between the plates, the
charge q on the plates increases by a factor of k; the additional charge is delivered
to the capacitor plates by the battery. In Fig. 25-13b there is no battery, and there-
fore the charge q must remain constant when the dielectric slab is inserted; then
the potential difference V between the plates decreases by a factor of k.
Both these observations are consistent (through the relation q ! CV) with the
increase in capacitance caused by the dielectric.

Comparison of Eqs. 25-26 and 25-27 suggests that the effect of a dielectric
can be summed up in more general terms:

In a region completely filled by a dielectric material of dielectric constant k, all 
electrostatic equations containing the permittivity constant "0 are to be modified by 
replacing "0 with k"0.

Thus, the magnitude of the electric field produced by a point charge inside a
dielectric is given by this modified form of Eq. 23-15:

(25-28)

Also, the expression for the electric field just outside an isolated conductor
immersed in a dielectric (see Eq. 23-11) becomes

(25-29)

Because k is always greater than unity, both these equations show that for a fixed
distribution of charges, the effect of a dielectric is to weaken the electric field that
would otherwise be present.
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Fig. 25-13 (a) If the potential difference
between the plates of a capacitor is main-
tained, as by battery B, the effect of a dielec-
tric is to increase the charge on the plates.
(b) If the charge on the capacitor plates is
maintained, as in this case, the effect of a 
dielectric is to reduce the potential differ-
ence between the plates.The scale shown is
that of a potentiometer, a device used to 
measure potential difference (here, between
the plates).A capacitor cannot discharge
through a potentiometer.
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Adding a dielectric increases the capacitance.



Effect of a Dielectric

The most straightforward way of tracking quantities that will
change when a dielectric is added is by replacing ε0 in all
equations with ε using this relation:

ε = κε0

(Or just think of the effect of the dielectric being ε0 → κε0.)

The electrical permittivity increases.



Dielectric in a Capacitor

For a parallel plate capacitor with a dielectric, the capacitance is
now:

C =
κε0A

d
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increase the capacitance of a capacitor, and some materials, such as strontium ti-
tanate, can increase the capacitance by more than two orders of magnitude.

Another effect of the introduction of a dielectric is to limit the potential
difference that can be applied between the plates to a certain value Vmax, called
the breakdown potential. If this value is substantially exceeded, the dielectric
material will break down and form a conducting path between the plates. Every
dielectric material has a characteristic dielectric strength, which is the maximum
value of the electric field that it can tolerate without breakdown. A few such
values are listed in Table 25-1.

As we discussed just after Eq. 25-18, the capacitance of any capacitor can be
written in the form C ! "0!, (25-26)

in which ! has the dimension of length. For example, ! ! A /d for a parallel-plate
capacitor. Faraday’s discovery was that, with a dielectric completely filling the
space between the plates, Eq. 25-26 becomes

C ! k"0! ! kCair, (25-27)
where Cair is the value of the capacitance with only air between the plates. For ex-
ample, if we fill a capacitor with strontium titanate, with a dielectric constant of
310, we multiply the capacitance by 310.

Figure 25-13 provides some insight into Faraday’s experiments. In 
Fig. 25-13a the battery ensures that the potential difference V between the plates
will remain constant. When a dielectric slab is inserted between the plates, the
charge q on the plates increases by a factor of k; the additional charge is delivered
to the capacitor plates by the battery. In Fig. 25-13b there is no battery, and there-
fore the charge q must remain constant when the dielectric slab is inserted; then
the potential difference V between the plates decreases by a factor of k.
Both these observations are consistent (through the relation q ! CV) with the
increase in capacitance caused by the dielectric.

Comparison of Eqs. 25-26 and 25-27 suggests that the effect of a dielectric
can be summed up in more general terms:

In a region completely filled by a dielectric material of dielectric constant k, all 
electrostatic equations containing the permittivity constant "0 are to be modified by 
replacing "0 with k"0.

Thus, the magnitude of the electric field produced by a point charge inside a
dielectric is given by this modified form of Eq. 23-15:

(25-28)

Also, the expression for the electric field just outside an isolated conductor
immersed in a dielectric (see Eq. 23-11) becomes

(25-29)

Because k is always greater than unity, both these equations show that for a fixed
distribution of charges, the effect of a dielectric is to weaken the electric field that
would otherwise be present.
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Fig. 25-13 (a) If the potential difference
between the plates of a capacitor is main-
tained, as by battery B, the effect of a dielec-
tric is to increase the charge on the plates.
(b) If the charge on the capacitor plates is
maintained, as in this case, the effect of a 
dielectric is to reduce the potential differ-
ence between the plates.The scale shown is
that of a potentiometer, a device used to 
measure potential difference (here, between
the plates).A capacitor cannot discharge
through a potentiometer.
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• q will increase. (q = CV )

• U will increase. (U = 1
2CV

2)
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increase the capacitance of a capacitor, and some materials, such as strontium ti-
tanate, can increase the capacitance by more than two orders of magnitude.

Another effect of the introduction of a dielectric is to limit the potential
difference that can be applied between the plates to a certain value Vmax, called
the breakdown potential. If this value is substantially exceeded, the dielectric
material will break down and form a conducting path between the plates. Every
dielectric material has a characteristic dielectric strength, which is the maximum
value of the electric field that it can tolerate without breakdown. A few such
values are listed in Table 25-1.

As we discussed just after Eq. 25-18, the capacitance of any capacitor can be
written in the form C ! "0!, (25-26)

in which ! has the dimension of length. For example, ! ! A /d for a parallel-plate
capacitor. Faraday’s discovery was that, with a dielectric completely filling the
space between the plates, Eq. 25-26 becomes

C ! k"0! ! kCair, (25-27)
where Cair is the value of the capacitance with only air between the plates. For ex-
ample, if we fill a capacitor with strontium titanate, with a dielectric constant of
310, we multiply the capacitance by 310.

Figure 25-13 provides some insight into Faraday’s experiments. In 
Fig. 25-13a the battery ensures that the potential difference V between the plates
will remain constant. When a dielectric slab is inserted between the plates, the
charge q on the plates increases by a factor of k; the additional charge is delivered
to the capacitor plates by the battery. In Fig. 25-13b there is no battery, and there-
fore the charge q must remain constant when the dielectric slab is inserted; then
the potential difference V between the plates decreases by a factor of k.
Both these observations are consistent (through the relation q ! CV) with the
increase in capacitance caused by the dielectric.

Comparison of Eqs. 25-26 and 25-27 suggests that the effect of a dielectric
can be summed up in more general terms:

In a region completely filled by a dielectric material of dielectric constant k, all 
electrostatic equations containing the permittivity constant "0 are to be modified by 
replacing "0 with k"0.

Thus, the magnitude of the electric field produced by a point charge inside a
dielectric is given by this modified form of Eq. 23-15:

(25-28)

Also, the expression for the electric field just outside an isolated conductor
immersed in a dielectric (see Eq. 23-11) becomes

(25-29)

Because k is always greater than unity, both these equations show that for a fixed
distribution of charges, the effect of a dielectric is to weaken the electric field that
would otherwise be present.
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Fig. 25-13 (a) If the potential difference
between the plates of a capacitor is main-
tained, as by battery B, the effect of a dielec-
tric is to increase the charge on the plates.
(b) If the charge on the capacitor plates is
maintained, as in this case, the effect of a 
dielectric is to reduce the potential differ-
ence between the plates.The scale shown is
that of a potentiometer, a device used to 
measure potential difference (here, between
the plates).A capacitor cannot discharge
through a potentiometer.
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• q will increase. (q = CV )

• U will increase. (U = 1
2CV
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increase the capacitance of a capacitor, and some materials, such as strontium ti-
tanate, can increase the capacitance by more than two orders of magnitude.

Another effect of the introduction of a dielectric is to limit the potential
difference that can be applied between the plates to a certain value Vmax, called
the breakdown potential. If this value is substantially exceeded, the dielectric
material will break down and form a conducting path between the plates. Every
dielectric material has a characteristic dielectric strength, which is the maximum
value of the electric field that it can tolerate without breakdown. A few such
values are listed in Table 25-1.

As we discussed just after Eq. 25-18, the capacitance of any capacitor can be
written in the form C ! "0!, (25-26)

in which ! has the dimension of length. For example, ! ! A /d for a parallel-plate
capacitor. Faraday’s discovery was that, with a dielectric completely filling the
space between the plates, Eq. 25-26 becomes

C ! k"0! ! kCair, (25-27)
where Cair is the value of the capacitance with only air between the plates. For ex-
ample, if we fill a capacitor with strontium titanate, with a dielectric constant of
310, we multiply the capacitance by 310.

Figure 25-13 provides some insight into Faraday’s experiments. In 
Fig. 25-13a the battery ensures that the potential difference V between the plates
will remain constant. When a dielectric slab is inserted between the plates, the
charge q on the plates increases by a factor of k; the additional charge is delivered
to the capacitor plates by the battery. In Fig. 25-13b there is no battery, and there-
fore the charge q must remain constant when the dielectric slab is inserted; then
the potential difference V between the plates decreases by a factor of k.
Both these observations are consistent (through the relation q ! CV) with the
increase in capacitance caused by the dielectric.

Comparison of Eqs. 25-26 and 25-27 suggests that the effect of a dielectric
can be summed up in more general terms:

In a region completely filled by a dielectric material of dielectric constant k, all 
electrostatic equations containing the permittivity constant "0 are to be modified by 
replacing "0 with k"0.

Thus, the magnitude of the electric field produced by a point charge inside a
dielectric is given by this modified form of Eq. 23-15:

(25-28)

Also, the expression for the electric field just outside an isolated conductor
immersed in a dielectric (see Eq. 23-11) becomes

(25-29)

Because k is always greater than unity, both these equations show that for a fixed
distribution of charges, the effect of a dielectric is to weaken the electric field that
would otherwise be present.
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Fig. 25-13 (a) If the potential difference
between the plates of a capacitor is main-
tained, as by battery B, the effect of a dielec-
tric is to increase the charge on the plates.
(b) If the charge on the capacitor plates is
maintained, as in this case, the effect of a 
dielectric is to reduce the potential differ-
ence between the plates.The scale shown is
that of a potentiometer, a device used to 
measure potential difference (here, between
the plates).A capacitor cannot discharge
through a potentiometer.
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• V will decrease. (V = q
C )

• U will decrease. (U = q2

2C )
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increase the capacitance of a capacitor, and some materials, such as strontium ti-
tanate, can increase the capacitance by more than two orders of magnitude.

Another effect of the introduction of a dielectric is to limit the potential
difference that can be applied between the plates to a certain value Vmax, called
the breakdown potential. If this value is substantially exceeded, the dielectric
material will break down and form a conducting path between the plates. Every
dielectric material has a characteristic dielectric strength, which is the maximum
value of the electric field that it can tolerate without breakdown. A few such
values are listed in Table 25-1.

As we discussed just after Eq. 25-18, the capacitance of any capacitor can be
written in the form C ! "0!, (25-26)

in which ! has the dimension of length. For example, ! ! A /d for a parallel-plate
capacitor. Faraday’s discovery was that, with a dielectric completely filling the
space between the plates, Eq. 25-26 becomes

C ! k"0! ! kCair, (25-27)
where Cair is the value of the capacitance with only air between the plates. For ex-
ample, if we fill a capacitor with strontium titanate, with a dielectric constant of
310, we multiply the capacitance by 310.

Figure 25-13 provides some insight into Faraday’s experiments. In 
Fig. 25-13a the battery ensures that the potential difference V between the plates
will remain constant. When a dielectric slab is inserted between the plates, the
charge q on the plates increases by a factor of k; the additional charge is delivered
to the capacitor plates by the battery. In Fig. 25-13b there is no battery, and there-
fore the charge q must remain constant when the dielectric slab is inserted; then
the potential difference V between the plates decreases by a factor of k.
Both these observations are consistent (through the relation q ! CV) with the
increase in capacitance caused by the dielectric.

Comparison of Eqs. 25-26 and 25-27 suggests that the effect of a dielectric
can be summed up in more general terms:

In a region completely filled by a dielectric material of dielectric constant k, all 
electrostatic equations containing the permittivity constant "0 are to be modified by 
replacing "0 with k"0.

Thus, the magnitude of the electric field produced by a point charge inside a
dielectric is given by this modified form of Eq. 23-15:

(25-28)

Also, the expression for the electric field just outside an isolated conductor
immersed in a dielectric (see Eq. 23-11) becomes

(25-29)

Because k is always greater than unity, both these equations show that for a fixed
distribution of charges, the effect of a dielectric is to weaken the electric field that
would otherwise be present.
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Fig. 25-13 (a) If the potential difference
between the plates of a capacitor is main-
tained, as by battery B, the effect of a dielec-
tric is to increase the charge on the plates.
(b) If the charge on the capacitor plates is
maintained, as in this case, the effect of a 
dielectric is to reduce the potential differ-
ence between the plates.The scale shown is
that of a potentiometer, a device used to 
measure potential difference (here, between
the plates).A capacitor cannot discharge
through a potentiometer.
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• V will decrease. (V = q
C )

• U will decrease. (U = q2

2C )
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increase the capacitance of a capacitor, and some materials, such as strontium ti-
tanate, can increase the capacitance by more than two orders of magnitude.

Another effect of the introduction of a dielectric is to limit the potential
difference that can be applied between the plates to a certain value Vmax, called
the breakdown potential. If this value is substantially exceeded, the dielectric
material will break down and form a conducting path between the plates. Every
dielectric material has a characteristic dielectric strength, which is the maximum
value of the electric field that it can tolerate without breakdown. A few such
values are listed in Table 25-1.

As we discussed just after Eq. 25-18, the capacitance of any capacitor can be
written in the form C ! "0!, (25-26)

in which ! has the dimension of length. For example, ! ! A /d for a parallel-plate
capacitor. Faraday’s discovery was that, with a dielectric completely filling the
space between the plates, Eq. 25-26 becomes

C ! k"0! ! kCair, (25-27)
where Cair is the value of the capacitance with only air between the plates. For ex-
ample, if we fill a capacitor with strontium titanate, with a dielectric constant of
310, we multiply the capacitance by 310.

Figure 25-13 provides some insight into Faraday’s experiments. In 
Fig. 25-13a the battery ensures that the potential difference V between the plates
will remain constant. When a dielectric slab is inserted between the plates, the
charge q on the plates increases by a factor of k; the additional charge is delivered
to the capacitor plates by the battery. In Fig. 25-13b there is no battery, and there-
fore the charge q must remain constant when the dielectric slab is inserted; then
the potential difference V between the plates decreases by a factor of k.
Both these observations are consistent (through the relation q ! CV) with the
increase in capacitance caused by the dielectric.

Comparison of Eqs. 25-26 and 25-27 suggests that the effect of a dielectric
can be summed up in more general terms:

In a region completely filled by a dielectric material of dielectric constant k, all 
electrostatic equations containing the permittivity constant "0 are to be modified by 
replacing "0 with k"0.

Thus, the magnitude of the electric field produced by a point charge inside a
dielectric is given by this modified form of Eq. 23-15:

(25-28)

Also, the expression for the electric field just outside an isolated conductor
immersed in a dielectric (see Eq. 23-11) becomes

(25-29)

Because k is always greater than unity, both these equations show that for a fixed
distribution of charges, the effect of a dielectric is to weaken the electric field that
would otherwise be present.
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Fig. 25-13 (a) If the potential difference
between the plates of a capacitor is main-
tained, as by battery B, the effect of a dielec-
tric is to increase the charge on the plates.
(b) If the charge on the capacitor plates is
maintained, as in this case, the effect of a 
dielectric is to reduce the potential differ-
ence between the plates.The scale shown is
that of a potentiometer, a device used to 
measure potential difference (here, between
the plates).A capacitor cannot discharge
through a potentiometer.

(a)

B B

  ++++++++
κ

V = a constant

(b)

q = a constant

+ ++ +

––––  ––––––––

+ ++ +

––––

+

–

+ ++ +

––––

+

–
κ0

VOLTS

0

VOLTS

halliday_c25_656-681v2.qxd  23-11-2009  14:32  Page 670

The electric field between the plates is E = σ
ε0

originally.

With dielectric added: E → σ
κε0

.

The field strength decreases! E → E
κ

What happens to the energy density u?
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increase the capacitance of a capacitor, and some materials, such as strontium ti-
tanate, can increase the capacitance by more than two orders of magnitude.

Another effect of the introduction of a dielectric is to limit the potential
difference that can be applied between the plates to a certain value Vmax, called
the breakdown potential. If this value is substantially exceeded, the dielectric
material will break down and form a conducting path between the plates. Every
dielectric material has a characteristic dielectric strength, which is the maximum
value of the electric field that it can tolerate without breakdown. A few such
values are listed in Table 25-1.

As we discussed just after Eq. 25-18, the capacitance of any capacitor can be
written in the form C ! "0!, (25-26)

in which ! has the dimension of length. For example, ! ! A /d for a parallel-plate
capacitor. Faraday’s discovery was that, with a dielectric completely filling the
space between the plates, Eq. 25-26 becomes

C ! k"0! ! kCair, (25-27)
where Cair is the value of the capacitance with only air between the plates. For ex-
ample, if we fill a capacitor with strontium titanate, with a dielectric constant of
310, we multiply the capacitance by 310.

Figure 25-13 provides some insight into Faraday’s experiments. In 
Fig. 25-13a the battery ensures that the potential difference V between the plates
will remain constant. When a dielectric slab is inserted between the plates, the
charge q on the plates increases by a factor of k; the additional charge is delivered
to the capacitor plates by the battery. In Fig. 25-13b there is no battery, and there-
fore the charge q must remain constant when the dielectric slab is inserted; then
the potential difference V between the plates decreases by a factor of k.
Both these observations are consistent (through the relation q ! CV) with the
increase in capacitance caused by the dielectric.

Comparison of Eqs. 25-26 and 25-27 suggests that the effect of a dielectric
can be summed up in more general terms:

In a region completely filled by a dielectric material of dielectric constant k, all 
electrostatic equations containing the permittivity constant "0 are to be modified by 
replacing "0 with k"0.

Thus, the magnitude of the electric field produced by a point charge inside a
dielectric is given by this modified form of Eq. 23-15:

(25-28)

Also, the expression for the electric field just outside an isolated conductor
immersed in a dielectric (see Eq. 23-11) becomes

(25-29)

Because k is always greater than unity, both these equations show that for a fixed
distribution of charges, the effect of a dielectric is to weaken the electric field that
would otherwise be present.

E !
#

$"0
.

E !
1

4%$"0
 

q
r 2 .

Fig. 25-13 (a) If the potential difference
between the plates of a capacitor is main-
tained, as by battery B, the effect of a dielec-
tric is to increase the charge on the plates.
(b) If the charge on the capacitor plates is
maintained, as in this case, the effect of a 
dielectric is to reduce the potential differ-
ence between the plates.The scale shown is
that of a potentiometer, a device used to 
measure potential difference (here, between
the plates).A capacitor cannot discharge
through a potentiometer.
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The electric field between the plates is E = σ
ε0

originally.

With dielectric added: E → σ
κε0

.

The field strength decreases! E → E
κ

What happens to the energy density u?
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What happens to the energy density? Was: u0 =
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Energy density decreases.
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Dielectrics and Electric Field

Dielectrics effect the field around a charge

E → E

κ

For example, for a point charge q in free space:

E0 =
k q

r2
=

1

4πε0

q

r2

But in a dielectric, constant κ:

E =
1

4π(κε0)

q

r2
=

E0

κ

But how does this happen?
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But how does this happen?



Dielectrics and Electric Field

Dielectrics become polarized by the presence of an electric field.

There are two types of dielectrics, the process is a little different in
each:

• polar dielectrics

• nonpolar dielectrics



Polar Dielectrics

The external electric field partially aligns the molecules of the
dielectric with the field.
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25-7 Dielectrics: An Atomic View
What happens, in atomic and molecular terms, when we put a dielectric in an
electric field? There are two possibilities, depending on the type of molecule:

1. Polar dielectrics. The molecules of some dielectrics, like water, have permanent
electric dipole moments. In such materials (called polar dielectrics), the electric
dipoles tend to line up with an external electric field as in Fig. 25-14. Because the
molecules are continuously jostling each other as a result of their random thermal
motion, this alignment is not complete, but it becomes more complete as the mag-
nitude of the applied field is increased (or as the temperature, and thus the
jostling, are decreased).The alignment of the electric dipoles produces an electric
field that is directed opposite the applied field and is smaller in magnitude.

Sample Problem

Because the battery has been disconnected, the charge on
the capacitor cannot change when the dielectric is inserted.
However, the potential does change.

Calculations: Thus, we must now use Eq. 25-21 to write the
final potential energy Uf , but now that the slab is within the
capacitor, the capacitance is kC.We then have

(Answer)
When the slab is introduced, the potential energy decreases
by a factor of k.

The “missing” energy, in principle, would be apparent to
the person who introduced the slab.The capacitor would ex-
ert a tiny tug on the slab and would do work on it, in amount

W ! Ui " Uf ! (1055 " 162) pJ ! 893 pJ.

If the slab were allowed to slide between the plates with no
restraint and if there were no friction, the slab would oscillate
back and forth between the plates with a (constant) mechani-
cal energy of 893 pJ, and this system energy would transfer
back and forth between kinetic energy of the moving slab and
potential energy stored in the electric field.

 ! 162 pJ ! 160 pJ.

 Uf !
q2

2#C
!

Ui

#
!

1055 pJ
6.50

Additional examples, video, and practice available at WileyPLUS

Work and energy when a dielectric is inserted into a capacitor

A parallel-plate capacitor whose capacitance C is 13.5 pF is
charged by a battery to a potential difference V ! 12.5 V
between its plates. The charging battery is now discon-
nected, and a porcelain slab (k ! 6.50) is slipped between
the plates.

(a) What is the potential energy of the capacitor before the
slab is inserted?

We can relate the potential energy Ui of the capacitor to the
capacitance C and either the potential V (with Eq. 25-22) or
the charge q (with Eq. 25-21):

Calculation: Because we are given the initial potential
V (! 12.5 V), we use Eq. 25-22 to find the initial stored
energy:

(Answer)

(b) What is the potential energy of the capacitor–slab device
after the slab is inserted? 

! 1.055 $ 10"9 J ! 1055 pJ ! 1100 pJ.
Ui ! 1

2CV 2 ! 1
2(13.5 $ 10"12 F)(12.5 V)2

Ui ! 1
2CV2 !

q2

2C
.

KEY I DEA

KEY I DEA

Fig. 25-14 (a) Molecules
with a permanent electric dipole
moment, showing their random
orientation in the absence of an
external electric field. (b) An
electric field is applied, produc-
ing partial alignment of the
dipoles.Thermal agitation pre-
vents complete alignment.
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Since the dielectric is an insulator, there are no free charges to
move through the substance, but molecules can align.

eg. distilled water

1Figures from Halliday, Resnick, Walker, 9th ed.



Nonpolar Dielectrics

Nonpolar dielectrics are composed of molecules which are not
polar.

However, under the influence of a field, the distribution of the
electrons in the molecules, or the shape of the molecule, is altered.
Each molecule becomes slightly polarized.
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Nonpolar Dielectrics

Nonpolar dielectrics are composed of molecules which are not
polar.

However, under the influence of a field, the distribution of the
electrons in the molecules, or the shape of the molecule, is altered.
Each molecule becomes slightly polarized.
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2. Nonpolar dielectrics. Regardless of whether they have permanent electric
dipole moments, molecules acquire dipole moments by induction when 
placed in an external electric field. In Section 24-8 (see Fig. 24-11), we saw 
that this occurs because the external field tends to “stretch” the molecules,
slightly separating the centers of negative and positive charge.

Figure 25-15a shows a nonpolar dielectric slab with no external electric field
applied. In Fig. 25-15b, an electric field is applied via a capacitor, whose plates
are charged as shown. The result is a slight separation of the centers of the posi-
tive and negative charge distributions within the slab, producing positive charge
on one face of the slab (due to the positive ends of dipoles there) and negative
charge on the opposite face (due to the negative ends of dipoles there). The slab
as a whole remains electrically neutral and—within the slab—there is no excess
charge in any volume element.

Figure 25-15c shows that the induced surface charges on the faces produce an
electric field in the direction opposite that of the applied electric field . The
resultant field inside the dielectric (the vector sum of fields and ) has the
direction of but is smaller in magnitude.

Both the field produced by the surface charges in Fig. 25-15c and the electric
field produced by the permanent electric dipoles in Fig. 25-14 act in the same way—
they oppose the applied field .Thus, the effect of both polar and nonpolar dielectrics
is to weaken any applied field within them,as between the plates of a capacitor.

25-8 Dielectrics and Gauss’ Law
In our discussion of Gauss’ law in Chapter 23, we assumed that the charges
existed in a vacuum. Here we shall see how to modify and generalize that law if
dielectric materials, such as those listed in Table 25-1, are present. Figure 25-16
shows a parallel-plate capacitor of plate area A, both with and without a 
dielectric. We assume that the charge q on the plates is the same in both situa-
tions. Note that the field between the plates induces charges on the faces of the
dielectric by one of the methods described in Section 25-7.

For the situation of Fig. 25-16a, without a dielectric, we can find the electric
field between the plates as we did in Fig. 25-5:We enclose the charge !q on the
top plate with a Gaussian surface and then apply Gauss’ law. Letting E0 represent
the magnitude of the field, we find

(25-30)

or (25-31)

In Fig. 25-16b, with the dielectric in place, we can find the electric field
between the plates (and within the dielectric) by using the same Gaussian sur-
face. However, now the surface encloses two types of charge: It still encloses
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Fig. 25-15 (a) A nonpolar dielectric
slab.The circles represent the electrically
neutral atoms within the slab. (b) An elec-
tric field is applied via charged capacitor
plates; the field slightly stretches the atoms,
separating the centers of positive and nega-
tive charge. (c) The separation produces
surface charges on the slab faces.These
charges set up a field which opposes the
applied field .The resultant field inside
the dielectric (the vector sum of and )
has the same direction as but a smaller
magnitude.
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2. Nonpolar dielectrics. Regardless of whether they have permanent electric
dipole moments, molecules acquire dipole moments by induction when 
placed in an external electric field. In Section 24-8 (see Fig. 24-11), we saw 
that this occurs because the external field tends to “stretch” the molecules,
slightly separating the centers of negative and positive charge.

Figure 25-15a shows a nonpolar dielectric slab with no external electric field
applied. In Fig. 25-15b, an electric field is applied via a capacitor, whose plates
are charged as shown. The result is a slight separation of the centers of the posi-
tive and negative charge distributions within the slab, producing positive charge
on one face of the slab (due to the positive ends of dipoles there) and negative
charge on the opposite face (due to the negative ends of dipoles there). The slab
as a whole remains electrically neutral and—within the slab—there is no excess
charge in any volume element.

Figure 25-15c shows that the induced surface charges on the faces produce an
electric field in the direction opposite that of the applied electric field . The
resultant field inside the dielectric (the vector sum of fields and ) has the
direction of but is smaller in magnitude.

Both the field produced by the surface charges in Fig. 25-15c and the electric
field produced by the permanent electric dipoles in Fig. 25-14 act in the same way—
they oppose the applied field .Thus, the effect of both polar and nonpolar dielectrics
is to weaken any applied field within them,as between the plates of a capacitor.

25-8 Dielectrics and Gauss’ Law
In our discussion of Gauss’ law in Chapter 23, we assumed that the charges
existed in a vacuum. Here we shall see how to modify and generalize that law if
dielectric materials, such as those listed in Table 25-1, are present. Figure 25-16
shows a parallel-plate capacitor of plate area A, both with and without a 
dielectric. We assume that the charge q on the plates is the same in both situa-
tions. Note that the field between the plates induces charges on the faces of the
dielectric by one of the methods described in Section 25-7.

For the situation of Fig. 25-16a, without a dielectric, we can find the electric
field between the plates as we did in Fig. 25-5:We enclose the charge !q on the
top plate with a Gaussian surface and then apply Gauss’ law. Letting E0 represent
the magnitude of the field, we find

(25-30)

or (25-31)

In Fig. 25-16b, with the dielectric in place, we can find the electric field
between the plates (and within the dielectric) by using the same Gaussian sur-
face. However, now the surface encloses two types of charge: It still encloses

E0 "
q

#0A
.

#0 ! E
:

! dA
:

" #0EA " q,

E
:

0

E
:

E
:

$
E
:

0

E
:

$E
:

0E
:

E
:

0E
:

$

E
:

0

Fig. 25-15 (a) A nonpolar dielectric
slab.The circles represent the electrically
neutral atoms within the slab. (b) An elec-
tric field is applied via charged capacitor
plates; the field slightly stretches the atoms,
separating the centers of positive and nega-
tive charge. (c) The separation produces
surface charges on the slab faces.These
charges set up a field which opposes the
applied field .The resultant field inside
the dielectric (the vector sum of and )
has the same direction as but a smaller
magnitude.
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eg. nitrogen, benzene



Electric field inside the dielectric

The polarized dielectric contributes its own field, E ′.
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2. Nonpolar dielectrics. Regardless of whether they have permanent electric
dipole moments, molecules acquire dipole moments by induction when 
placed in an external electric field. In Section 24-8 (see Fig. 24-11), we saw 
that this occurs because the external field tends to “stretch” the molecules,
slightly separating the centers of negative and positive charge.

Figure 25-15a shows a nonpolar dielectric slab with no external electric field
applied. In Fig. 25-15b, an electric field is applied via a capacitor, whose plates
are charged as shown. The result is a slight separation of the centers of the posi-
tive and negative charge distributions within the slab, producing positive charge
on one face of the slab (due to the positive ends of dipoles there) and negative
charge on the opposite face (due to the negative ends of dipoles there). The slab
as a whole remains electrically neutral and—within the slab—there is no excess
charge in any volume element.

Figure 25-15c shows that the induced surface charges on the faces produce an
electric field in the direction opposite that of the applied electric field . The
resultant field inside the dielectric (the vector sum of fields and ) has the
direction of but is smaller in magnitude.

Both the field produced by the surface charges in Fig. 25-15c and the electric
field produced by the permanent electric dipoles in Fig. 25-14 act in the same way—
they oppose the applied field .Thus, the effect of both polar and nonpolar dielectrics
is to weaken any applied field within them,as between the plates of a capacitor.

25-8 Dielectrics and Gauss’ Law
In our discussion of Gauss’ law in Chapter 23, we assumed that the charges
existed in a vacuum. Here we shall see how to modify and generalize that law if
dielectric materials, such as those listed in Table 25-1, are present. Figure 25-16
shows a parallel-plate capacitor of plate area A, both with and without a 
dielectric. We assume that the charge q on the plates is the same in both situa-
tions. Note that the field between the plates induces charges on the faces of the
dielectric by one of the methods described in Section 25-7.

For the situation of Fig. 25-16a, without a dielectric, we can find the electric
field between the plates as we did in Fig. 25-5:We enclose the charge !q on the
top plate with a Gaussian surface and then apply Gauss’ law. Letting E0 represent
the magnitude of the field, we find

(25-30)

or (25-31)

In Fig. 25-16b, with the dielectric in place, we can find the electric field
between the plates (and within the dielectric) by using the same Gaussian sur-
face. However, now the surface encloses two types of charge: It still encloses
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This reduces the electric field from the charged plates alone E0.

The resulting reduced field is E = E0
κ



Guass’s Law with dielectrics

κε0ΦE = qfree

or: ∮
A

E · dA =
qfree
κε0
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2. Nonpolar dielectrics. Regardless of whether they have permanent electric
dipole moments, molecules acquire dipole moments by induction when 
placed in an external electric field. In Section 24-8 (see Fig. 24-11), we saw 
that this occurs because the external field tends to “stretch” the molecules,
slightly separating the centers of negative and positive charge.

Figure 25-15a shows a nonpolar dielectric slab with no external electric field
applied. In Fig. 25-15b, an electric field is applied via a capacitor, whose plates
are charged as shown. The result is a slight separation of the centers of the posi-
tive and negative charge distributions within the slab, producing positive charge
on one face of the slab (due to the positive ends of dipoles there) and negative
charge on the opposite face (due to the negative ends of dipoles there). The slab
as a whole remains electrically neutral and—within the slab—there is no excess
charge in any volume element.

Figure 25-15c shows that the induced surface charges on the faces produce an
electric field in the direction opposite that of the applied electric field . The
resultant field inside the dielectric (the vector sum of fields and ) has the
direction of but is smaller in magnitude.

Both the field produced by the surface charges in Fig. 25-15c and the electric
field produced by the permanent electric dipoles in Fig. 25-14 act in the same way—
they oppose the applied field .Thus, the effect of both polar and nonpolar dielectrics
is to weaken any applied field within them,as between the plates of a capacitor.

25-8 Dielectrics and Gauss’ Law
In our discussion of Gauss’ law in Chapter 23, we assumed that the charges
existed in a vacuum. Here we shall see how to modify and generalize that law if
dielectric materials, such as those listed in Table 25-1, are present. Figure 25-16
shows a parallel-plate capacitor of plate area A, both with and without a 
dielectric. We assume that the charge q on the plates is the same in both situa-
tions. Note that the field between the plates induces charges on the faces of the
dielectric by one of the methods described in Section 25-7.

For the situation of Fig. 25-16a, without a dielectric, we can find the electric
field between the plates as we did in Fig. 25-5:We enclose the charge !q on the
top plate with a Gaussian surface and then apply Gauss’ law. Letting E0 represent
the magnitude of the field, we find

(25-30)

or (25-31)

In Fig. 25-16b, with the dielectric in place, we can find the electric field
between the plates (and within the dielectric) by using the same Gaussian sur-
face. However, now the surface encloses two types of charge: It still encloses
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magnitude.

E
:

0

E
:

$E
:

0

E
:

E
:

0

E
:

$,

(a) 

E0 = 0 

The initial electric field
inside this nonpolar
dielectric slab is zero.

+–

+–

+–

+–

+–

+–

+–

+–

+–

+–

+–

+–
E0

(b)

+
+

+
+

+
+

+
+

–
–
–
–
–
–
–

–

The applied field
aligns the atomic
dipole moments.

+–

+–

+–

E'

E0

(c)

+
+

+
+

+
+

+
+

–
–
–
–
–
–
–

–

E

The field of the aligned
atoms is opposite the
applied field.

Fig. 25-16
A parallel-plate
capacitor (a) with-
out and (b) with a di-
electric slab inserted.
The charge q on the
plates is assumed to
be the same in both
cases. (b)

–q'

+q'

+ + + + + + + ++ +

– – – – – – – –– –
+ + + ++

– – – ––

κ

+q

–q

Gaussian surface

EE0

Gaussian surface

+q

–q

(a) 

+ + + + + + + ++ +

– – – – – – – –– –

halliday_c25_656-681v2.qxd  23-11-2009  14:32  Page 672

The charge qfree = q in the diagram. It is just the charge on the
plates, the charge that is free to move.



Electric Displacement

It is sometimes convenient to package the effect of the electric
field together with the effect of the dielectric.

For this, we introduce a new quantity, Electric Displacement.

D = κε0E

Gauss’s law is very often written in terms of the electric
displacement, rather than the electric field, if the field being
studied is in a polarizable material.
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Types of Capacitors
Many capacitors are built into integrated circuit chips, but some electrical devices 
still use stand-alone capacitors. Commercial capacitors are often made from metal-
lic foil interlaced with thin sheets of either paraffin-impregnated paper or Mylar 
as the dielectric material. These alternate layers of metallic foil and dielectric are 
rolled into a cylinder to form a small package (Fig. 26.14a). High-voltage capacitors 
commonly consist of a number of interwoven metallic plates immersed in silicone 
oil (Fig. 26.14b). Small capacitors are often constructed from ceramic materials.
 Often, an electrolytic capacitor is used to store large amounts of charge at relatively 
low voltages. This device, shown in Figure 26.14c, consists of a metallic foil in con-
tact with an electrolyte, a solution that conducts electricity by virtue of the motion of 
ions contained in the solution. When a voltage is applied between the foil and the 
electrolyte, a thin layer of metal oxide (an insulator) is formed on the foil, and this 
layer serves as the dielectric. Very large values of capacitance can be obtained in 
an electrolytic capacitor because the dielectric layer is very thin and therefore the 
plate separation is very small.
 Electrolytic capacitors are not reversible as are many other capacitors. They 
have a polarity, which is indicated by positive and negative signs marked on the 
device. When electrolytic capacitors are used in circuits, the polarity must be cor-
rect. If the polarity of the applied voltage is the opposite of what is intended, the 
oxide layer is removed and the capacitor conducts electricity instead of storing 
charge.
 Variable capacitors (typically 10 to 500 pF) usually consist of two interwoven sets 
of metallic plates, one fixed and the other movable, and contain air as the dielec-
tric (Fig. 26.15). These types of capacitors are often used in radio tuning circuits.

Q uick Quiz 26.5  If you have ever tried to hang a picture or a mirror, you know it 
can be difficult to locate a wooden stud in which to anchor your nail or screw. A 
carpenter’s stud finder is a capacitor with its plates arranged side by side instead 
of facing each other as shown in Figure 26.16. When the device is moved over a 
stud, does the capacitance (a) increase or (b) decrease?

Plates

Electrolyte
Case

Metallic foil ! oxide layer

Contacts

Metal foil

Paper

An electrolytic 
capacitor

Oil

a b c

A tubular capacitor 
whose plates are 
separated by paper 
and then rolled into 
a cylinder

A high-voltage 
capacitor consisting 
of many parallel 
plates separated by 
insulating oil

Figure 26.14  Three commercial capacitor designs.

When one set of metal plates is 
rotated so as to lie between a fixed 
set of plates, the capacitance of the 
device changes.

Figure 26.15  A variable capacitor. 
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The materials between the 
plates of the capacitor are 
the wallboard and air.

When the capacitor moves across 
a stud in the wall, the materials 
between the plates are the 
wallboard and the wood stud. 
The change in the dielectric 
constant causes a signal light to 
illuminate.

Figure 26.16  (Quick Quiz 26.5)  
A stud finder.

Example 26.5   Energy Stored Before and After 

A parallel-plate capacitor is charged with a battery to a charge Q 0. The battery is then removed, and a slab of material 
that has a dielectric constant k is inserted between the plates. Identify the system as the capacitor and the dielectric. 
Find the energy stored in the system before and after the dielectric is inserted.

AM

1Figures from Serway & Jewett, 9th ed.
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Example 26.1   The Cylindrical Capacitor

A solid cylindrical conductor of radius a and charge 
Q is coaxial with a cylindrical shell of negligible thick-
ness, radius b . a, and charge 2Q (Fig. 26.4a). Find the 
capacitance of this cylindrical capacitor if its length 
is ,.

Conceptualize  Recall that any pair of conductors 
qualifies as a capacitor, so the system described in this 
example therefore qualifies. Figure 26.4b helps visual-
ize the electric field between the conductors. We expect 
the capacitance to depend only on geometric factors, 
which, in this case, are a, b, and ,.

Categorize  Because of the cylindrical symmetry of the 
system, we can use results from previous studies of cylin-
drical systems to find the capacitance.

S O L U T I O N

Substituting this result into Equation 26.1, we find that the capacitance is

 C 5
Q

DV
5

Q
Qd/P0A

 

 C 5
P0A
d

 (26.3)

That is, the capacitance of a parallel-plate capacitor is proportional to the area of 
its plates and inversely proportional to the plate separation.
 Let’s consider how the geometry of these conductors influences the capacity of 
the pair of plates to store charge. As a capacitor is being charged by a battery, elec-
trons flow into the negative plate and out of the positive plate. If the capacitor 
plates are large, the accumulated charges are able to distribute themselves over a 
substantial area and the amount of charge that can be stored on a plate for a given 
potential difference increases as the plate area is increased. Therefore, it is reason-
able that the capacitance is proportional to the plate area A as in Equation 26.3.
 Now consider the region that separates the plates. Imagine moving the plates 
closer together. Consider the situation before any charges have had a chance to 
move in response to this change. Because no charges have moved, the electric field 
between the plates has the same value but extends over a shorter distance. There-
fore, the magnitude of the potential difference between the plates DV 5 Ed (Eq. 
25.6) is smaller. The difference between this new capacitor voltage and the terminal 
voltage of the battery appears as a potential difference across the wires connecting 
the battery to the capacitor, resulting in an electric field in the wires that drives 
more charge onto the plates and increases the potential difference between the 
plates. When the potential difference between the plates again matches that of the 
battery, the flow of charge stops. Therefore, moving the plates closer together causes 
the charge on the capacitor to increase. If d is increased, the charge decreases. As a 
result, the inverse relationship between C and d in Equation 26.3 is reasonable.

Q uick Quiz 26.2  Many computer keyboard buttons are constructed of capacitors 
as shown in Figure 26.3. When a key is pushed down, the soft insulator between 
the movable plate and the fixed plate is compressed. When the key is pressed, 
what happens to the capacitance? (a) It increases. (b) It decreases. (c) It changes 
in a way you cannot determine because the electric circuit connected to the key-
board button may cause a change in DV.

Capacitance of parallel plates X

Key
B

Movable plate

Insulator
Fixed plate

Figure 26.3  (Quick Quiz 26.2) 
One type of computer keyboard 
button.

b
a

!

Gaussian
surface

!Q

!Q

a
Q

Q

b

r

a b

Figure 26.4  (Example 26.1) (a) A cylindrical capacitor consists 
of a solid cylindrical conductor of radius a and length , sur-
rounded by a coaxial cylindrical shell of radius b. (b) End view. 
The electric field lines are radial. The dashed line represents the 
end of a cylindrical gaussian surface of radius r and length ,.



Summary

• practice with capacitors in circuits

• energy stored in a capacitor

• dielectrics

Homework Halliday, Resnick, Walker:

• PREVIOUS: Ch 25, onward from page 675. Questions: 1, 3,
5; Problems: 1, 3, 5

• NEW: Ch 25, Problems: 9, 11, 13, 19, 29, 31, 45


