
Lab Skills: Analyzing Errors, Significant Figures, and
Measurement Uncertainties∗

1 Accuracy and Precision

In practice, no measurement procedure is ever perfect. When making a series of measure-
ments of the same quantity, each individual measurement will not necessarily return the
exact value of the quantity. We can think of how useful a measurement device of procedure
is by considering two features: the precision of the device and the accuracy of the device.
These are two separate concepts. A very precise device may nevertheless not be accurate,
and vice versa.

Precision. A measurement is precise if it yields very similar results when repeated.
Accuracy. A measurement is accurate if it its result is very close to the true value.

Figure 1: The magnitude of the variation of the measurement samples reflects the precision
of the measurement and the distance of the average of the values from the true value reflects
the accuracy. In the figure, take the marked reference value to be the true value.2

We can quantify the accuracy of a measurement if we know what to expect for the true
value. We can do this by finding the average of the measurement samples. Suppose a
quantity x is measured n times. The first measurement of x yields the value x1, the second,
x2, the ith, xi. Then the average is given by:

x̄ =
1

n

n∑
i=1

xi

∗These notes are based heavily on the notes of Prof Eduardo Luna.
2Graph created by Pekaje, based on PNG version by Anthony Cutler, Wikipedia.
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Take the average to be the best estimate of the value. We can then find the percentage error
between the average and the known true value:

percentage error =
|average− true value|

true value
× 100%

One way to put a value to the precision of a measurement is to find the standard deviation
of the measurement samples. The standard deviation is given by3:

σx =

√√√√ 1

n

n∑
i=1

(xi − x̄)2

If a measurement is very precise, then it will highly repeatable, in other words, not vary
much as many measurements are taken. All the measurement values xi will be close to the
mean x̄. Therefore, for a precise measurement, the standard deviation, σx will be very small
compared to the value of x̄. We can define the fractional uncertainty:

fractional uncertainty =
σx
x̄

A precise measurement will have a low fractional uncertainty.
A good measurement will have high precision (small fractional uncertainty) and high

accuracy (small percentage difference).

2 Types of Measurement Errors

When making measurements and gathering data in experiments there will always be some
uncertainty in the measured values. We refer to the uncertainty as the error in the mea-
surement. These errors can result in data that is not accurate, or lead to variation between
different runs of an experiment. Errors fall into two categories:

1. Systematic Errors - errors resulting from measuring devices being out of calibration.
Such measurements will be consistently too small or too large. These errors can be
eliminated by pre-calibrating against a known, trusted standard.

2. Random Errors - errors resulting in the fluctuation of measurements of the same
quantity about the average. The measurements are equally probable of being too large
or too small. These errors most commonly result from the fineness of scale division of
a measuring device.

Some systematic errors can be easy to spot. For example, a device may not “zero”
properly, but still have a scale that behaves accurately. An electronic device designed to
read current might read 0.01 A, even when the circuit is disconnected and no current can
flow. It is obvious in this case that it should read 0 A. Every subsequent measurement of
current will be too large by 0.01 A. This is easy to correct. Simple subtract 0.01 A from every

3This is the “uncorrected sample standard deviation”, sometimes called the “standard deviation of the
sample”. There is also a “corrected sample standard deviation” which divides by n − 1 rather than n. For
small numbers of measurements, the latter can be the better measure to use, however, for simplicity, we will
use the formula given above.
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measurement result. Some devices can easily be re-calibrated, to restore their accuracy. In
other cases, systematic errors can difficult to identify if there is no available reference to
calibrate from. The measurements may have high precision, even though they have low
accuracy. In such cases, the systematic error may only become apparent when comparing
data to that collected by other groups or other devices or techniques.

Random errors occur because of the inherent limitations on the precision of a measure-
ment device, or due to white noise, or random variation. The effects of this kind of error
can be analyzed using error propagation.

Both kinds of errors may result from improper use of a measuring device!
Error propagation for systematic errors. Suppose the value of f depends on the

values of x and y. δx and δy are the estimated magnitudes of the systematic errors in x
and y, but if we do not know the signs of the errors (whether they make x and y bigger or
smaller than they should be) we must assume that in the worst case the errors are “adding
up” and we use a more pessimistic formula for finding the uncertainty in f :

δf =

∣∣∣∣∂f∂x
∣∣∣∣ δx+

∣∣∣∣∂f∂y
∣∣∣∣ δy

Error propagation for random errors. Again, suppose the value of f depends on
the values of x and y. If we can assume the uncertainties in x and y are the result of random
errors, then the expected error in f is smaller that the error would be in the worst case. We
can use the formula derived for the standard deviations of x and y, using δx and δy in place
of the standard deviations:

δf =

√(
∂f

∂x

)2

(δx)2 +

(
∂f

∂y

)2

(δy)2 +

(
∂f

∂f

)2

(δz)2

3 Uncertainties from Measurement Devices

We can consider the uncertainties from devices that operate in different ways. Scale mea-
suring devices are analog devices, such as rulers. Digital measuring devices give numbers as
outputs and it is not possible to make finer estimates because there is no scale to reference.
Two simple rules are:

Uncertainty in a Scale Measuring Device is equal to the smallest increment divided
by 2.

δx = smallest increment / 2

Sometimes it may be possible to visually subdivide the smallest increment even further, so
that the measurement may be made down to say one-fifth of the smallest increment. An
uncertainty of the smallest increment divided by 2 is a safe choice however.

Uncertainty in a Digital Measuring Device is equal to the smallest increment.

δx = smallest increment

Since it is not possible to compare the measured value to a scale and you do not know the
exact design or workings of a digital device, you should assume that the uncertainty of the
measurement is the smallest increment.

Some examples,
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Meter Stick (scale device)

σx = 1 mm = 0.5 mm = 0.05 cm

Digital Balance (digital device)

Readout: 5.7513 kg
σx = 0.0001 kg

When stating a measurement the uncertainty should be stated explicitly so that there
is no question about the uncertainty in the measurement. However, if the is not stated
explicitly, an uncertainty is still implied.

For example, if we measure a length of 5.7 cm with a meter stick, this implies that the
length can be anywhere in the range 5.65cm ≤ L ≤ 5.75 cm. Thus, L = 5.7 cm measured
with a meter stick implies an uncertainty of 0.05 cm. A common rule of thumb is to take
one-half the unit of the last decimal place in a measurement to obtain the uncertainty.

In general, any measurement can be stated in the following preferred form:

measurement = xbest ± δx

where xbest is the best estimate of measurement and δx is the uncertainty (error) in mea-
surement.

4 Stating Uncertainties

Rule For Stating Uncertainties - Experimental uncertainties should be stated to 1-significant
figure.

For example,

v = 31.25± 0.034953 m/s

v = 31.25± 0.03 m/s (correct)

The uncertainty is just an estimate and thus it cannot be more precise (more significant
figures) than the best estimate of the measured value.

Rule For Stating Answers The last significant figure in any answer should be in the same
place as the uncertainty. For example,

a = 1261.29± 200 cm/s2

a = 1300± 200 cm/s2 (correct)

Since the uncertainly is stated to the hundreds place, we also state the answer to the hundreds
place. Note that the uncertainty determines the number of significant figures in the answer.
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5 Significant Figures

Significant figures are digits that are known in a value. For example, 3.04 m has three
significant figures, while 5.870× 106 m has four significant figures.

Use scientific notation to clearly indicate how many significant figures a number has.
When measurements are added or subtracted, the number of decimal places in the final

answer should equal the smallest number of decimal places of any term. Consider adding
the following masses,

M = 256.5895 g + 8.1 g

M = 264.6895 g

M = 264.7 g (answer)

When measurements are multiplied or divided, the number of significant figures in the
final answer should be the same as the term with the lowest number of significant figures.

L1 = 2.2 cm

L2 = 38.2935 cm

A = L1L2

= 84.126900000 cm2

A = 84 cm2 (answer)
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