Physics 4A: Assignment 1 Winter 2020

1. A car starts moving along a straight track from rest, initially with acceleration $a=5.0 \mathrm{~m} / \mathrm{s}^{2}$, then the car moves with constant velocity, and finally, it decelerates at the same rate a until it comes to a stop. The car is in motion for a total time of $t=25 \mathrm{~s}$. The average velocity during that time is $v_{\text {avg }}=72 \mathrm{~km} / \mathrm{h}$. For how long does the car move with constant velocity?
2. A lithium atom starts from rest at a position $x=x_{0}$ and falls toward zinc atom with an acceleration that depends on their separation as

$$
a(x)=\frac{4 \epsilon}{m}\left(12 \frac{\sigma^{12}}{x^{13}}-6 \frac{\sigma^{6}}{x^{7}}\right)
$$

where ϵ, m, and σ are positive constants, and the zinc atom stays fixed at position $x=0$. Assume that $x_{0}>2^{1 / 6} \sigma$.
(a) Find an expression for how the velocityspeed of the moving lithium atom depends on x. (It will also depend on ϵ, m, x_{0}, and σ.)
(b) What is the distance of closest approach of the the two atoms (in terms of σ and x_{0})?

[^0]
[^0]: ${ }^{1}$ The direction of the velocity could be toward or away from the atom at any valid position depending on the time.

