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1 Definitions

The moment of inertia, I of an object for a particular axis is the constant that links the
applied torque τ about that axis to the angular acceleration α about that axis. The equation
specifying the proportionality is a rotational version of Newton’s second law:

τ = Iα (1)

The moment of inertia is defined as

I =
∑
i

mir
2
i (2)

for a collection of point-like masses mi each at a distance ri from the specified axis. It is also
defined as

I =

∫
r2 dm (3)

for a continuous distribution of mass.

2 An Example: Moment of Inertia of a Right Circular

Cone

For a right circular cone of uniform density we can calculate the moment of inertia by taking
an integral over the volume of the cone and appropriately weighting each infinitesimal unit
of mass by its distance from the axis squared.

This can be done in several ways.
First let us put some parameters on the problem. Let the radius of the cone’s circular

base be R and the height of the cone be H. Let the mass of the cone be M and its density
be ρ = M

V
, where V = 1

3
πR2H be the volume of the cone.

Using the fact that the density is constant throughout the solid, we will write the defini-
tion of the moment of inertia as:

I =

∫
r2 dm

= ρ

∫
r2 dV
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Figure 1: A right circular cone.

2.1 Using symmetry

We can observe that the cone will be made up of cylindrical shells of infinitesimal thickness,
each at an equal distance from the axis of rotation. For this calculation, we position the cone
in on the axes as show in figures 1 and 2. Because the cone slopes downward, the cylindrical
shells each have a different height, and we must take that into account. Each shell will have
the same infinitesimal thickness dr.
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Figure 2: Summing cylindrical shells in a right circular cone.

The height of each cylinder will vary with the radius. Since a cross-section of the cone
through the center gives an isosceles triangle, the height of the triangle at a given distance
from the line of symmetry varies linearly with the distance (the radius r). This is the height



z(r) of each cylindrical shell at radius r. The height must be 0 at r = R and H at r = 0.
These constraints give:

z(r) = H
(

1 − r

R

)
Then we must find the contribution to the volume of each cylindrical shell. Each shell

is an infinitesimally thin sheet of area A = 2πrz(r). This is simply the surface area of a
cylinder, not including the end caps. The thin sheet’s thickness is dr, so we can write that
the volume contribution from this thin slice is dV = 2πrz(r) dr.

The integral becomes:

I = ρ

∫
r2 dV

= 2πρ

∫ R

0

r3z(r) dr

Replacing h(r) with its linear function in terms of r and ρ with the ratio of mass to
volume:

I =
2πM

(1/3)πR2H

∫ R

0

r3H
(

1 − r

R

)
dr

=
6M

R2

∫ R

0

(
r3 − r4

R

)
dr

=
6M

R2

[
r4

4
− r5

5R

]R
0

=
6M

R2
R4

[
1

4
− 1

5

]
=

6

20
MR2

I =
3

10
MR2

We could also position the cone as in figure 3. In that case nothing changes in this
evaluation, as we would still have z(r) = H

(
1 − r

R

)
.

2.2 Triple integral

Another fine way to evaluate this is using the triple integral for volume: just be sure to get
the integration limits right!

The radial symmetry in this problem makes cylindrical coordinates the best choice for
the triple integral. In cylindrical coordinates, dV = r dr dφ dz.

Now the moment of inertia integral becomes:

I = ρ

∫
r2 dV

= ρ

∫∫∫
r3 dr dφ dz
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Figure 3: The same cone, in a different orientation on the coordinate axes.

The limits of each integral must be determined. For the φ integral, the cone has full radial
symmetry, so we must sum up the contributions for all masses distributed around the full
circle. This gives us a range of [0, 2π), and is independent of the other variables. For the
other two integrals, we can do them in either order, but it will affect the limits of each.

First, let us evaluation doing the z integral first, then the r integral. This should look
very similar to what happens in section 2.1.

I =
M

(1/3)πR2H

∫ R

0

∫ H(1− r
R)

0

∫ 2π

0

dφ r3 dz dr

Notice that the upper bound on the z integral is our function defining the boundary of the
cone.

I =
3M

πR2H

∫ R

0

∫ H(1− r
R)

0

[φ]2π0 r3 dz dr

=
6πM

πR2H

∫ R

0

[
z

]H(1− r
R)

0

r3 dr

=
6M

R2H

∫ R

0

Hr3
(

1 − r

R

)
dr

=
6M

R2

[
r4

4
− r5

5R

]R
0

=
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[
1

4
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5

]
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MR2

Note: Be careful to integrate over the correct bounds. The correct bounds can be
different depending on how you have arranged your solid object in coordinate space.



As an example of this, consider the cone as drawn in figure 3. If we specify the cone in
this way, the bounds on the z-integral will change:

I =
3M

πR2H

∫ R

0

∫ H

rH
R

[φ]2π0 r3 dz dr

=
6πM

πR2H

∫ R

0

[
z

]H
rH
R

r3 dr

=
6M

R2H

∫ R

0

Hr3
(

1 − r

R

)
dr

I =
3

10
MR2

Notice that this leads to the same result. However, if we had used z-integral bounds
[0, rH/R], we would have been evaluating the wrong shape and would have gotten the wrong
answer.

Now, returning to the arrangement of figures 1 and 2. We could also evaluate this doing
the integral over r first, but then we have to make sure to give the correct limits on the
integral. We will need to invert our function relating r to z: r(z) = R(1 − z/H)

I =
M

(1/3)πR2H

∫ H

0

∫ R(1−z/H)

0

∫ 2π

0

dφ r3 dr dz

= 2π
3M

πR2H

∫ H

0

∫ R(1−z/H)

0

r3 dr dz

=
6M

R2H

∫ H

0

[
r4

4

]R(1−z/H)

0

dz

=
6M

R2H

R4

4

∫ H

0

(
1 − z

H

)4
dz

=
3MR4

2H

∫ H

0

(
1 − z

H

)4
dz

=
3MR4

2H

[
−H

5

(
1 − z

H

)5]H
0

=
3MR4

2

[
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1
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]
I =

3

10
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2.3 Adding circular contributions

This way is a bit less intuitive perhaps, but can also work.
Here we observe that a cone can be seen as a stack of infinitesimally thin circular disks.

Let’s look at how that would go if we simply wanted to evaluate the volume of the cone (not
the moment of inertia!). Each circular volume element will have a cross-sectional area πr2



and a thickness dz The integral becomes:

V =

∫
dV

= π

∫ H

0

r2 dz

r is a function of z, so replacing r(z) = R
(
1 − z

H

)
:

V = π

∫ H

0

R2
(

1 − z

H

)2
dz

= πR2

[
−H

3

(
1 − z

H

)3]H
0

= πR2

[
0 +

H

3

]
=

1

3
πR2H

That works fine.
For the moment of inertia, we want to weight all the mass at a radius r with a factor of r2

when we do the integral to sum over it. If we leap to the summing up circular disks of area
πr2, when we multiply in a factor of r2, we will be weighting each circle of mass according to
its radius, rather than each infinitesimal mass according to its distance from the axis. Most
of the material in the circular disk is in the interior of the disk, not along the circumference!
Näıvely doing this integral will cause us to overestimate the moment of inertia.

What we must do instead is add up all the moments of inertia of these thin disks to get
the total moment of inertia of the cone (a stack of disks).

A disk of radius r and mass m has moment of inertia Id = 1
2
mr2 (d for “disk”). Then we

allow that each disk is infinitesimally thin, and contributes a mass dm: dId = 1
2
r2 dm.

So, in a moment of inertia calculation, we add up the contributions from thin circular disks



to the total moment of inertia. In the third line we will again use that ρ = M
V

= M
(1/3)πR2H

.

I =

∫
dId

=

∫
1

2
r2 dm

=

∫
1

2
r2(πr2ρ) dz

=

(
1

2

)
M

(1/3)πR2H

∫ H

0

πr4 dz

=
3M

2R2H

∫ H

0

(
1 − z

H

)4
dz

=
3M

2R2H

[
−H

5

(
1 − z

H

)5]H
0

=
3MR4

10
[0 + 1]

I =
3

10
MR2

Notice that this worked because we already assumed that we knew the moment of inertia
of a disk, even before we began the calculation. A double integral would be required to prove
that statement Id = 1

2
mr2, we are simply omitting that step.

In general it is often more clear to do the triple integral.
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