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A Relative Motion Example

A light plane attains an airspeed of 500 km/h. The pilot sets out
for a destination 800 km due north but discovers that the plane
must be headed 20.0◦ east of due north to fly there directly. The
plane arrives in 2.00 h. What were the (a) magnitude and (b)
direction of the wind velocity?1

Let p refer to the plane, a refer to the air, E refers to the Earth.
The wind velocity is #»vaE .

#»vpE = #»vpa +
#»vaE

rearranging:

#»vaE = #»vpE − #»vpa

#»vaE =

(
800

2
ĵ

)
km/h − (500 sin 20◦ î+ 500 cos 20◦ ĵ) km/h

1Halliday, Resnick, Walker, 10th ed, page 83, #76.
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A Relative Motion Example
A light plane attains an airspeed of 500 km/h. The pilot sets out
for a destination 800 km due north but discovers that the plane
must be headed 20.0◦ east of due north to fly there directly. The
plane arrives in 2.00 h. What were the (a) magnitude and (b)
direction of the wind velocity?1

#»vaE =

(
800

2
ĵ

)
km/h − (500 sin 20◦ î+ 500 cos 20◦ ĵ) km/h

#»vaE = (−171 î− 70.0 ĵ) km/h

magnitude:
vaE =

√
v2aE ,x + v2aE ,y

= 185 km/h

direction:

θ = tan−1

(
70

171

)
= 22.3◦ South of West

1Halliday, Resnick, Walker, 10th ed, page 83, #76.



Relative Motion Example, #49, pg 206

A bolt drops from the ceiling of a moving train car that is
accelerating northward at a rate of 2.50 m/s2.

(a) What is the acceleration of the bolt relative to the train car?

(b) What is the acceleration of the bolt relative to the Earth?

(c) Describe the trajectory of the bolt as seen by an observer inside
the train car.

(d) Describe the trajectory of the bolt as seen by an observer fixed
on the Earth.

Let the x-axis point north, and the y -axis point up.



Relative Motion Example, #49, pg 206
A bolt drops from the ceiling of a moving train car that is
accelerating northward at a rate of 2.50 m/s2.

(a) What is the acceleration of the bolt relative to the train car?

As the bolt falls it is no longer attached to the train car. It does
not move with the car. Its acceleration is down relative to the
Earth, but the car keeps accelerating northward.

#»a bE = #»a bc +
#»a cE

#»a bc = #»a bE − #»a cE

= (−9.8 ĵ− 2.50 î) m/s2

abc =
√

2.502 + 9.82 m/s2 , θ = tan−1

(
9.8

2.50

)
#»a bc = 10.1 m/s2, at 75.7◦below the horizontal, southward.
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Relative Motion Example, #49, pg 206
A bolt drops from the ceiling of a moving train car that is
accelerating northward at a rate of 2.50 m/s2.

(b) What is the acceleration of the bolt relative to the Earth?

#»a bE = #»g = −9.8 ĵ m/s2

(c) Describe the trajectory of the bolt as seen by an observer inside
the train car.

It accelerates from rest, relative to the car. It must follow the
direction of the acceleration. A straight line, 75.7◦ below the
horizontal, southward.

(d) Describe the trajectory of the bolt as seen by an observer fixed
on the Earth.

It falls as a projectile with an initial horizontal velocity equal to the
velocity of the car relative to the ground at the moment the screw
drops.



Circular Motion

Frequently in physics, we encounter situations where an object
moves in a circle.

 4.4 Analysis Model: Particle In Uniform Circular Motion 91

▸ 4.5 c o n t i n u e d

By eliminating the time t between these equations and using differentiation to maximize d in terms of u, we arrive 
(after several steps; see Problem 88) at the following equation for the angle u that gives the maximum value of d :

u 5 458 2
f

2

For the slope angle in Figure 4.14, f 5 35.0°; this equation results in an optimal launch angle of u 5 27.5°. For a slope 
angle of f 5 0°, which represents a horizontal plane, this equation gives an optimal launch angle of u 5 45°, as we 
would expect (see Figure 4.10).

 

Pitfall Prevention 4.4
Acceleration of a Particle  
in Uniform Circular Motion  
Remember that acceleration in 
physics is defined as a change 
in the velocity, not a change in 
the speed (contrary to the every-
day interpretation). In circular 
motion, the velocity vector is 
always changing in direction, so 
there is indeed an acceleration.

4.4   Analysis Model: Particle  
in Uniform Circular Motion

Figure 4.15a shows a car moving in a circular path; we describe this motion by call-
ing it circular motion. If the car is moving on this path with constant speed v, we 
call it uniform circular motion. Because it occurs so often, this type of motion is 
recognized as an analysis model called the particle in uniform circular motion. We 
discuss this model in this section.
 It is often surprising to students to find that even though an object moves at a 
constant speed in a circular path, it still has an acceleration. To see why, consider the 
defining equation for acceleration, aS 5 d vS/dt (Eq. 4.5). Notice that the accelera-
tion depends on the change in the velocity. Because velocity is a vector quantity, an 
acceleration can occur in two ways as mentioned in Section 4.1: by a change in the 
magnitude of the velocity and by a change in the direction of the velocity. The latter 
situation occurs for an object moving with constant speed in a circular path. The 
constant-magnitude velocity vector is always tangent to the path of the object and 
perpendicular to the radius of the circular path. Therefore, the direction of the 
velocity vector is always changing.
 Let us first argue that the acceleration vector in uniform circular motion is 
always perpendicular to the path and always points toward the center of the circle. 
If that were not true, there would be a component of the acceleration parallel to 
the path and therefore parallel to the velocity vector. Such an acceleration compo-
nent would lead to a change in the speed of the particle along the path. This situa-
tion, however, is inconsistent with our setup of the situation: the particle moves with 
constant speed along the path. Therefore, for uniform circular motion, the accelera-
tion vector can only have a component perpendicular to the path, which is toward 
the center of the circle.
 Let us now find the magnitude of the acceleration of the particle. Consider the 
diagram of the position and velocity vectors in Figure 4.15b. The figure also shows 
the vector representing the change in position D rS for an arbitrary time interval. 
The particle follows a circular path of radius r, part of which is shown by the dashed 

Figure 4.15 (a) A car moving along a circular path at con-
stant speed experiences uniform circular motion. (b) As a 
particle moves along a portion of a circular path from ! to 
", its velocity vector changes from vSi to vSf . (c) The construc-
tion for determining the direction of the change in velocity 
DvS, which is toward the center of the circle for small DrS.
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1Figure from Serway and Jewett, page 91.



Circular Motion: Radial Coordinates60 Chapter 3 Vectors

Example 3.1   Polar Coordinates

The Cartesian coordinates of a point in the xy plane are (x, y) ! ("3.50, "2.50) m as shown in Figure 3.3. Find the 
polar coordinates of this point.

Conceptualize  The drawing in Figure 3.3 helps us conceptualize the problem. We wish to find r and u.  We expect r to 
be a few meters and u to be larger than 180°.

Categorize Based on the statement of the problem and 
the Conceptualize step, we recognize that we are simply 
converting from Cartesian coordinates to polar coordi-
nates. We therefore categorize this example as a substitu-
tion problem. Substitution problems generally do not have 
an extensive Analyze step other than the substitution of 
numbers into a given equation. Similarly, the Finalize step 

S O L U T I O N

from it. From the right triangle in Figure 3.2b, we find that sin u ! y/r and that cos 
u ! x/r. (A review of trigonometric functions is given in Appendix B.4.) Therefore, 
starting with the plane polar coordinates of any point, we can obtain the Cartesian 
coordinates by using the equations

 x 5 r cos u (3.1)
 y 5 r sin u (3.2)

Furthermore, if we know the Cartesian coordinates, the definitions of trigonom-
etry tell us that

 tan u 5
y
x  (3.3)

 r 5 "x 2 1 y2 (3.4)

Equation 3.4 is the familiar Pythagorean theorem.
 These four expressions relating the coordinates (x, y) to the coordinates (r, u) 
apply only when u is defined as shown in Figure 3.2a—in other words, when posi-
tive u is an angle measured counterclockwise from the positive x axis. (Some sci-
entific calculators perform conversions between Cartesian and polar coordinates 
based on these standard conventions.) If the reference axis for the polar angle 
u is chosen to be one other than the positive x axis or if the sense of increasing 
u is chosen differently, the expressions relating the two sets of coordinates will 
change.

Cartesian coordinates X
in terms of polar  

coordinates

Polar coordinates in terms X
of Cartesian coordinates

Figure 3.2 (a) The plane polar coordinates of a point are represented by the distance r and the 
angle u, where u is measured counterclockwise from the positive x axis. (b) The right triangle used to 
relate (x, y) to (r, u).
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Figure 3.3 (Example 3.1) 
Finding polar coordinates when 
Cartesian coordinates are given.

(–3.50, –2.50)

x (m)

r

y (m)

u

It is sometimes convenient to give position coordinates in terms of
r and θ. To transform from r , θ to x , y :

x = r cos θ y = r sin θ

It is typical to speak of radial and tangential directions.



Radial Coordinates

θ

r

θ

r

We can define perpendicular radial and tangential unit vectors, but
their direction changes with the motion of a particle around a
circle.
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Circular Motion

As a car moves around a circular path its velocity changes, if not in
magnitude, then in direction.
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If the radius remains constant and the speed of the car does as
well, then

#   »

∆v points toward the center of the circle.

That means the acceleration vector does, too.



Uniform Circular Motion

The velocity vector points along a tangent to the circle

 4.4 Analysis Model: Particle In Uniform Circular Motion 93

continued

Combining this equation with Equation 4.15, we find a relationship between angular 
speed and the translational speed with which the particle travels in the circular path:

 v 5 2pa v
2pr

b 5
v
r  S      v 5 rv (4.17)

Equation 4.17 demonstrates that, for a fixed angular speed, the translational speed 
becomes larger as the radial position becomes larger. Therefore, for example, if a 
merry-go-round rotates at a fixed angular speed v, a rider at an outer position at 
large r will be traveling through space faster than a rider at an inner position at 
smaller r. We will investigate Equations 4.16 and 4.17 more deeply in Chapter 10.
 We can express the centripetal acceleration of a particle in uniform circular 
motion in terms of angular speed by combining Equations 4.14 and 4.17:

ac 5
1rv 22

r
 ac 5 rv2 (4.18)

Equations 4.14–4.18 are to be used when the particle in uniform circular motion 
model is identified as appropriate for a given situation.

Q uick Quiz 4.4  A particle moves in a circular path of radius r with speed v. It then 
increases its speed to 2v while traveling along the same circular path. (i) The cen-
tripetal acceleration of the particle has changed by what factor? Choose one:  
(a) 0.25 (b) 0.5 (c) 2 (d) 4 (e) impossible to determine (ii) From the same choices,  
by what factor has the period of the particle changed?

Analysis Model   Particle in Uniform Circular Motion
Imagine a moving object that can be modeled as a particle. If it moves 
in a circular path of radius r at a constant speed v, the magnitude of its 
centripetal acceleration is 

 ac 5
v2

r
 (4.14)

and the period of the particle’s motion is given by 

 T 5
2pr
v

 (4.15)

The angular speed of the particle is

 v 5
2p

T
 (4.16)

Examples: 

of constant length 
-

fectly circular orbit (Chapter 13)
-

form magnetic field (Chapter 29)

nucleus in the Bohr model of the 
hydrogen atom (Chapter 42)

r

vSac
S

Example 4.6   The Centripetal Acceleration of the Earth 

(A) What is the centripetal acceleration of the Earth as it moves in its orbit around the Sun?

Conceptualize Think about a mental image of the Earth in a circular orbit around the Sun. We will model the Earth 
as a particle and approximate the Earth’s orbit as circular (it’s actually slightly elliptical, as we discuss in Chapter 13).

Categorize The Conceptualize step allows us to categorize this problem as one of a particle in uniform circular motion.

Analyze We do not know the orbital speed of the Earth to substitute into Equation 4.14. With the help of Equation 
4.15, however, we can recast Equation 4.14 in terms of the period of the Earth’s orbit, which we know is one year, and 
the radius of the Earth’s orbit around the Sun, which is 1.496 3 1011 m.

AM

S O L U T I O N

Pitfall Prevention 4.5
Centripetal Acceleration  
Is Not Constant We derived the 
magnitude of the centripetal 
acceleration vector and found it to 
be constant for uniform circular 
motion, but the centripetal accelera-
tion vector is not constant. It always 
points toward the center of the 
circle, but it continuously changes 
direction as the object moves 
around the circular path.

For uniform circular motion:

• the radius is constant

• the speed is constant

• the magnitude of the acceleration is constant



Uniform Circular Motion

The magnitude of the acceleration is given by

ac =
v2

r

If the constant speed is v , then the time period for one complete
orbit is

T =
2πr

v



Summary

• relative motion examples

• uniform circular motion

(Uncollected) Homework Serway & Jewett,

• Ch 4, onward from page 104. OQ: 9; Problems: 53, 61
(relative motion)

• Ch 4, Problems: 35, 37, 39 (uniform circular motion)


