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• relative motion example
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Overview

• uniform circular motion, angular speed

• nonuniform circular motion



Uniform Circular Motion

The magnitude of the acceleration is given by

ac =
v2

r

If the constant speed is v , then the time period for one complete
orbit is

T =
2πr

v

(f = 1/T is the frequency, or the rate of revolutions in time.)



Uniform Circular Motion
We can also consider the rate at which the angular coordinate is
changing:

294 Chapter 10 Rotation of a Rigid Object About a Fixed Axis

defining kinematic variables: position, velocity, and acceleration. We do the same 
here for rotational motion.
 Figure 10.1 illustrates an overhead view of a rotating compact disc, or CD. The 
disc rotates about a fixed axis perpendicular to the plane of the figure and passing 
through the center of the disc at O. A small element of the disc modeled as a par-
ticle at P is at a fixed distance r from the origin and rotates about it in a circle of 
radius r. (In fact, every element of the disc undergoes circular motion about O.) It is 
convenient to represent the position of P with its polar coordinates (r, u), where r is 
the distance from the origin to P and u is measured counterclockwise from some refer-
ence line fixed in space as shown in Figure 10.1a. In this representation, the angle u  
changes in time while r remains constant. As the particle moves along the cir-
cle from the reference line, which is at angle u 5 0, it moves through an arc of 
length s as in Figure 10.1b. The arc length s is related to the angle u through the 
relationship

 s 5 r u (10.1a)

 u 5
s
r  (10.1b)

Because u is the ratio of an arc length and the radius of the circle, it is a pure num-
ber. Usually, however, we give u the artificial unit radian (rad), where one radian is 
the angle subtended by an arc length equal to the radius of the arc. Because the cir-
cumference of a circle is 2pr, it follows from Equation 10.1b that 3608 corresponds 
to an angle of (2pr/r) rad 5 2p rad. Hence, 1 rad 5 3608/2p < 57.38. To convert an 
angle in degrees to an angle in radians, we use that p rad 5 1808, so

u 1rad 2 5
p

1808
 u 1deg 2

For example, 608 equals p/3 rad and 458 equals p/4 rad.
 Because the disc in Figure 10.1 is a rigid object, as the particle moves through an 
angle u from the reference line, every other particle on the object rotates through 
the same angle u. Therefore, we can associate the angle u with the entire rigid 
object as well as with an individual particle, which allows us to define the angular 
position of a rigid object in its rotational motion. We choose a reference line on 
the object, such as a line connecting O and a chosen particle on the object. The 
angular position of the rigid object is the angle u between this reference line on 
the object and the fixed reference line in space, which is often chosen as the x axis. 
Such identification is similar to the way we define the position of an object in trans-
lational motion as the distance x between the object and the reference position, 
which is the origin, x 5 0. Therefore, the angle u plays the same role in rotational 
motion that the position x does in translational motion.
 As the particle in question on our rigid object travels from position ! to posi-
tion " in a time interval Dt as in Figure 10.2, the reference line fixed to the object 
sweeps out an angle Du 5 uf 2 ui. This quantity Du is defined as the angular dis-
placement of the rigid object:

Du ; uf 2 ui 

The rate at which this angular displacement occurs can vary. If the rigid object 
spins rapidly, this displacement can occur in a short time interval. If it rotates 
slowly, this displacement occurs in a longer time interval. These different rotation 
rates can be quantified by defining the average angular speed vavg (Greek letter 
omega) as the ratio of the angular displacement of a rigid object to the time inter-
val Dt during which the displacement occurs:

 vavg ;
uf 2 ui

tf 2 ti
5

Du

Dt
 (10.2)Average angular speed X

Reference
line
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P
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To define angular position 
for the disc, a fixed reference 
line is chosen. A particle at P 
is located at a distance r from 
the rotation axis through O.

As the disc rotates, a particle at 
P moves through an arc length 
s on a circular path of radius r. 
The angular position of P is u.

a

b

Figure 10.1  A compact disc 
rotating about a fixed axis 
through O perpendicular to the 
plane of the figure.

Pitfall Prevention 10.1
Remember the Radian In rota-
tional equations, you must use 
angles expressed in radians.  
Don’t fall into the trap of using 
angles measured in degrees in 
rotational equations.

x

y

", t f

!, ti
r

i

O

fu

u

Figure 10.2  A particle on a rotat-
ing rigid object moves from ! to 
" along the arc of a circle. In the 
time interval Dt 5 tf 2 ti , the radial 
line of length r moves through an 
angular displacement Du 5 uf 2 ui.

∆θ = θf − θi

Then we can define the angular speed, ω, as

ω =
dθ

dt



Uniform Circular Motion

ω gives the amount by which the angle θ advances in radians, per
unit time. Therefore,

ω =
2π

T

where T is the period (time for one revolution).

Putting in the expression for T (T = 2πr
v ):

ω = 2π
v

2πr

ω =
v

r

This gives us another expression for the centripetal acceleration:

ac = ω2r
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Uniform Circular Motion

ω gives the amount by which the angle θ advances in radians, per
unit time. Therefore,
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Radial and Tangential Accelerations

Quick Quiz 4.41 A particle moves in a circular path of radius r
with speed v . It then increases its speed to 2v while traveling
along the same circular path.

(i) The centripetal acceleration of the particle has changed by
what factor?

A 0.25

B 0.5

C 2

D 4

1Page 93, Serway & Jewett
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Radial and Tangential Accelerations

Quick Quiz 4.41 A particle moves in a circular path of radius r
with speed v . It then increases its speed to 2v while traveling
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particle changed?
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Uniform Circular Motion Summary

The velocity vector points along a tangent to the circle

 4.4 Analysis Model: Particle In Uniform Circular Motion 93

continued

Combining this equation with Equation 4.15, we find a relationship between angular 
speed and the translational speed with which the particle travels in the circular path:

 v 5 2pa v
2pr

b 5
v
r  S      v 5 rv (4.17)

Equation 4.17 demonstrates that, for a fixed angular speed, the translational speed 
becomes larger as the radial position becomes larger. Therefore, for example, if a 
merry-go-round rotates at a fixed angular speed v, a rider at an outer position at 
large r will be traveling through space faster than a rider at an inner position at 
smaller r. We will investigate Equations 4.16 and 4.17 more deeply in Chapter 10.
 We can express the centripetal acceleration of a particle in uniform circular 
motion in terms of angular speed by combining Equations 4.14 and 4.17:

ac 5
1rv 22

r
 ac 5 rv2 (4.18)

Equations 4.14–4.18 are to be used when the particle in uniform circular motion 
model is identified as appropriate for a given situation.

Q uick Quiz 4.4  A particle moves in a circular path of radius r with speed v. It then 
increases its speed to 2v while traveling along the same circular path. (i) The cen-
tripetal acceleration of the particle has changed by what factor? Choose one:  
(a) 0.25 (b) 0.5 (c) 2 (d) 4 (e) impossible to determine (ii) From the same choices,  
by what factor has the period of the particle changed?

Analysis Model   Particle in Uniform Circular Motion
Imagine a moving object that can be modeled as a particle. If it moves 
in a circular path of radius r at a constant speed v, the magnitude of its 
centripetal acceleration is 

 ac 5
v2

r
 (4.14)

and the period of the particle’s motion is given by 

 T 5
2pr
v

 (4.15)

The angular speed of the particle is

 v 5
2p

T
 (4.16)

Examples: 

of constant length 
-

fectly circular orbit (Chapter 13)
-

form magnetic field (Chapter 29)

nucleus in the Bohr model of the 
hydrogen atom (Chapter 42)

r

vSac
S

Example 4.6   The Centripetal Acceleration of the Earth 

(A) What is the centripetal acceleration of the Earth as it moves in its orbit around the Sun?

Conceptualize Think about a mental image of the Earth in a circular orbit around the Sun. We will model the Earth 
as a particle and approximate the Earth’s orbit as circular (it’s actually slightly elliptical, as we discuss in Chapter 13).

Categorize The Conceptualize step allows us to categorize this problem as one of a particle in uniform circular motion.

Analyze We do not know the orbital speed of the Earth to substitute into Equation 4.14. With the help of Equation 
4.15, however, we can recast Equation 4.14 in terms of the period of the Earth’s orbit, which we know is one year, and 
the radius of the Earth’s orbit around the Sun, which is 1.496 3 1011 m.

AM

S O L U T I O N

Pitfall Prevention 4.5
Centripetal Acceleration  
Is Not Constant We derived the 
magnitude of the centripetal 
acceleration vector and found it to 
be constant for uniform circular 
motion, but the centripetal accelera-
tion vector is not constant. It always 
points toward the center of the 
circle, but it continuously changes 
direction as the object moves 
around the circular path.

For uniform circular motion:

• the radius is constant

• the speed is constant

• the magnitude of the acceleration is constant, ac = v2

r = ω2r



Non-Uniform Circular Motion

94 Chapter 4 Motion in Two Dimensions

Path of
particle at

ar
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Figure 4.16 The motion of a 
particle along an arbitrary curved 
path lying in the xy plane. If the 
velocity vector vS (always tangent 
to the path) changes in direction 
and magnitude, the components 
of the acceleration aS are a tan-
gential component at and a radial 
component ar.

(B) What is the angular speed of the Earth in its orbit around the Sun?

Analyze 

S O L U T I O N

Substitute numerical values: ac 5
4p2 11.496 3 1011 m 211 yr 22 a 1 yr

3.156 3 107 s
b2

5  5.93 3 1023 m/s2

Finalize The acceleration in part (A) is much smaller than the free-fall acceleration on the surface of the Earth. An 
important technique we learned here is replacing the speed v in Equation 4.14 in terms of the period T of the motion. 
In many problems, it is more likely that T is known rather than v. In part (B), we see that the angular speed of the 
Earth is very small, which is to be expected because the Earth takes an entire year to go around the circular path once.

4.5 Tangential and Radial Acceleration
Let us consider a more general motion than that presented in Section 4.4. A parti-
cle moves to the right along a curved path, and its velocity changes both in direction 
and in magnitude as described in Figure 4.16. In this situation, the velocity vector 
is always tangent to the path; the acceleration vector aS, however, is at some angle 
to the path. At each of three points !, ", and # in Figure 4.16, the dashed blue 
circles represent the curvature of the actual path at each point. The radius of each 
circle is equal to the path’s radius of curvature at each point.
 As the particle moves along the curved path in Figure 4.16, the direction of the 
total acceleration vector aS changes from point to point. At any instant, this vec-
tor can be resolved into two components based on an origin at the center of the 
dashed circle corresponding to that instant: a radial component ar along the radius 
of the circle and a tangential component at perpendicular to this radius. The total 
acceleration vector aS can be written as the vector sum of the component vectors:

 aS 5 aSr 1 aSt (4.19)

The tangential acceleration component causes a change in the speed v of the particle. 
This component is parallel to the instantaneous velocity, and its magnitude is given by

 at 5 ` dv
dt

`  (4.20)

Total acceleration X

Tangential acceleration X

▸ 4.6 c o n t i n u e d

Combine Equations 4.14 and 4.15: ac 5
v2

r
5

a2pr
T

b2

r
5

4p2r
T 2

 

Substitute numerical values into Equation 4.16: v 5
2p

1 yr
 a 1 yr

3.156 3  107
 s
b 5  1.99 3  1027

 s21



Radial and Tangential Accelerations
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#»a = #»a t +
#»a r

#»a = at θ̂− ac r̂ (defining ac +ve)

Let θ̂(t) be a unit vector in the direction of the velocity. Note that
its direction changes with time!

#»v (t) = v(t) θ̂(t)



Radial and Tangential Accelerations

#»a =
d #»v

dt
; #»v (t) = v(t) θ̂(t)

Find the acceleration using the product rule:

#»a =
dv

dt
θ̂+ v

dθ̂

dt

The term
(
dv
dt θ̂

)
is all in the tangential component of the

acceleration.

But how to find what
(
v dθ̂

dt

)
is? We need to find how θ̂ changes

with time. (It rotates, but at what rate?)



Radial and Tangential Accelerations
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Radial and Tangential Accelerations: How do the
perpendicular axes change?

Let’s find out!

θ̂ is changing, so let us say that θ̂i is the initial tangential unit
vector and θ̂f is the final tangential unit vector.

θ̂ changes at the same rate as θ itself.

!v!

vf

vi

!r

vi
vf

ri rf
!qu

u

!"
S

S
S

S S

S

S

S

θ f
iθ

ˆ

θ

ˆ

i

θf

Δθ̂

ˆ

ˆ

ds = r dθ

ds

dt
= r

dθ

dt

dθ

dt
=

1

r

ds

dt

dθ

dt
=

v

r

This tells us how fast the tangential
unit vector changes in direction.
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Radial and Tangential Accelerations: How do the
perpendicular axes change?

∣∣∣∣ d

dt
θ̂

∣∣∣∣ =
v

r

This tells us how fast the tangential unit vector changes in
direction.

Now consider that the direction of change must be radial!

d

dt
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v
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Radial and Tangential Accelerations

#»a =
d #»v

dt
=

d

dt
(v θ̂)

Find the acceleration using the product rule:

#»a =
dv

dt
θ̂+ v

dθ̂

dt

=
dv

dt
θ̂+ v

(
−
v

r
r̂
)

=
dv

dt
θ̂ −

v2

r
r̂

tangen. radial

We said #»a = at θ̂− ac r̂ so,

ac =
v2

r



Radial and Tangential Accelerations

pg 105, #41 Problems 105

 41. A train slows down as it rounds a sharp horizontal 
turn, going from 90.0 km/h to 50.0 km/h in the 15.0 s  
it takes to round the bend. The radius of the curve is 
150 m. Compute the acceleration at the moment the 
train speed reaches 50.0 km/h. Assume the train con-
tinues to slow down at this time at the same rate.

 42. A ball swings counterclockwise in a vertical circle at 
the end of a rope 1.50 m long. When the ball is 36.9° 
past the lowest point on its way up, its total acceleration 
is 1222.5 î 1 20.2 ĵ 2  m/s2. For that instant, (a) sketch a 
vector diagram showing the components of its acceler-
ation, (b) determine the magnitude of its radial accel-
eration, and (c) determine the speed and velocity of 
the ball.

 43. (a) Can a particle moving with instantaneous speed 
3.00  m/s on a path with radius of curvature 2.00 m 
have an acceleration of magnitude 6.00 m/s2? (b) Can 
it have an acceleration of magnitude 4.00 m/s2? In 
each case, if the answer is yes, explain how it can hap-
pen; if the answer is no, explain why not.

Section 4.6 Relative Velocity and Relative Acceleration
 44. The pilot of an airplane notes that the compass indi-

cates a heading due west. The airplane’s speed relative 
to the air is 150 km/h. The air is moving in a wind at 
30.0 km/h toward the north. Find the velocity of the 
airplane relative to the ground.

 45. An airplane maintains a speed of 630 km/h relative 
to the air it is flying through as it makes a trip to a 
city 750 km away to the north. (a) What time interval is 
required for the trip if the plane flies through a head-
wind blowing at 35.0 km/h toward the south? (b) What 
time interval is required if there is a tailwind with the 
same speed? (c) What time interval is required if there 
is a crosswind blowing at 35.0 km/h to the east relative 
to the ground?

 46. A moving beltway at an airport has a speed v1 and a 
length L. A woman stands on the beltway as it moves 
from one end to the other, while a man in a hurry to 
reach his flight walks on the beltway with a speed of 
v2 relative to the moving beltway. (a) What time inter-
val is required for the woman to travel the distance L? 
(b) What time interval is required for the man to travel 
this distance? (c) A second beltway is located next  
to the first one. It is identical to the first one but moves 
in the opposite direction at speed v1. Just as the man 
steps onto the beginning of the beltway and begins to 
walk at speed v2 relative to his beltway, a child steps on 
the other end of the adjacent beltway. The child stands 
at rest relative to this second beltway. How long after 
stepping on the beltway does the man pass the child?

 47. A police car traveling at 95.0 km/h is traveling west, 
chasing a motorist traveling at 80.0 km/h. (a) What is 
the velocity of the motorist relative to the police car? 
(b) What is the velocity of the police car relative to the 
motorist? (c) If they are originally 250 m apart, in what 
time interval will the police car overtake the motorist?

 48. A car travels due east with a speed of 50.0 km/h. Rain-
drops are falling at a constant speed vertically with 

M

S

M

   Suppose a copper sleeve of inner radius 2.10 cm 
and outer radius 2.20 cm is to be cast. To eliminate 
bubbles and give high structural integrity, the cen-
tripetal acceleration of each bit of metal should be at 
least 100g. What rate of rotation is required? State the 
answer in revolutions per minute.

 36. A tire 0.500 m in radius rotates at a constant rate of 
200 rev/min. Find the speed and acceleration of a small 
stone lodged in the tread of the tire (on its outer edge).

 37. Review. The 20-g centrifuge at NASA’s Ames Research 
Center in Mountain View, California, is a horizontal, 
cylindrical tube 58.0 ft long and is represented in Fig-
ure P4.37. Assume an astronaut in training sits in a 
seat at one end, facing the axis of rotation 29.0 ft away. 
Determine the rotation rate, in revolutions per second, 
required to give the astronaut a centripetal accelera-
tion of 20.0g.

29 ft

Figure P4.37

 38. An athlete swings a ball, connected to the end of a chain, 
in a horizontal circle. The athlete is able to rotate the 
ball at the rate of 8.00 rev/s when the length of the chain 
is 0.600 m. When he increases the length to 0.900 m, he 
is able to rotate the ball only 6.00 rev/s. (a) Which rate of 
rotation gives the greater speed for the ball? (b) What is 
the centripetal acceleration of the ball at 8.00 rev/s? 
(c) What is the centripetal acceleration at 6.00 rev/s?

 39. The astronaut orbit-
ing the Earth in Figure 
P4.39 is preparing to 
dock with a Westar VI 
satellite. The satellite 
is in a circular orbit  
600 km above the 
Earth’s surface, where 
the free-fall accelera-
tion is 8.21 m/s2. Take 
the radius of the Earth 
as 6 400 km. Determine the speed of the satellite and 
the time interval required to complete one orbit around 
the Earth, which is the period of the satellite.

Section 4.5 Tangential and Radial Acceleration
 40. Figure P4.40 represents the 

total acceleration of a particle 
moving clockwise in a circle 
of radius 2.50  m at a certain 
instant of time. For that instant, 
find (a) the radial acceleration 
of the particle, (b) the speed of 
the particle, and (c) its tangen-
tial acceleration.
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at = −0.741 m/s2 ; ar = −1.29 m/s2 (calling outward positive)

#»a = 1.48 m/s2 inward at an angle 29.9◦

backward from the direction of travel
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Radial and Tangential Accelerations

pg 105, #41 Problems 105

 41. A train slows down as it rounds a sharp horizontal 
turn, going from 90.0 km/h to 50.0 km/h in the 15.0 s  
it takes to round the bend. The radius of the curve is 
150 m. Compute the acceleration at the moment the 
train speed reaches 50.0 km/h. Assume the train con-
tinues to slow down at this time at the same rate.

 42. A ball swings counterclockwise in a vertical circle at 
the end of a rope 1.50 m long. When the ball is 36.9° 
past the lowest point on its way up, its total acceleration 
is 1222.5 î 1 20.2 ĵ 2  m/s2. For that instant, (a) sketch a 
vector diagram showing the components of its acceler-
ation, (b) determine the magnitude of its radial accel-
eration, and (c) determine the speed and velocity of 
the ball.

 43. (a) Can a particle moving with instantaneous speed 
3.00  m/s on a path with radius of curvature 2.00 m 
have an acceleration of magnitude 6.00 m/s2? (b) Can 
it have an acceleration of magnitude 4.00 m/s2? In 
each case, if the answer is yes, explain how it can hap-
pen; if the answer is no, explain why not.

Section 4.6 Relative Velocity and Relative Acceleration
 44. The pilot of an airplane notes that the compass indi-

cates a heading due west. The airplane’s speed relative 
to the air is 150 km/h. The air is moving in a wind at 
30.0 km/h toward the north. Find the velocity of the 
airplane relative to the ground.

 45. An airplane maintains a speed of 630 km/h relative 
to the air it is flying through as it makes a trip to a 
city 750 km away to the north. (a) What time interval is 
required for the trip if the plane flies through a head-
wind blowing at 35.0 km/h toward the south? (b) What 
time interval is required if there is a tailwind with the 
same speed? (c) What time interval is required if there 
is a crosswind blowing at 35.0 km/h to the east relative 
to the ground?

 46. A moving beltway at an airport has a speed v1 and a 
length L. A woman stands on the beltway as it moves 
from one end to the other, while a man in a hurry to 
reach his flight walks on the beltway with a speed of 
v2 relative to the moving beltway. (a) What time inter-
val is required for the woman to travel the distance L? 
(b) What time interval is required for the man to travel 
this distance? (c) A second beltway is located next  
to the first one. It is identical to the first one but moves 
in the opposite direction at speed v1. Just as the man 
steps onto the beginning of the beltway and begins to 
walk at speed v2 relative to his beltway, a child steps on 
the other end of the adjacent beltway. The child stands 
at rest relative to this second beltway. How long after 
stepping on the beltway does the man pass the child?

 47. A police car traveling at 95.0 km/h is traveling west, 
chasing a motorist traveling at 80.0 km/h. (a) What is 
the velocity of the motorist relative to the police car? 
(b) What is the velocity of the police car relative to the 
motorist? (c) If they are originally 250 m apart, in what 
time interval will the police car overtake the motorist?

 48. A car travels due east with a speed of 50.0 km/h. Rain-
drops are falling at a constant speed vertically with 
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   Suppose a copper sleeve of inner radius 2.10 cm 
and outer radius 2.20 cm is to be cast. To eliminate 
bubbles and give high structural integrity, the cen-
tripetal acceleration of each bit of metal should be at 
least 100g. What rate of rotation is required? State the 
answer in revolutions per minute.

 36. A tire 0.500 m in radius rotates at a constant rate of 
200 rev/min. Find the speed and acceleration of a small 
stone lodged in the tread of the tire (on its outer edge).

 37. Review. The 20-g centrifuge at NASA’s Ames Research 
Center in Mountain View, California, is a horizontal, 
cylindrical tube 58.0 ft long and is represented in Fig-
ure P4.37. Assume an astronaut in training sits in a 
seat at one end, facing the axis of rotation 29.0 ft away. 
Determine the rotation rate, in revolutions per second, 
required to give the astronaut a centripetal accelera-
tion of 20.0g.

29 ft

Figure P4.37

 38. An athlete swings a ball, connected to the end of a chain, 
in a horizontal circle. The athlete is able to rotate the 
ball at the rate of 8.00 rev/s when the length of the chain 
is 0.600 m. When he increases the length to 0.900 m, he 
is able to rotate the ball only 6.00 rev/s. (a) Which rate of 
rotation gives the greater speed for the ball? (b) What is 
the centripetal acceleration of the ball at 8.00 rev/s? 
(c) What is the centripetal acceleration at 6.00 rev/s?

 39. The astronaut orbit-
ing the Earth in Figure 
P4.39 is preparing to 
dock with a Westar VI 
satellite. The satellite 
is in a circular orbit  
600 km above the 
Earth’s surface, where 
the free-fall accelera-
tion is 8.21 m/s2. Take 
the radius of the Earth 
as 6 400 km. Determine the speed of the satellite and 
the time interval required to complete one orbit around 
the Earth, which is the period of the satellite.

Section 4.5 Tangential and Radial Acceleration
 40. Figure P4.40 represents the 

total acceleration of a particle 
moving clockwise in a circle 
of radius 2.50  m at a certain 
instant of time. For that instant, 
find (a) the radial acceleration 
of the particle, (b) the speed of 
the particle, and (c) its tangen-
tial acceleration.
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#»a = 1.48 m/s2 inward at an angle 29.9◦

backward from the direction of travel
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Summary

• uniform circular motion

• nonuniform circular motion

(Uncollected) Homework Serway & Jewett,

• Ch 4, Problems: 40, 43, 70 (nonuniform circular motion)


