# Kinematics: Circular Motion 

Lana Sheridan<br>De Anza College<br>Jan 22, 2020

## Last Time

- relative motion example
- uniform circular motion


## Overview

- uniform circular motion, angular speed
- nonuniform circular motion


## Uniform Circular Motion

The magnitude of the acceleration is given by

$$
a_{c}=\frac{v^{2}}{r}
$$

If the constant speed is $v$, then the time period for one complete orbit is

$$
T=\frac{2 \pi r}{v}
$$

( $f=1 / T$ is the frequency, or the rate of revolutions in time.)

## Uniform Circular Motion

We can also consider the rate at which the angular coordinate is changing:


$$
\Delta \theta=\theta_{f}-\theta_{i}
$$

Then we can define the angular speed, $\omega$, as

$$
\omega=\frac{\mathrm{d} \theta}{\mathrm{~d} t}
$$

## Uniform Circular Motion

$\omega$ gives the amount by which the angle $\theta$ advances in radians, per unit time. Therefore,

$$
\omega=\frac{2 \pi}{T}
$$

where $T$ is the period (time for one revolution).

## Uniform Circular Motion

$\omega$ gives the amount by which the angle $\theta$ advances in radians, per unit time. Therefore,

$$
\omega=\frac{2 \pi}{T}
$$

where $T$ is the period (time for one revolution).
Putting in the expression for $T\left(T=\frac{2 \pi r}{v}\right)$ :

$$
\begin{aligned}
\omega & =2 \pi \frac{v}{2 \pi r} \\
\omega & =\frac{v}{r}
\end{aligned}
$$

## Uniform Circular Motion

$\omega$ gives the amount by which the angle $\theta$ advances in radians, per unit time. Therefore,

$$
\omega=\frac{2 \pi}{T}
$$

where $T$ is the period (time for one revolution).
Putting in the expression for $T\left(T=\frac{2 \pi r}{v}\right)$ :

$$
\begin{aligned}
\omega & =2 \pi \frac{v}{2 \pi r} \\
\omega & =\frac{v}{r}
\end{aligned}
$$

This gives us another expression for the centripetal acceleration:

$$
a_{c}=\omega^{2} r
$$

## Radial and Tangential Accelerations

Quick Quiz 4.4 ${ }^{1}$ A particle moves in a circular path of radius $r$ with speed $v$. It then increases its speed to $2 v$ while traveling along the same circular path.
(i) The centripetal acceleration of the particle has changed by what factor?

A 0.25
B 0.5
C 2
D 4

## Radial and Tangential Accelerations

Quick Quiz 4.4 ${ }^{1}$ A particle moves in a circular path of radius $r$ with speed $v$. It then increases its speed to $2 v$ while traveling along the same circular path.
(i) The centripetal acceleration of the particle has changed by what factor?

A 0.25
B 0.5
C 2
D $4 \leftarrow$

## Radial and Tangential Accelerations

Quick Quiz 4.4 ${ }^{1}$ A particle moves in a circular path of radius $r$ with speed $v$. It then increases its speed to $2 v$ while traveling along the same circular path.
(ii) From the same choices, by what factor has the period of the particle changed?

A 0.25
B 0.5
C 2
D 4

## Radial and Tangential Accelerations

Quick Quiz 4.4 ${ }^{1}$ A particle moves in a circular path of radius $r$ with speed $v$. It then increases its speed to $2 v$ while traveling along the same circular path.
(ii) From the same choices, by what factor has the period of the particle changed?

A 0.25
B $0.5 \leftarrow$
C 2
D 4

## Uniform Circular Motion Summary

The velocity vector points along a tangent to the circle


For uniform circular motion:

- the radius is constant
- the speed is constant
- the magnitude of the acceleration is constant, $a_{c}=\frac{v^{2}}{r}=\omega^{2} r$


## Non-Uniform Circular Motion



## Radial and Tangential Accelerations



$$
\begin{aligned}
& \overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{a}}_{t}+\overrightarrow{\mathbf{a}}_{r} \\
& \left.\overrightarrow{\mathbf{a}}=a_{t} \hat{\boldsymbol{\theta}}-a_{c} \hat{\mathbf{r}} \quad \text { (defining } a_{c}+\mathrm{ve}\right)
\end{aligned}
$$

Let $\hat{\boldsymbol{\theta}}(t)$ be a unit vector in the direction of the velocity. Note that its direction changes with time!

$$
\overrightarrow{\mathbf{v}}(t)=v(t) \hat{\boldsymbol{\theta}}(t)
$$

## Radial and Tangential Accelerations

$$
\overrightarrow{\mathbf{a}}=\frac{\mathrm{d} \overrightarrow{\mathbf{v}}}{\mathrm{dt}} ; \quad \overrightarrow{\mathbf{v}}(t)=v(t) \hat{\boldsymbol{\theta}}(t)
$$

Find the acceleration using the product rule:

$$
\overrightarrow{\mathbf{a}}=\frac{\mathrm{dv}}{\mathrm{dt}} \hat{\boldsymbol{\theta}}+v \frac{\mathrm{~d} \hat{\boldsymbol{\theta}}}{\mathrm{dt}}
$$

## Radial and Tangential Accelerations

$$
\overrightarrow{\mathbf{a}}=\frac{\mathrm{d} \overrightarrow{\mathbf{v}}}{\mathrm{dt}} ; \quad \overrightarrow{\mathbf{v}}(t)=v(t) \hat{\boldsymbol{\theta}}(t)
$$

Find the acceleration using the product rule:

$$
\overrightarrow{\mathbf{a}}=\frac{\mathrm{d} v}{\mathrm{dt}} \hat{\boldsymbol{\theta}}+v \frac{\mathrm{~d} \hat{\boldsymbol{\theta}}}{\mathrm{dt}}
$$

The term ( $\frac{\mathrm{dv}}{\mathrm{dt}} \hat{\boldsymbol{\theta}}$ ) is all in the tangential component of the acceleration.

But how to find what $\left(v \frac{d \hat{\theta}}{d t}\right)$ is? We need to find how $\hat{\theta}$ changes with time. (It rotates, but at what rate?)

## Radial and Tangential Accelerations: How do the perpendicular axes change?

Let's find out!
$\hat{\theta}$ is changing, so let us say that $\hat{\theta}_{i}$ is the initial tangential unit vector and $\hat{\boldsymbol{\theta}}_{f}$ is the final tangential unit vector.

## Radial and Tangential Accelerations: How do the perpendicular axes change?

$\hat{\theta}$ is changing, so let us say that $\hat{\theta}_{i}$ is the initial tangential unit vector and $\hat{\boldsymbol{\theta}}_{f}$ is the final tangential unit vector.
$\hat{\theta}$ changes at the same rate as $\theta$ itself.

$$
\mathrm{ds}=r \mathrm{~d} \theta
$$



## Radial and Tangential Accelerations: How do the perpendicular axes change?

$\hat{\theta}$ is changing, so let us say that $\hat{\theta}_{i}$ is the initial tangential unit vector and $\hat{\boldsymbol{\theta}}_{f}$ is the final tangential unit vector.
$\hat{\theta}$ changes at the same rate as $\theta$ itself.

$$
\begin{aligned}
& \mathrm{ds}=r \mathrm{~d} \theta \\
& \frac{\mathrm{ds}}{\mathrm{dt}}=r \frac{\mathrm{~d} \theta}{\mathrm{dt}}
\end{aligned}
$$



## Radial and Tangential Accelerations: How do the perpendicular axes change?

$\hat{\theta}$ is changing, so let us say that $\hat{\theta}_{i}$ is the initial tangential unit vector and $\hat{\boldsymbol{\theta}}_{f}$ is the final tangential unit vector.
$\hat{\theta}$ changes at the same rate as $\theta$ itself.

$$
\begin{aligned}
\mathrm{ds} & =r \mathrm{~d} \theta \\
\frac{\mathrm{ds}}{\mathrm{dt}} & =r \frac{\mathrm{~d} \theta}{\mathrm{dt}} \\
\frac{\mathrm{~d} \theta}{\mathrm{dt}} & =\frac{1}{r} \frac{\mathrm{ds}}{\mathrm{dt}} \\
\frac{\mathrm{~d} \theta}{\mathrm{dt}} & =\frac{v}{r}
\end{aligned}
$$



This tells us how fast the tangential unit vector changes in direction.

## Radial and Tangential Accelerations: How do the perpendicular axes change?

$$
\left|\frac{\mathrm{d}}{\mathrm{dt}} \hat{\theta}\right|=\frac{v}{r}
$$

This tells us how fast the tangential unit vector changes in direction.

## Radial and Tangential Accelerations: How do the perpendicular axes change?

$$
\left|\frac{\mathrm{d}}{\mathrm{dt}} \hat{\boldsymbol{\theta}}\right|=\frac{v}{r}
$$

This tells us how fast the tangential unit vector changes in direction.

Now consider that the direction of change must be radial!

$$
\frac{\mathrm{d}}{\mathrm{dt}} \hat{\boldsymbol{\theta}}=-\frac{v}{r} \hat{\mathbf{r}}
$$



## Radial and Tangential Accelerations

$$
\vec{a}=\frac{d \vec{v}}{d t}=\frac{d}{d t}(v \hat{\boldsymbol{\theta}})
$$

Find the acceleration using the product rule:

$$
\begin{aligned}
& \overrightarrow{\mathbf{a}}=\frac{\mathrm{dv}}{\mathrm{dt}} \hat{\boldsymbol{\theta}}+v \frac{\mathrm{~d} \hat{\boldsymbol{\theta}}}{\mathrm{dt}} \\
&=\frac{\mathrm{dv}}{\mathrm{dt}} \hat{\boldsymbol{\theta}}+v\left(-\frac{v}{r} \hat{\mathbf{r}}\right) \\
&=\frac{\mathrm{dv}}{\mathrm{dt}} \hat{\boldsymbol{\theta}}-\frac{v^{2}}{r} \hat{\mathbf{r}} \\
& \text { tangen. radial }
\end{aligned}
$$

We said $\overrightarrow{\mathbf{a}}=a_{t} \hat{\boldsymbol{\theta}}-a_{c} \hat{\mathbf{r}}$ so,

$$
a_{c}=\frac{v^{2}}{r}
$$

## Radial and Tangential Accelerations

pg 105, \#41
41. A train slows down as it rounds a sharp horizontal M turn, going from $90.0 \mathrm{~km} / \mathrm{h}$ to $50.0 \mathrm{~km} / \mathrm{h}$ in the 15.0 s it takes to round the bend. The radius of the curve is 150 m . Compute the acceleration at the moment the train speed reaches $50.0 \mathrm{~km} / \mathrm{h}$. Assume the train continues to slow down at this time at the same rate.

## Radial and Tangential Accelerations

pg 105, \#41
41. A train slows down as it rounds a sharp horizontal M turn, going from $90.0 \mathrm{~km} / \mathrm{h}$ to $50.0 \mathrm{~km} / \mathrm{h}$ in the 15.0 s it takes to round the bend. The radius of the curve is 150 m . Compute the acceleration at the moment the train speed reaches $50.0 \mathrm{~km} / \mathrm{h}$. Assume the train continues to slow down at this time at the same rate.

$$
\begin{gathered}
a_{t}=-0.741 \mathrm{~m} / \mathrm{s}^{2} ; \quad a_{r}=-1.29 \mathrm{~m} / \mathrm{s}^{2} \text { (calling outward positive) } \\
\overrightarrow{\mathbf{a}}=1.48 \mathrm{~m} / \mathrm{s}^{2} \text { inward at an angle } 29.9^{\circ}
\end{gathered}
$$

## Summary

- uniform circular motion
- nonuniform circular motion
(Uncollected) Homework Serway \& Jewett,
- Ch 4, Problems: 40, 43, 70 (nonuniform circular motion)

