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Last time

• Newton’s third law

• action-reaction pairs

• forces fundamentally



Overview

• fields

• gravity

• tension

• equilibrium



Fields

field

A field is any kind of physical quantity that has values specified at
every point in space and time.

Fields were first introduced as a calculation tool. A force-field can
be used to identify the force a particular particle will feel at a
certain point in space and time based on the other objects in its
environment that it will interact with.

We do not need a description of the sources of the field to describe
what their effect is on our particle.
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Fields
To be clear: When we adopt a field model of force interactions we
separate two interacting objects, placing one in the system and the
other in the environment.

System

The Earth

Fg

Field
Environment



Examples of Fields

Gravity and the electrostatic force have associated fields.

#»g = −9.8 ĵ N/kg, the gravitational field strength.

#»

FG = m #»g
#»

FE = q
#»

E

We can also think of #»g as an acceleration. (m/s2 = N/kg)

Can we think of
#»

E as an acceleration (due to the electrostatic
force)? No. q 6= m
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Representing Fields

Fields are drawn with lines showing the direction of force that a
test particle will feel at that point. The density of the lines at that
point in the diagram indicates the approximate magnitude of the
force at that point.

Gravitation: Electrostatic:

 25.4 Obtaining the Value of the Electric Field from the Electric Potential 755

25.4  Obtaining the Value of the Electric Field  
from the Electric Potential

The electric field E
S

 and the electric potential V are related as shown in Equation 
25.3, which tells us how to find DV if the electric field E

S
 is known. What if the situ-

ation is reversed? How do we calculate the value of the electric field if the electric 
potential is known in a certain region?
 From Equation 25.3, the potential difference dV between two points a distance 
ds apart can be expressed as

 dV 5 2 E
S

? d sS  (25.15)

If the electric field has only one component Ex, then E
S

? d sS 5 Ex dx . Therefore, 
Equation 25.15 becomes dV 5 2Ex dx, or

 Ex 5 2
dV
dx

 (25.16)

That is, the x component of the electric field is equal to the negative of the deriv-
ative of the electric potential with respect to x. Similar statements can be made 
about the y and z components. Equation 25.16 is the mathematical statement of 
the electric field being a measure of the rate of change with position of the electric 
potential as mentioned in Section 25.1.
 Experimentally, electric potential and position can be measured easily with a 
voltmeter (a device for measuring potential difference) and a meterstick. Conse-
quently, an electric field can be determined by measuring the electric potential at 
several positions in the field and making a graph of the results. According to Equa-
tion 25.16, the slope of a graph of V versus x at a given point provides the magnitude 
of the electric field at that point.
 Imagine starting at a point and then moving through a displacement d sS along 
an equipotential surface. For this motion, dV 5 0 because the potential is constant 
along an equipotential surface. From Equation 25.15, we see that dV 5 2 E

S
? d sS 5 0; 

therefore, because the dot product is zero, E
S

 must be perpendicular to the displace-
ment along the equipotential surface. This result shows that the equipotential sur-
faces must always be perpendicular to the electric field lines passing through them.
 As mentioned at the end of Section 25.2, the equipotential surfaces associated 
with a uniform electric field consist of a family of planes perpendicular to the 
field lines. Figure 25.11a shows some representative equipotential surfaces for this 
situation.

Figure 25.11 Equipotential surfaces (the dashed blue lines are intersections of these surfaces with the page) and elec-
tric field lines. In all cases, the equipotential surfaces are perpendicular to the electric field lines at every point.
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by an infinite sheet of charge

A spherically symmetric electric 
field produced by a point charge

An electric field produced by an 
electric dipole
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Examples of Fields

The gravitational field caused by the Sun-Earth system can be
represented as:

1Figure from http://www.launc.tased.edu.au



Examples of Fields

The electrostatic field caused by an electric dipole system can be
represented as:
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1Figure from Serway & Jewett



Some types of forces

We will review some kinds of forces and how they behave, and
consider some examples illustrating them.



Some types of forces

Gravitation

The force that massive objects exert on one another.

Newton’s Law of Universal Gravitation

FG =
Gm1m2

r2

for two objects, masses m1 and m2 at a distance r .

G = 6.67× 10−11 Nm2 kg−2.
(Challenge: check the units of G .)



Some types of forces

Gravitation cont’d

For the moment, we will care about this force in that it gives
objects weight, Fg .

Fg = mg

and

g =
GMEarth

R2
Earth

The force
#»

Fg , acts downwards towards the center of the Earth.



Some types of forces

Tension

The force exerted by a rope or chain to suspend or pull an object
with mass.

6–2 Strings and Springs
A common way to exert a force on an object is to pull on it with a string, a rope, a
cable, or a wire. Similarly, you can push or pull on an object if you attach it to a
spring. In this section we discuss the basic features of strings and springs and how
they transmit forces.

150 CHAPTER 6 APPLICATIONS OF NEWTON’S LAWS
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▲ FIGURE 6–5 Tension in a string
A string, pulled from either end, has a tension, T. If the string were to be cut
at any point, the force required to hold the ends together is T.

T T

▲ FIGURE 6–6 Tension in a heavy rope
Because of the weight of the rope, the
tension is noticeably different at points 1,
2, and 3. As the rope becomes lighter, how-
ever, the difference in tension decreases. In
the limit of a rope of zero mass, the tension
is the same throughout the rope.

Strings and Tension
Imagine picking up a light string and holding it with one end in each hand. If you
pull to the right with your right hand with a force T and to the left with your left
hand with a force T, the string becomes taut. In such a case, we say that there is a
tension T in the string. To be more specific, if your friend were to cut the string at
some point, the tension T is the force pulling the ends apart, as illustrated in
Figure 6–5—that is, T is the force your friend would have to exert with each hand
to hold the cut ends together. Note that at any given point, the tension pulls
equally to the right and to the left.

As an example, consider a rope that is attached to the ceiling at one end, and
to a box with a weight of 105 N at the other end, as shown in Figure 6–6. In addi-
tion, suppose the rope is uniform, and that it has a total weight of 2.00 N. What
is the tension in the rope (i) where it attaches to the box, (ii) at its midpoint, and
(iii) where it attaches to the ceiling?

First, the rope holds the box at rest; thus, the tension where the rope attaches
to the box is simply the weight of the box, At the midpoint of the
rope, the tension supports the weight of the box, plus the weight of half the
rope. Thus, Similarly, at the ceiling the ten-
sion supports the box plus all of the rope, giving a tension of Note
that the tension pulls down on the ceiling but pulls up on the box.

From this discussion, we can see that the tension in the rope changes slightly
from top to bottom because of the mass of the rope. If the rope had less mass, the
difference in tension between its two ends would also be less. In particular, if the
rope’s mass were to be vanishingly small, the difference in tension would vanish
as well. In this text, we will assume that all ropes, strings, wires, and so on are
practically massless—unless specifically stated otherwise—and, hence, that the
tension is the same throughout their length.

Pulleys are often used to redirect a force exerted by a string, as indicated in
Figure 6–7. In the ideal case, a pulley has no mass, and no friction in its bearings.
Thus, an ideal pulley simply changes the direction of the tension in a string, without
changing its magnitude. If a system contains more than one pulley, however, it is
possible to arrange them in such a way as to “magnify a force,” even if each pul-
ley itself merely redirects the tension in a string. The traction device considered in
the next Example shows one way this can be accomplished in a system that uses
three ideal pulleys.

T3 = 107 N.
T2 = 105 N + 1

212.00 N2 = 106 N.

T1 = 105 N.

▲ FIGURE 6–7 A pulley changes the
direction of a tension
In an ideal string, the tension has the
same magnitude, T, throughout its
length. A pulley can serve to redirect the
string, however, so that the tension acts
in a different direction.

WALKMC06_0131536311.QXD  12/6/05  17:28  Page 150

Tension acts in both directions along the rope, so when asked for a
tension, typically one just gives a magnitude.

1Figure from James S. Walker, “Physics”.



Some types of forces: Tension

If a rope is “light” (massless) the tension is the same everywhere
in the rope.

If the rope is has mass the tension can vary alongs the rope.
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they transmit forces.
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1Figure from Walker, “Physics”.



Definition: Equilibrium
Equilibrium

#»

Fnet =
∑
i

#»

F i = 0

 5.7 Analysis Models Using Newton’s Second Law 121

lamp are the downward gravitational force F
S

g and the upward force T
S

 exerted by 
the chain. Because there are no forces in the x direction, o Fx 5 0 provides no help-
ful information. The condition o Fy 5 0 gives

o Fy 5 T 2 Fg 5 0 or T 5 Fg

Again, notice that T
S

 and F
S

g are not an action–reaction pair because they act on 
the same object, the lamp. The reaction force to T

S
 is a downward force exerted by 

the lamp on the chain.
 Example 5.4 (page 122) shows an application of the particle in equilibrium model.

Analysis Model: The Particle Under a Net Force
If an object experiences an acceleration, its motion can be analyzed with the par-
ticle under a net force model. The appropriate equation for this model is Newton’s 
second law, Equation 5.2:

 a  F
S

5 maS (5.2)

Consider a crate being pulled to the right on a frictionless, horizontal floor as in 
Figure 5.8a. Of course, the floor directly under the boy must have friction; other-
wise, his feet would simply slip when he tries to pull on the crate! Suppose you wish 
to find the acceleration of the crate and the force the floor exerts on it. The forces 
acting on the crate are illustrated in the free-body diagram in Figure 5.8b. Notice 
that the horizontal force T

S
 being applied to the crate acts through the rope. The 

magnitude of T
S

 is equal to the tension in the rope. In addition to the force T
S

, the 
free-body diagram for the crate includes the gravitational force F

S
g and the normal 

force nS exerted by the floor on the crate.
 We can now apply Newton’s second law in component form to the crate. The 
only force acting in the x direction is T

S
. Applying o Fx 5 max to the horizontal 

motion gives

 a  Fx 5 T 5 max or ax 5
T
m  

 No acceleration occurs in the y direction because the crate moves only horizon-
tally. Therefore, we use the particle in equilibrium model in the y direction. Apply-
ing the y component of Equation 5.8 yields

o Fy 5 n 2 Fg 5 0 or n 5 Fg

That is, the normal force has the same magnitude as the gravitational force but acts 
in the opposite direction.
 If T

S
 is a constant force, the acceleration ax 5 T/m also is constant. Hence, the 

crate is also modeled as a particle under constant acceleration in the x direction, 
and the equations of kinematics from Chapter 2 can be used to obtain the crate’s 
position x and velocity vx as functions of time.
 Notice from this discussion two concepts that will be important in future prob-
lem solving: (1) In a given problem, it is possible to have different analysis models applied in 
different directions. The crate in Figure 5.8 is a particle in equilibrium in the vertical 
direction and a particle under a net force in the horizontal direction. (2) It is pos-
sible to describe an object by multiple analysis models. The crate is a particle under a net 
force in the horizontal direction and is also a particle under constant acceleration 
in the same direction.
 In the situation just described, the magnitude of the normal force nS is equal  
to the magnitude of F

S
g, but that is not always the case, as noted in Pitfall Preven-

tion 5.6. For example, suppose a book is lying on a table and you push down on  
the book with a force F

S
 as in Figure 5.9. Because the book is at rest and therefore 

not accelerating, o Fy 5 0, which gives n 2 Fg 2 F 5 0, or n 5 Fg 1 F 5 mg 1 F. In 
this situation, the normal force is greater than the gravitational force. Other exam-
ples in which n ? Fg are presented later.

Fg
S

a b

T
S

Figure 5.7 (a) A lamp sus-
pended from a ceiling by a chain 
of negligible mass. (b) The forces 
acting on the lamp are the gravi-
tational force F

S
g and the force T

S
 

exerted by the chain.

a

b

nS

T
S

Fg
S

x

y

Figure 5.8 (a) A crate being 
pulled to the right on a friction-
less floor. (b) The free-body dia-
gram representing the external 
forces acting on the crate.

nS

F
S

Fg
S

Physics

Figure 5.9 When a force F
S

 
pushes vertically downward on 
another object, the normal force 
nS on the object is greater than the 
gravitational force: n 5 Fg 1 F.



Equilibrium

We say that an object is in equilibrium when there is no net force
acting on it. Forces may act on the object, but the sum of the
force vectors is zero.

#»

Fnet =
∑
i

#»

F i = 0

That means, in particular, that

Fx ,net =
∑
i

Fx ,i = 0

and
Fy ,net =

∑
i

Fy ,i = 0

(Works for any pair of perpendicular directions you might choose.)
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Equilibrium

Usually, you know an object is in equilibrium because you observe
(or are told) something about its motion.

#»

Fnet = 0 ⇔ #»a = 0

If an object moves with constant velocity, it is in equilibrium.

Static Equilibrium occurs when an object is at rest and remaining
at rest.

#»a = 0 , #»v = 0



Statics with Tensions

Example: A traffic light weighing 200 N is suspended by two light
cables, as shown in the diagram, so that θ1 = 30◦ and θ2 = 45◦.

122 Chapter 5 The Laws of Motion

Analyze We construct a diagram of the forces acting on the traffic light, shown in Figure 5.10b, and a free-body 
diagram for the knot that holds the three cables together, shown in Figure 5.10c. This knot is a convenient object to 
choose because all the forces of interest act along lines passing through the knot.

From the particle in equilibrium model, apply  
Equation 5.8 for the traffic light in the y direction:

o Fy 5 0   S   T3 2 Fg 5 0

T3 5 Fg

Example 5.4   A Traffic Light at Rest 

A traffic light weighing 122 N hangs from a cable tied to 
two other cables fastened to a support as in Figure 5.10a. 
The upper cables make angles of u1 5 37.0° and u2 5 
53.0° with the horizontal. These upper cables are not as 
strong as the vertical cable and will break if the tension 
in them exceeds 100 N. Does the traffic light remain 
hanging in this situation, or will one of the cables break?

Conceptualize Inspect the drawing in Figure 5.10a. Let 
us assume the cables do not break and nothing is moving.

Categorize If nothing is moving, no part of the system 
is accelerating. We can now model the light as a particle 
in equilibrium on which the net force is zero. Similarly, 
the net force on the knot (Fig. 5.10c) is zero, so it is also 
modeled as a particle in equilibrium.

AM

S O L U T I O N

 Several examples below demonstrate the use of the particle under a net force 
model.

Fg
S

a b c

T2T1

T3
x
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T
S

3

T
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T
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1
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2

u1

u1

u2

u2

Figure 5.10 (Example 5.4) (a) A traffic light suspended by 
cables. (b) The forces acting on the traffic light. (c) The free-body 
diagram for the knot where the three cables are joined.

Imagine an object that can be modeled as a particle. If it has one 
or more forces acting on it so that there is a net force on the object, 
it will accelerate in the direction of the net force. The relationship 
between the net force and the acceleration is

 a  F
S

5 m aS (5.2)

m

! F
S

 

aS 

Analysis Model   Particle Under a Net Force
Examples

-
tional force

by hot gases (Chapter 22)

(Chapter 23)

Imagine an object that can be modeled as a particle. If it has sev-
eral forces acting on it so that the forces all cancel, giving a net 
force of zero, the object will have an acceleration of zero. This con-
dition is mathematically described as

 a  F
S

5 0 (5.8)

m

!F " 0
S

a " 0S

Analysis Model   Particle in Equilibrium
Examples

table

through a viscous medium (Chapter 6)

(Chapter 12) 
 

(Chapter 14)

Find the tensions T1 and T2.
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Analysis Model   Particle Under a Net Force
Examples

r� B�DSBUF�QVTIFE�BDSPTT�B�GBDUPSZ�GMPPS
r� B�GBMMJOH�PCKFDU�BDUFE�VQPO�CZ�B�HSBWJUB-

tional force
r� B�QJTUPO�JO�BO�BVUPNPCJMF�FOHJOF�QVTIFE�

by hot gases (Chapter 22)
r� B�DIBSHFE�QBSUJDMF�JO�BO�FMFDUSJD�GJFME�

(Chapter 23)

Imagine an object that can be modeled as a particle. If it has sev-
eral forces acting on it so that the forces all cancel, giving a net 
force of zero, the object will have an acceleration of zero. This con-
dition is mathematically described as

 a  F
S

5 0  (5.8)

m

!F "  0
S

a "  0S

Analysis Model   Particle in Equilibrium
Examples

r� B�DIBOEFMJFS�IBOHJOH�PWFS�B�EJOJOH�SPPN�
table

r� BO�PCKFDU�NPWJOH�BU�UFSNJOBM�TQFFE�
through a viscous medium (Chapter 6)

r� B�TUFFM�CFBN�JO�UIF�GSBNF�PG�B�CVJMEJOH�
(Chapter 12) 

r� B�CPBU�GMPBUJOH�PO�B�CPEZ�PG�XBUFS� 
(Chapter 14)

Static ⇒ #»

Fnet = 0 for the traffic light.

traffic light, y -direction:

Fnet,y = m��>
0

ay

T3 − Fg = 0

T3 = Fg = 200N (1)



Statics with Tensions

Example: A traffic light weighing 200 N is suspended by two light
cables, as shown in the diagram, so that θ1 = 30◦ and θ2 = 45◦.

122 Chapter 5 The Laws of Motion

Analyze We construct a diagram of the forces acting on the traffic light, shown in Figure 5.10b, and a free-body 
diagram for the knot that holds the three cables together, shown in Figure 5.10c. This knot is a convenient object to 
choose because all the forces of interest act along lines passing through the knot.

From the particle in equilibrium model, apply  
Equation 5.8 for the traffic light in the y direction:

o Fy 5 0   S   T3 2 Fg 5 0

T3 5 Fg

Example 5.4   A Traffic Light at Rest 

A traffic light weighing 122 N hangs from a cable tied to 
two other cables fastened to a support as in Figure 5.10a. 
The upper cables make angles of u1 5 37.0° and u2 5 
53.0° with the horizontal. These upper cables are not as 
strong as the vertical cable and will break if the tension 
in them exceeds 100 N. Does the traffic light remain 
hanging in this situation, or will one of the cables break?

Conceptualize Inspect the drawing in Figure 5.10a. Let 
us assume the cables do not break and nothing is moving.

Categorize If nothing is moving, no part of the system 
is accelerating. We can now model the light as a particle 
in equilibrium on which the net force is zero. Similarly, 
the net force on the knot (Fig. 5.10c) is zero, so it is also 
modeled as a particle in equilibrium.
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 Several examples below demonstrate the use of the particle under a net force 
model.
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Figure 5.10 (Example 5.4) (a) A traffic light suspended by 
cables. (b) The forces acting on the traffic light. (c) The free-body 
diagram for the knot where the three cables are joined.

Imagine an object that can be modeled as a particle. If it has one 
or more forces acting on it so that there is a net force on the object, 
it will accelerate in the direction of the net force. The relationship 
between the net force and the acceleration is
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5 m aS (5.2)
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Analysis Model   Particle Under a Net Force
Examples

r� B�DSBUF�QVTIFE�BDSPTT�B�GBDUPSZ�GMPPS
r� B�GBMMJOH�PCKFDU�BDUFE�VQPO�CZ�B�HSBWJUB-

tional force
r� B�QJTUPO�JO�BO�BVUPNPCJMF�FOHJOF�QVTIFE�

by hot gases (Chapter 22)
r� B�DIBSHFE�QBSUJDMF�JO�BO�FMFDUSJD�GJFME�

(Chapter 23)

Imagine an object that can be modeled as a particle. If it has sev-
eral forces acting on it so that the forces all cancel, giving a net 
force of zero, the object will have an acceleration of zero. This con-
dition is mathematically described as
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5 0  (5.8)
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Static ⇒ #»

Fnet = 0 for the junction of the
cables.

(solution continues next lecture...)



Statics with Tensions

Example: A traffic light weighing 200 N is suspended by two light
cables, as shown in the diagram, so that θ1 = 30◦ and θ2 = 45◦.

122 Chapter 5 The Laws of Motion

Analyze We construct a diagram of the forces acting on the traffic light, shown in Figure 5.10b, and a free-body 
diagram for the knot that holds the three cables together, shown in Figure 5.10c. This knot is a convenient object to 
choose because all the forces of interest act along lines passing through the knot.

From the particle in equilibrium model, apply  
Equation 5.8 for the traffic light in the y direction:

o Fy 5 0   S   T3 2 Fg 5 0

T3 5 Fg

Example 5.4   A Traffic Light at Rest 

A traffic light weighing 122 N hangs from a cable tied to 
two other cables fastened to a support as in Figure 5.10a. 
The upper cables make angles of u1 5 37.0° and u2 5 
53.0° with the horizontal. These upper cables are not as 
strong as the vertical cable and will break if the tension 
in them exceeds 100 N. Does the traffic light remain 
hanging in this situation, or will one of the cables break?

Conceptualize Inspect the drawing in Figure 5.10a. Let 
us assume the cables do not break and nothing is moving.

Categorize If nothing is moving, no part of the system 
is accelerating. We can now model the light as a particle 
in equilibrium on which the net force is zero. Similarly, 
the net force on the knot (Fig. 5.10c) is zero, so it is also 
modeled as a particle in equilibrium.

AM

S O L U T IO N

 Several examples below demonstrate the use of the particle under a net force 
model.

Fg
S

a b c

T2T1

T3
x

y

T
S

3

T
S

3

T
S

1

T
S

2

u1

u1

u2

u2

Figure 5.10 (Example 5.4) (a) A traffic light suspended by 
cables. (b) The forces acting on the traffic light. (c) The free-body 
diagram for the knot where the three cables are joined.
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Summary

• fields

• gravity

• tension

• equilibrium

(Uncollected) Homework Serway & Jewett,

• Ch 5, onward from page 138. Probs: 21, 33, 37


