Dynamics
 Applying Laws of Motion More Types of Forces

Lana Sheridan
De Anza College

Jan 28, 2020

Last time

- fields
- gravity
- tension
- equilibrium

Overview

- static equilibrium example
- normal force

Statics with Tensions

Example: A traffic light weighing 200 N is suspended by two light cables, as shown in the diagram, so that $\theta_{1}=30^{\circ}$ and $\theta_{2}=45^{\circ}$.

Find the tensions T_{1} and T_{2}.
From last time:

$$
\begin{equation*}
T_{3}=F_{g}=200 \mathrm{~N} \tag{1}
\end{equation*}
$$

Statics with Tensions

Example: A traffic light weighing 200 N is suspended by two light cables, as shown in the diagram, so that $\theta_{1}=30^{\circ}$ and $\theta_{2}=45^{\circ}$.

> Static $\Rightarrow \overrightarrow{\mathbf{F}}_{\text {net }}=0$ for the junction of the cables.

Statics with Tensions

Example: A traffic light weighing 200 N is suspended by two light cables, as shown in the diagram, so that $\theta_{1}=30^{\circ}$ and $\theta_{2}=45^{\circ}$.

> Static $\Rightarrow \overrightarrow{\boldsymbol{F}}_{\text {net }}=0$ for the junction of the cables.
> junction, x-direction:

$$
\begin{align*}
F_{\text {net }, x} & =\operatorname{mrg} 0_{x}^{0} \\
T_{1} \cos \theta_{1}-T_{2} \cos \theta_{2} & =0 \\
T_{1} \cos \theta_{1} & =T_{2} \cos \theta_{2} \tag{2}
\end{align*}
$$

Statics with Tensions

Example: A traffic light weighing 200 N is suspended by two light cables, as shown in the diagram, so that $\theta_{1}=30^{\circ}$ and $\theta_{2}=45^{\circ}$.

Static $\Rightarrow \overrightarrow{\mathbf{F}}_{\text {net }}=0$ for the junction of the cables.
junction, x-direction:

$$
\begin{align*}
F_{\text {net }, x} & =\operatorname{mrg} 0_{x}^{0} \\
T_{1} \cos \theta_{1}-T_{2} \cos \theta_{2} & =0 \\
T_{1} \cos \theta_{1} & =T_{2} \cos \theta_{2} \tag{2}
\end{align*}
$$

junction, y-direction:

$$
\begin{align*}
F_{\text {net }, y} & =\text { mr }^{0}, 0 \\
T_{1} \sin \theta_{1}+T_{2} \sin \theta_{2}-T_{3} & =0 \\
T_{1} \sin \theta_{1}+T_{2} \sin \theta_{2} & =T_{3} \tag{3}
\end{align*}
$$

Statics with Tensions

$$
\begin{equation*}
T_{1} \cos \theta_{1}=T_{2} \cos \theta_{2} \tag{2}
\end{equation*}
$$

And using eq (1), equation (3) becomes:

$$
\begin{equation*}
T_{1} \sin \theta_{1}+T_{2} \sin \theta_{2}=F_{g} \tag{4}
\end{equation*}
$$

We have two independent equations, and just the two unknowns
T_{1} and T_{2}. $\left(\theta_{1}=30^{\circ}\right.$ and $\theta_{2}=45^{\circ}$.) Solve as you like!

Statics with Tensions

$$
\begin{equation*}
T_{1} \cos \theta_{1}=T_{2} \cos \theta_{2} \tag{2}
\end{equation*}
$$

And using eq (1), equation (3) becomes:

$$
\begin{equation*}
T_{1} \sin \theta_{1}+T_{2} \sin \theta_{2}=F_{g} \tag{4}
\end{equation*}
$$

We have two independent equations, and just the two unknowns
T_{1} and T_{2}. $\left(\theta_{1}=30^{\circ}\right.$ and $\theta_{2}=45^{\circ}$.) Solve as you like!

Answer:

$$
T_{1}=146 \mathrm{~N}, T_{2}=179 \mathrm{~N}
$$

Some types of forces

The Normal Force

The normal force supports and object sitting on a surface. It acts in a direction perpendicular to the surface.

The magnitude of the normal force can be measured using a scale.
${ }^{1}$ Figure from www.sparknotes.com

Some types of forces

 The Normal Force

For an object of weight $\overrightarrow{\mathbf{W}}$ sitting on a level surface (that is not accelerating), the normal force, $\overrightarrow{\mathbf{N}}$ is

$$
\overrightarrow{\mathbf{N}}=-\overrightarrow{\mathbf{W}}
$$

Be careful! There are many cases in which the above equation is not true!
${ }^{1}$ Figure from www.sparknotes.com

The Normal Force

The normal force supports an object that sits on a surface, but its magnitude is different in different circumstances.

In general, one needs to work out what it will be in each problem.

Some cases where the normal force is different than the weight of an object are:

- the object is in an accelerating elevator.
- the object sits on an incline.
- there are other forces with vertical components (besides gravity). See suitcase example!

Some types of forces

Friction

This is a force a surface can exert on an object in contact with it. The friction force always acts to oppose the motion of one surface relative to another.

Some types of forces

Friction

This is a force a surface can exert on an object in contact with it. The friction force always acts to oppose the motion of one surface relative to another.

There are two kinds of friction, static friction, $\overrightarrow{\mathbf{F}}_{s f}$, and kinetic friction, $\overrightarrow{\boldsymbol{F}}_{k f}$.

Some types of forces

Friction

This is a force a surface can exert on an object in contact with it. The friction force always acts to oppose the motion of one surface relative to another.

There are two kinds of friction, static friction, $\overrightarrow{\mathbf{F}}_{s f}$, and kinetic friction, $\overrightarrow{\mathbf{F}}_{k f}$.

The amount of friction depends on properties of the object and the surface. More about this to follow!

Tension and Normal Force: \#60, pg 144

60. A woman at an airport is towing W her $20.0-\mathrm{kg}$ suitcase at constant speed by pulling on a strap at an angle θ above the horizontal (Fig. P5.60). She pulls on the strap with a $35.0-\mathrm{N}$ force, and the friction force on the suitcase is 20.0 N . (a) Draw a freebody diagram of the suitcase.

Figure P5.60 (b) What angle does the strap make with the horizontal? (c)
What is the magnitude of the normal force that the ground exerts on the suitcase?

Tension and Normal Force: \#60, pg 144

60. A woman at an airport is towing W her $20.0-\mathrm{kg}$ suitcase at constant speed by pulling on a strap at an angle θ above the horizontal (Fig. P5.60). She pulls on the strap with a $35.0-\mathrm{N}$ force, and the friction force on the suitcase is 20.0 N . (a) Draw a freebody diagram of the suitcase.

Figure P5.60 (b) What angle does the strap make with the horizontal? (c) What is the magnitude of the normal force that the ground exerts on the suitcase?

Answers:
b) $\theta=55.2^{\circ}$
c) $n=167 \mathrm{~N}$

Summary

- equilibrium and tension example
- the normal force

Quiz this Friday.
(Uncollected) Homework
Serway \& Jewett,

- Ch 5, Prob: 21 (set yesterday)
- Ch 5, onward from page 136. Probs: 39 CQ 13; Probs: 28, 39, 43, 47, 95 (can wait)

