# Kinematics <br> Part I: Motion in 1 Dimension 

Lana Sheridan<br>De Anza College

Jan 7, 2020

## Last time

- introduced the course


## Overview

- basic ideas about physics
- units and symbols for scaling units
- dimensional analysis
- motion in 1-dimension
- kinematic quantities
- graphs


## What is Physics?

Physics is the science of fundamental interactions of matter and energy.

## What is Physics?

Physics is the science of fundamental interactions of matter and energy.

Physicists (and others who use physics) want to predict accurately how an object or collection of objects will behave when interacting.

Why?

- to better understand the universe
- to build new kinds of technology (engines, electronics, imaging devices, mass manufacturing, energy sources)
- to build safer and more efficient infrastructure
- to go new places and explore
- to prepare for the future


## What is Physics?

Physics is the science of fundamental interactions of matter and energy.

How is it done? Make a simplified model of the system of interest, then apply a principle to make a quantitative prediction.

## What is Physics?

Physics is the science of fundamental interactions of matter and energy.

How is it done? Make a simplified model of the system of interest, then apply a principle to make a quantitative prediction.
(Philosophy) moral of the story: Physics is not about explaining how the world actually is. It is about finding models that make correct predictions.

## What is Physics?

## Theory

A refined quantitative model for making predictions that has been verified by multiple groups of researchers and is understood to have some regime of validity.

## What is Physics?

## Theory

A refined quantitative model for making predictions that has been verified by multiple groups of researchers and is understood to have some regime of validity.
eg. Newtonian Mechanics - very accurately predicts the motion of billiard balls and the motion of planets,

- but not the perihelion precession of Mercury,
- and not the behavior of electrons in atoms.


## What is Physics?

## Theory

A refined quantitative model for making predictions that has been verified by multiple groups of researchers and is understood to have some regime of validity.
eg. Newtonian Mechanics - very accurately predicts the motion of billiard balls and the motion of planets,

- but not the perihelion precession of Mercury,
- and not the behavior of electrons in atoms.

Valid when

- $v \ll c$,
- gravitational fields are not too strong,
- distances are much bigger than $\ell_{p}$ (Planck length), etc.


## What Other Physical Theories Do You Know Of?

## ?

## Newtonian Mechanics

This course will only cover Newtonian Mechanics.

- We will look at motion from knowing the acceleration and object experiences.
- We will analyze forces to consider what acceleration an object will experience.
- We will also consider the energy of a system to find its motion.

There are other ways of doing this analysis: Lagrangian Mechanics and Hamiltonian Mechanics. They are not covered in the course.

## Quantities, Units, Measurement

If we want to make quantitative statements we need to agree on measurements: standard reference units.

We will mostly use SI (Système International) units:

$$
\begin{array}{cc}
\text { Length } & \text { meter, } m \\
\text { Mass } & \text { kilogram, } k g \\
\text { Time } & \text { second, } s
\end{array}
$$

These base units are defined in terms of fundamental physical phenomena - things anyone, anywhere could in principle observe consistently.

## Quantities, Units, Measurement

If we want to make quantitative statements we need to agree on measurements: standard reference units.

We will mostly use SI (Système International) units:

$$
\begin{array}{cc}
\text { Length } & \text { meter, } m \\
\text { Mass } & \text { kilogram, } k g \\
\text { Time } & \text { second, } s
\end{array}
$$

These base units are defined in terms of fundamental physical phenomena - things anyone, anywhere could in principle observe consistently.

Make sure you include the appropriate units in your answer when you get a number!

Also, units can be helpful for checking that your equation is correct.

## SI Units Definition Summary

New SI

${ }^{1}$ Figure by Emilio Pisanty.

## SI Units Definition Summary

## New SI


${ }^{1}$ Figure by Emilio Pisanty.

## Scale of Units



## Scale of Units

You need to know for this course:

| Scale | Prefix | Symbol |
| :---: | :---: | :---: |
| $10^{3}$ | kilo- | $k$ |
| $10^{0}$ | - | - |
| $10^{-1}$ | deci- | $d$ |
| $10^{-2}$ | centi- | $c$ |
| $10^{-3}$ | milli- | $m$ |

## Units are Useful: Dimensional Analysis

Considering the units or dimensions of each term on both sides of an equation can sometimes help spot faulty equations right away.

## Units are Useful: Dimensional Analysis

Considering the units or dimensions of each term on both sides of an equation can sometimes help spot faulty equations right away.

Which of the following equations are dimensionally correct?
(1) $v_{f}=v_{i}+a x$
(2) $y=(2 m) \cos (k x)$, where $k=2 m^{-1}$.
${ }^{1}$ Serway \& Jewett, Page 16, \# 9.

## Units are Useful: Dimensional Analysis

(1) Units of $v_{f}=v_{i}+a x$ :

$$
\left[\mathrm{ms}^{-1}\right]=\left[\mathrm{ms}^{-1}\right]+\left[\mathrm{ms}^{-2}\right] \times[\mathrm{m}]
$$

## Units are Useful: Dimensional Analysis

(1) Units of $v_{f}=v_{i}+a x$ :

$$
\begin{aligned}
{\left[\mathrm{ms}^{-1}\right] } & =\left[\mathrm{ms}^{-1}\right]+\left[\mathrm{ms}^{-2}\right] \times[\mathrm{m}] \\
{\left[\mathrm{ms}^{-1}\right] } & =\left[\mathrm{ms}^{-1}\right]+\left[\mathrm{m}^{2} \mathrm{~s}^{-2}\right]
\end{aligned}
$$

No. (1) is not dimensionally correct.

## Units are Useful: Dimensional Analysis

(2) Units of $y=(2 m) \cos (k x)$

$$
\begin{aligned}
{[\mathrm{m}] } & =[\mathrm{m}] \times \cos \left(\left[\mathrm{m}^{-1}\right] \times[\mathrm{m}]\right) \\
{[\mathrm{m}] } & =[\mathrm{m}]
\end{aligned}
$$

Yes. (2) is dimensionally correct.

## Kinematics: Motion in 1 Dimension

First we consider particles constrained to move only along a straight line, forwards or backwards.

## Vectors

```
scalar
A scalar quantity indicates an amount. It is represented by a real
number. (Assuming it is a physical quantity.)
```


## Vectors

## scalar

A scalar quantity indicates an amount. It is represented by a real number. (Assuming it is a physical quantity.)

## vector

A vector quantity indicates both an amount and a direction. It is represented by a real number for each possible direction, or a real number and (an) angles). (Assuming it is a physical quantity.)


## Notation for Vectors

In the lecture notes vectors are represented using bold variables or bold variables with over-arrows.

Example:
$k$ is a scalar
$\overrightarrow{\mathbf{x}}$ (or $\mathbf{x}$ ) is a vector
In the textbook and in writing, vectors are often represented with an over-arrow: $\overrightarrow{\mathbf{x}}$

The magnitude of a vector, $\overrightarrow{\boldsymbol{x}}$ is written:

$$
|\overrightarrow{\mathbf{x}}|=x
$$

## Position

## Some Quantities

$$
\begin{array}{clr}
\text { position } & \overrightarrow{\mathbf{r}} & \text { (component: } x \text { ) } \\
\text { displacement } & \overrightarrow{\Delta r} & \text { (component: } \Delta x \text { ) } \\
\text { distance } & d &
\end{array}
$$

Going between 2 points:
Distance is the length of a path that connects the two points.
Displacement is the length, together with the direction, of a straight line that connects the two points.

## Position

## Some Quantities

| position | $\overrightarrow{\boldsymbol{r}}$ | (component: $x$ ) |
| :---: | :--- | ---: |
| displacement | $\overrightarrow{\Delta r}$ | (component: $\Delta x$ ) |
| distance | $d$ |  |

Position and displacement are vector quantities.
Position and displacement can be positive or negative numbers.

Distance is a scalar. It is always a positive number.

## Position

## Some Quantities

| position | $\overrightarrow{\mathbf{r}}$ | (component: $x$ ) |
| :---: | :--- | ---: |
| displacement | $\overrightarrow{\Delta r}$ | (component: $\Delta x$ ) |
| distance | $d$ |  |

Position and displacement are vector quantities.
Position and displacement can be positive or negative numbers.

Distance is a scalar. It is always a positive number.

Units: meters, $m$

## Position vs. Time Graphs


${ }^{1}$ Figures from Serway \& Jewett

## Position vs. Time Graphs


${ }^{1}$ Figures from Serway \& Jewett

## Position vs. Time Graphs



${ }^{1}$ Figures from Serway \& Jewett

## Position vs. Time Graphs



${ }^{1}$ Figures from Serway \& Jewett

## Position vs. Time Graphs



${ }^{1}$ Figures from Serway \& Jewett

## Position vs. Time Graphs



${ }^{1}$ Figures from Serway \& Jewett

## Position vs. Time Graphs



${ }^{1}$ Figures from Serway \& Jewett

## Summary

- some quantities for describing motion: position $\overrightarrow{\mathbf{r}}$, velocity $\overrightarrow{\mathbf{v}}$, time $t$
- position, displacement, and velocity are vector quantities (have signs)
- distance and speed are scalar quantities (always positive)
- we can plot these quantities against time

Quiz Friday, start of class

## (Uncollected) Homework

Serway \& Jewett,

- Ch 1, onward from page 14. Problems: 9, 45, 57, 67, 71
- Ch 2, onward from page 49. Obj. Q: 1; CQ: Concep. Q: 1; Probs: 1, 3, 7, 11

