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Circular Motion - Now with Force
If an object moves in a uniform circle, its velocity must always be
changing. ⇒ It is accelerating.

#»

Fnet = m #»a ⇒ #»

Fnet 6= 0

Any object moving in a circular (or curved) path must be
experiencing a force.

The net force on an object that moves in a uniform circle is
directed to the center of the turn and is called a centripetal force.

152 Chapter 6 Circular Motion and Other Applications of Newton’s Laws

 

Example 6.1   The Conical Pendulum 

A small ball of mass m is suspended from a string of length L. The ball revolves 
with constant speed v in a horizontal circle of radius r as shown in Figure 6.3. 
(Because the string sweeps out the surface of a cone, the system is known as a 
conical pendulum.) Find an expression for v in terms of the geometry in Figure 6.3.

Conceptualize Imagine the motion of the ball in Figure 6.3a and convince your-
self that the string sweeps out a cone and that the ball moves in a horizontal circle.

Categorize The ball in Figure 6.3 does not accelerate vertically. Therefore, we 
model it as a particle in equilibrium in the vertical direction. It experiences a cen-
tripetal acceleration in the horizontal direction, so it is modeled as a particle in 
uniform circular motion in this direction.

Analyze Let u represent the angle between the string and the vertical. In the dia-
gram of forces acting on the ball in Figure 6.3b, the force T

S
 exerted by the string on the ball is resolved into a vertical 

component T cos u and a horizontal component T sin u acting toward the center of the circular path.

AM

S O L U T I O N

Apply the particle in equilibrium model in the vertical 
direction:

o Fy 5 T cos u 2 mg 5 0

(1)   T cos u 5 mg

Use Equation 6.1 from the particle in uniform circular 
motion model in the horizontal direction:

(2)   a  Fx 5 T sin u 5 mac 5
mv2

r

Divide Equation (2) by Equation (1) and use  
sin u/cos u 5 tan u:

tan u 5
v2

rg

Solve for v:  v 5 "rg tan u

Incorporate r 5 L sin u from the geometry in Figure 6.3a:  v 5  "Lg sin u tan u

Finalize Notice that the speed is independent of the mass of the ball. Consider what happens when u goes to 908 so 
that the string is horizontal. Because the tangent of 908 is infinite, the speed v is infinite, which tells us the string can-
not possibly be horizontal. If it were, there would be no vertical component of the force T

S
 to balance the gravitational 

force on the ball. That is why we mentioned in regard to Figure 6.1 that the puck’s weight in the figure is supported by 
a frictionless table.

Imagine a moving object that can be mod-
eled as a particle. If it moves in a circular 
path of radius r at a constant speed v, it 
experiences a centripetal acceleration.  
Because the particle is accelerating, there 
must be a net force acting on the particle. 
That force is directed toward the center of 
the circular path and is given by 

 a  F 5 mac 5 m 
v2

r
 (6.1)

Analysis Model   Particle in Uniform Circular Motion (Extension)

Examples

acting on a rock twirled in a circle

traveling around the Sun in a perfectly 
circular orbit (Chapter 13)

particle moving in a uniform magnetic field (Chapter 29)

nucleus in the Bohr model of the hydrogen atom (Chapter 42)
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Figure 6.3 (Example 6.1) (a) A 
conical pendulum. The path of the 
ball is a horizontal circle. (b) The 
forces acting on the ball.

1Figures from Serway & Jewett.
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Uniform Circular Motion

For an object moving in a uniform circle, a = ac = v2

r .

This gives the expression for the net force required:

#»

Fnet = m #»a

so,

Fnet =
mv2

r

As a vector:
#»

Fnet = −
mv2

r
r̂



Centripetal Force

Something must provide this force, which means at least one
component of at least on force must point towards the center of
the circle:  6.1 Extending the Particle in Uniform Circular Motion Model 151

The acceleration is called centripetal acceleration because aSc is directed toward 
the center of the circle. Furthermore, aSc is always perpendicular to vS. (If there 
were a component of acceleration parallel to vS, the particle’s speed would be 
changing.)
 Let us now extend the particle in uniform circular motion model from Section 
4.4 by incorporating the concept of force. Consider a puck of mass m that is tied 
to a string of length r and moves at constant speed in a horizontal, circular path 
as illustrated in Figure 6.1. Its weight is supported by a frictionless table, and the 
string is anchored to a peg at the center of the circular path of the puck. Why does 
the puck move in a circle? According to Newton’s first law, the puck would move 
in a straight line if there were no force on it; the string, however, prevents motion 
along a straight line by exerting on the puck a radial force F

S
r that makes it follow 

the circular path. This force is directed along the string toward the center of the 
circle as shown in Figure 6.1.
 If Newton’s second law is applied along the radial direction, the net force caus-
ing the centripetal acceleration can be related to the acceleration as follows:

 a  F 5 mac 5 m 
v2

r  (6.1)

A force causing a centripetal acceleration acts toward the center of the circular 
path and causes a change in the direction of the velocity vector. If that force 
should vanish, the object would no longer move in its circular path; instead, it 
would move along a straight-line path tangent to the circle. This idea is illustrated 
in Figure 6.2 for the puck moving in a circular path at the end of a string in a 
horizontal plane. If the string breaks at some instant, the puck moves along the 
straight-line path that is tangent to the circle at the position of the puck at this 
instant.

Q uick Quiz 6.1 You are riding on a Ferris wheel that is rotating with constant 
speed. The car in which you are riding always maintains its correct upward ori-
entation; it does not invert. (i) What is the direction of the normal force on you 
from the seat when you are at the top of the wheel? (a) upward (b) downward  
(c) impossible to determine (ii) From the same choices, what is the direction of 
the net force on you when you are at the top of the wheel?

�W Force causing centripetal  
acceleration

m

r

r
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A force F  , directed 
toward the center 
of the circle, keeps 
the puck moving 
in its circular path.
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Figure 6.1 An overhead view of a 
puck moving in a circular path in a 
horizontal plane.

Figure 6.2 The string holding the 
puck in its circular path breaks.

r

When the 
string breaks, 
the puck
moves in the
direction 
tangent
to the circle. 

vS

Pitfall Prevention 6.1
Direction of Travel When  
the String Is Cut Study Figure 
6.2 very carefully. Many students 
(wrongly) think that the puck will 
move radially away from the center 
of the circle when the string is cut. 
The velocity of the puck is tangent 
to the circle. By Newton’s first law, 
the puck continues to move in 
the same direction in which it is 
moving just as the force from the 
string disappears. 

It could be tension in a rope.



Centripetal Force

Something must provide this force, which means at least one
component of at least on force must point towards the center of
the circle: 

Example 6.2   How Fast Can It Spin? 

A puck of mass 0.500 kg is attached to the end of a cord 1.50 m long. The puck moves in a horizontal circle as shown in 
Figure 6.1. If the cord can withstand a maximum tension of 50.0 N, what is the maximum speed at which the puck can 
move before the cord breaks? Assume the string remains horizontal during the motion.

Conceptualize It makes sense that the stronger the cord, the faster the puck can move before the cord breaks. Also, we 
expect a more massive puck to break the cord at a lower speed. (Imagine whirling a bowling ball on the cord!)

Categorize Because the puck moves in a circular path, we model it as a particle in uniform circular motion.

AM

S O L U T I O N

Analyze Incorporate the tension and the centripetal acceler-
ation into Newton’s second law as described by Equation 6.1:

T 5 m 
v2

r
 

continued

Solve for v: (1)   v 5 ÅTr
m

  

Example 6.3   What Is the Maximum Speed of the Car? 

A 1 500-kg car moving on a flat, horizontal road negotiates a curve as shown 
in Figure 6.4a. If the radius of the curve is 35.0 m and the coefficient of static 
friction between the tires and dry pavement is 0.523, find the maximum speed 
the car can have and still make the turn successfully.

Conceptualize Imagine that the curved roadway is part of a large circle so 
that the car is moving in a circular path.

Categorize Based on the Conceptualize step of the problem, we model the car 
as a particle in uniform circular motion in the horizontal direction. The car is not 
accelerating vertically, so it is modeled as a particle in equilibrium in the vertical 
direction.

Analyze Figure 6.4b shows the forces on the car. The force that enables the 
car to remain in its circular path is the force of static friction. (It is static 
because no slipping occurs at the point of contact between road and tires. If 
this force of static friction were zero—for example, if the car were on an icy 
road—the car would continue in a straight line and slide off the curved road.) 
The maximum speed vmax the car can have around the curve is the speed at 
which it is on the verge of skidding outward. At this point, the friction force 
has its maximum value fs,max 5 msn.

AM

S O L U T I O N

Find the maximum speed the puck can have, which corre-
sponds to the maximum tension the string can withstand:

vmax 5 ÅTmaxr
m

5 Å 150.0 N 2 11.50 m 2
0.500 kg

5  12.2 m/s

Finalize Equation (1) shows that v increases with T and decreases with larger m, as we expected from our conceptual-
ization of the problem.

Suppose the puck moves in a circle of larger radius at the same speed v. Is the cord more likely or less 
likely to break?

Answer The larger radius means that the change in the direction of the velocity vector will be smaller in a given time 
interval. Therefore, the acceleration is smaller and the required tension in the string is smaller. As a result, the string 
is less likely to break when the puck travels in a circle of larger radius.

WHAT IF ?
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mgS 
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Figure 6.4 (Example 6.3) (a) The force 
of static friction directed toward the center 
of the curve keeps the car moving in a cir-
cular path. (b) The forces acting on the car.

 6.1 Extending the Particle in Uniform Circular Motion Model 153

It could be friction.



Centripetal Force

Consider the example of a string constraining the motion of a puck: 6.1 Extending the Particle in Uniform Circular Motion Model 151

The acceleration is called centripetal acceleration because aSc is directed toward 
the center of the circle. Furthermore, aSc is always perpendicular to vS. (If there 
were a component of acceleration parallel to vS, the particle’s speed would be 
changing.)
 Let us now extend the particle in uniform circular motion model from Section 
4.4 by incorporating the concept of force. Consider a puck of mass m that is tied 
to a string of length r and moves at constant speed in a horizontal, circular path 
as illustrated in Figure 6.1. Its weight is supported by a frictionless table, and the 
string is anchored to a peg at the center of the circular path of the puck. Why does 
the puck move in a circle? According to Newton’s first law, the puck would move 
in a straight line if there were no force on it; the string, however, prevents motion 
along a straight line by exerting on the puck a radial force F

S
r that makes it follow 

the circular path. This force is directed along the string toward the center of the 
circle as shown in Figure 6.1.
 If Newton’s second law is applied along the radial direction, the net force caus-
ing the centripetal acceleration can be related to the acceleration as follows:

 a  F 5 mac 5 m 
v2

r  (6.1)

A force causing a centripetal acceleration acts toward the center of the circular 
path and causes a change in the direction of the velocity vector. If that force 
should vanish, the object would no longer move in its circular path; instead, it 
would move along a straight-line path tangent to the circle. This idea is illustrated 
in Figure 6.2 for the puck moving in a circular path at the end of a string in a 
horizontal plane. If the string breaks at some instant, the puck moves along the 
straight-line path that is tangent to the circle at the position of the puck at this 
instant.
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Figure 6.1 An overhead view of a 
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Figure 6.2 The string holding the 
puck in its circular path breaks.
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Pitfall Prevention 6.1
Direction of Travel When  
the String Is Cut Study Figure 
6.2 very carefully. Many students 
(wrongly) think that the puck will 
move radially away from the center 
of the circle when the string is cut. 
The velocity of the puck is tangent 
to the circle. By Newton’s first law, 
the puck continues to move in 
the same direction in which it is 
moving just as the force from the 
string disappears. 



Centripetal Force

Question. What will the puck do if the string breaks?

(A) Fly radially outward.

(B) Continue along the circle.

(C) Move tangentially to the circle.
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UCM and Force Example
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 Problems 169

 10. A pail of water can be whirled in a vertical path such 
that no water is spilled. Why does the water stay in the 
pail, even when the pail is above your head?

 11. “If the current position and velocity of every par-
ticle in the Universe were known, together with the 
laws describing the forces that particles exert on one 
another, the whole future of the Universe could be cal-
culated. The future is determinate and preordained. 
Free will is an illusion.” Do you agree with this thesis? 
Argue for or against it.

Section 6.1 Extending the Particle in Uniform Circular 
Motion Model
 1. A light string can 

support a station-
ary hanging load 
of 25.0  kg before 
breaking. An object 
of mass m 5 3.00  kg 
attached to the string 
rotates on a friction-
less, horizontal table 
in a circle of radius 
r 5 0.800 m, and 
the other end of the 
string is held fixed 
as in Figure P6.1. What range of speeds can the object 
have before the string breaks?

 2. Whenever two Apollo astronauts were on the surface of 
the Moon, a third astronaut orbited the Moon. Assume 
the orbit to be circular and 100 km above the surface 
of the Moon, where the acceleration due to gravity is 
1.52 m/s2. The radius of the Moon is 1.70 3 106 m. 
Determine (a) the astronaut’s orbital speed and (b) the 
period of the orbit.

 3. In the Bohr model of the hydrogen atom, an electron 
moves in a circular path around a proton. The speed 
of the electron is approximately 2.20 3 106 m/s. Find 
(a) the force acting on the electron as it revolves in a 
circular orbit of radius 0.529 3 10210 m and (b) the 
centripetal acceleration of the electron.

 4. A curve in a road forms part of a horizontal circle. As a 
car goes around it at constant speed 14.0 m/s, the total 
horizontal force on the driver has magnitude 130 N. 
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What is the total horizontal force on the driver if the 
speed on the same curve is 18.0 m/s instead?

 5. In a cyclotron (one type of particle accelerator), a 
deuteron (of mass 2.00 u) reaches a final speed of 
10.0% of the speed of light while moving in a circular 
path of radius 0.480 m. What magnitude of magnetic 
force is required to maintain the deuteron in a circu-
lar path?

 6. A car initially traveling 
eastward turns north by 
traveling in a circular 
path at uniform speed 
as shown in Figure P6.6. 
The length of the arc 
ABC is 235 m, and the 
car completes the turn 
in 36.0 s. (a) What is the 
acceleration when the 
car is at B located at an 
angle of 35.08? Express 
your answer in terms of the unit vectors î and ĵ. Deter-
mine (b) the car’s average speed and (c) its average 
acceleration during the 36.0-s interval.

 7. A space station, in the form of a wheel 120 m in 
diameter, rotates to provide an “artificial gravity” of  
3.00 m/s2 for persons who walk around on the inner 
wall of the outer rim. Find the rate of the wheel’s 
rotation in revolutions per minute that will produce 
this effect.

 8. Consider a conical pendulum (Fig. P6.8) with a bob 
of mass m 5 80.0 kg on a string of length L 5 10.0 m 
that makes an angle of u 5 5.008 with the vertical. Deter-
mine (a) the horizontal and vertical components of the 
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space and used as colonies. The purpose of the rota-
tion is to simulate gravity for the inhabitants. Explain 
this concept for producing an effective imitation of 
gravity.

 8. Consider a small raindrop and a large raindrop fall-
ing through the atmosphere. (a) Compare their termi-
nal speeds. (b) What are their accelerations when they 
reach terminal speed?

 9. Why does a pilot tend to black out when pulling out of 
a steep dive?

Problems

 
The problems found in this  

 chapter may be assigned 
online in Enhanced WebAssign

1.  straightforward; 2. intermediate;  
3. challenging

1.   full solution available in the Student 
Solutions Manual/Study Guide

AMT   Analysis Model tutorial available in 
Enhanced WebAssign

 GP  Guided Problem

 M   Master It tutorial available in Enhanced 
WebAssign

 W   Watch It video solution available in 
Enhanced WebAssign

BIO

Q/C

S

r
m

Figure P6.1

 Problems 169

 10. A pail of water can be whirled in a vertical path such 
that no water is spilled. Why does the water stay in the 
pail, even when the pail is above your head?

 11. “If the current position and velocity of every par-
ticle in the Universe were known, together with the 
laws describing the forces that particles exert on one 
another, the whole future of the Universe could be cal-
culated. The future is determinate and preordained. 
Free will is an illusion.” Do you agree with this thesis? 
Argue for or against it.

Section 6.1 Extending the Particle in Uniform Circular 
Motion Model
 1. A light string can 

support a station-
ary hanging load 
of 25.0  kg before 
breaking. An object 
of mass m 5 3.00  kg 
attached to the string 
rotates on a friction-
less, horizontal table 
in a circle of radius 
r 5 0.800 m, and 
the other end of the 
string is held fixed 
as in Figure P6.1. What range of speeds can the object 
have before the string breaks?

 2. Whenever two Apollo astronauts were on the surface of 
the Moon, a third astronaut orbited the Moon. Assume 
the orbit to be circular and 100 km above the surface 
of the Moon, where the acceleration due to gravity is 
1.52 m/s2. The radius of the Moon is 1.70 3 106 m. 
Determine (a) the astronaut’s orbital speed and (b) the 
period of the orbit.

 3. In the Bohr model of the hydrogen atom, an electron 
moves in a circular path around a proton. The speed 
of the electron is approximately 2.20 3 106 m/s. Find 
(a) the force acting on the electron as it revolves in a 
circular orbit of radius 0.529 3 10210 m and (b) the 
centripetal acceleration of the electron.

 4. A curve in a road forms part of a horizontal circle. As a 
car goes around it at constant speed 14.0 m/s, the total 
horizontal force on the driver has magnitude 130 N. 
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What is the total horizontal force on the driver if the 
speed on the same curve is 18.0 m/s instead?

 5. In a cyclotron (one type of particle accelerator), a 
deuteron (of mass 2.00 u) reaches a final speed of 
10.0% of the speed of light while moving in a circular 
path of radius 0.480 m. What magnitude of magnetic 
force is required to maintain the deuteron in a circu-
lar path?

 6. A car initially traveling 
eastward turns north by 
traveling in a circular 
path at uniform speed 
as shown in Figure P6.6. 
The length of the arc 
ABC is 235 m, and the 
car completes the turn 
in 36.0 s. (a) What is the 
acceleration when the 
car is at B located at an 
angle of 35.08? Express 
your answer in terms of the unit vectors î and ĵ. Deter-
mine (b) the car’s average speed and (c) its average 
acceleration during the 36.0-s interval.

 7. A space station, in the form of a wheel 120 m in 
diameter, rotates to provide an “artificial gravity” of  
3.00 m/s2 for persons who walk around on the inner 
wall of the outer rim. Find the rate of the wheel’s 
rotation in revolutions per minute that will produce 
this effect.

 8. Consider a conical pendulum (Fig. P6.8) with a bob 
of mass m 5 80.0 kg on a string of length L 5 10.0 m 
that makes an angle of u 5 5.008 with the vertical. Deter-
mine (a) the horizontal and vertical components of the 
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space and used as colonies. The purpose of the rota-
tion is to simulate gravity for the inhabitants. Explain 
this concept for producing an effective imitation of 
gravity.

 8. Consider a small raindrop and a large raindrop fall-
ing through the atmosphere. (a) Compare their termi-
nal speeds. (b) What are their accelerations when they 
reach terminal speed?

 9. Why does a pilot tend to black out when pulling out of 
a steep dive?

Problems

 
The problems found in this  

 chapter may be assigned 
online in Enhanced WebAssign

1.  straightforward; 2. intermediate;  
3. challenging

1.   full solution available in the Student 
Solutions Manual/Study Guide

AMT   Analysis Model tutorial available in 
Enhanced WebAssign

 GP  Guided Problem

 M   Master It tutorial available in Enhanced 
WebAssign

 W   Watch It video solution available in 
Enhanced WebAssign

BIO

Q/C

S

r
m

Figure P6.1



UCM and Force Example

Page 169, # 4
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Ferris Wheel Forces

A Ferris wheel is a ride you tend to see at fairs and theme parks.
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 Figure 6.6 (Example 6.5) (a) A child rides on a Ferris wheel. 
(b) The forces acting on the child at the bottom of the path.  
(c) The forces acting on the child at the top of the path.

 6.1 Extending the Particle in Uniform Circular Motion Model 155

continued

Write Newton’s second law for the car in the radial direc-
tion, which is the x direction:

(1)   a  Fr 5 n sin u 5
mv 2

r

Apply the particle in equilibrium model to the car in the 
vertical direction:

 o Fy 5 n cos u 2 mg 5 0

(2)   n cos u 5 mg

Divide Equation (1) by Equation (2): (3)   tan u 5
v 2

rg

Solve for the angle u: u 5 tan21 c 113.4 m/s 22135.0 m 2 19.80 m/s2 2 d 5 27.68

Finalize Equation (3) shows that the banking angle is independent of the mass of the vehicle negotiating the curve. If a 
car rounds the curve at a speed less than 13.4 m/s, the centripetal acceleration decreases. Therefore, the normal force, 
which is unchanged, is sufficient to cause two accelerations: the lower centripetal acceleration and an acceleration of the 
car down the inclined roadway. Consequently, an additional friction force parallel to the roadway and upward is needed 
to keep the car from sliding down the bank (to the left in Fig. 6.5). Similarly, a driver attempting to negotiate the curve 
at a speed greater than 13.4 m/s has to depend on friction to keep from sliding up the bank (to the right in Fig. 6.5).

Imagine that this same roadway were built on Mars in the future to connect different colony centers. 
Could it be traveled at the same speed?

Answer The reduced gravitational force on Mars would mean that the car is not pressed as tightly to the roadway. The 
reduced normal force results in a smaller component of the normal force toward the center of the circle. This smaller 
component would not be sufficient to provide the centripetal acceleration associated with the original speed. The cen-
tripetal acceleration must be reduced, which can be done by reducing the speed v.
 Mathematically, notice that Equation (3) shows that the speed v is proportional to the square root of g for a roadway 
of fixed radius r banked at a fixed angle u. Therefore, if g is smaller, as it is on Mars, the speed v with which the roadway 
can be safely traveled is also smaller.

WHAT IF ?

normal force nS has a horizontal component toward the center of the curve. Because the road is to be designed so that 
the force of static friction is zero, the component nx 5 n sin u is the only force that causes the centripetal acceleration.

 

▸ 6.4 c o n t i n u e d

Example 6.5   Riding the Ferris Wheel 

A child of mass m rides on a Ferris wheel as shown 
in Figure 6.6a. The child moves in a vertical circle of 
radius 10.0 m at a constant speed of 3.00 m/s.

(A) Determine the force exerted by the seat on the 
child at the bottom of the ride. Express your answer in 
terms of the weight of the child, mg.

Conceptualize Look carefully at Figure 6.6a. Based 
on experiences you may have had on a Ferris wheel or 
driving over small hills on a roadway, you would expect 
to feel lighter at the top of the path. Similarly, you 
would expect to feel heavier at the bottom of the path. 
At both the bottom of the path and the top, the nor-
mal and gravitational forces on the child act in opposite 
directions. The vector sum of these two forces gives a 
force of constant magnitude that keeps the child moving in a circular path at a constant speed. To yield net force vec-
tors with the same magnitude, the normal force at the bottom must be greater than that at the top.
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During the ride the speed, v , is constant.



Ferris Wheel Forces

Quick Quiz 6.11 You are riding on a Ferris wheel that is rotating
with constant speed. The car in which you are riding always
maintains its correct upward orientation; it does not invert.

(i) What is the direction of the normal force on you from the seat
when you are at the top of the wheel?

(A) upward

(B) downward

(C) impossible to determine

1Page 153, Serway & Jewett
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Ferris Wheel Forces

Quick Quiz 6.11 You are riding on a Ferris wheel that is rotating
with constant speed. The car in which you are riding always
maintains its correct upward orientation; it does not invert.

(ii) From the same choices, what is the direction of the net force
on you when you are at the top of the wheel?

(A) upward

(B) downward
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Ferris Wheel Forces

Quick Quiz 6.11 You are riding on a Ferris wheel that is rotating
with constant speed. The car in which you are riding always
maintains its correct upward orientation; it does not invert.

(ii) From the same choices, what is the direction of the net force
on you when you are at the top of the wheel?

(A) upward

(B) downward ←
(C) impossible to determine
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Ferris Wheel
Assume the speed, v , is constant.
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 Figure 6.6 (Example 6.5) (a) A child rides on a Ferris wheel. 
(b) The forces acting on the child at the bottom of the path.  
(c) The forces acting on the child at the top of the path.

 6.1 Extending the Particle in Uniform Circular Motion Model 155

continued

Write Newton’s second law for the car in the radial direc-
tion, which is the x direction:

(1)   a  Fr 5 n sin u 5
mv 2

r

Apply the particle in equilibrium model to the car in the 
vertical direction:

 o Fy 5 n cos u 2 mg 5 0

(2)   n cos u 5 mg

Divide Equation (1) by Equation (2): (3)   tan u 5
v 2

rg

Solve for the angle u: u 5 tan21 c 113.4 m/s 22135.0 m 2 19.80 m/s2 2 d 5 27.68

Finalize Equation (3) shows that the banking angle is independent of the mass of the vehicle negotiating the curve. If a 
car rounds the curve at a speed less than 13.4 m/s, the centripetal acceleration decreases. Therefore, the normal force, 
which is unchanged, is sufficient to cause two accelerations: the lower centripetal acceleration and an acceleration of the 
car down the inclined roadway. Consequently, an additional friction force parallel to the roadway and upward is needed 
to keep the car from sliding down the bank (to the left in Fig. 6.5). Similarly, a driver attempting to negotiate the curve 
at a speed greater than 13.4 m/s has to depend on friction to keep from sliding up the bank (to the right in Fig. 6.5).

Imagine that this same roadway were built on Mars in the future to connect different colony centers. 
Could it be traveled at the same speed?

Answer The reduced gravitational force on Mars would mean that the car is not pressed as tightly to the roadway. The 
reduced normal force results in a smaller component of the normal force toward the center of the circle. This smaller 
component would not be sufficient to provide the centripetal acceleration associated with the original speed. The cen-
tripetal acceleration must be reduced, which can be done by reducing the speed v.
 Mathematically, notice that Equation (3) shows that the speed v is proportional to the square root of g for a roadway 
of fixed radius r banked at a fixed angle u. Therefore, if g is smaller, as it is on Mars, the speed v with which the roadway 
can be safely traveled is also smaller.

WHAT IF ?

normal force nS has a horizontal component toward the center of the curve. Because the road is to be designed so that 
the force of static friction is zero, the component nx 5 n sin u is the only force that causes the centripetal acceleration.

 

▸ 6.4 c o n t i n u e d

Example 6.5   Riding the Ferris Wheel 

A child of mass m rides on a Ferris wheel as shown 
in Figure 6.6a. The child moves in a vertical circle of 
radius 10.0 m at a constant speed of 3.00 m/s.

(A) Determine the force exerted by the seat on the 
child at the bottom of the ride. Express your answer in 
terms of the weight of the child, mg.

Conceptualize Look carefully at Figure 6.6a. Based 
on experiences you may have had on a Ferris wheel or 
driving over small hills on a roadway, you would expect 
to feel lighter at the top of the path. Similarly, you 
would expect to feel heavier at the bottom of the path. 
At both the bottom of the path and the top, the nor-
mal and gravitational forces on the child act in opposite 
directions. The vector sum of these two forces gives a 
force of constant magnitude that keeps the child moving in a circular path at a constant speed. To yield net force vec-
tors with the same magnitude, the normal force at the bottom must be greater than that at the top.
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 Figure 6.6 (Example 6.5) (a) A child rides on a Ferris wheel. 
(b) The forces acting on the child at the bottom of the path.  
(c) The forces acting on the child at the top of the path.

 6.1 Extending the Particle in Uniform Circular Motion Model 155

continued

Write Newton’s second law for the car in the radial direc-
tion, which is the x direction:

(1)   a  Fr 5 n sin u 5
mv 2

r

Apply the particle in equilibrium model to the car in the 
vertical direction:

 o Fy 5 n cos u 2 mg 5 0

(2)   n cos u 5 mg

Divide Equation (1) by Equation (2): (3)   tan u 5
v 2

rg

Solve for the angle u: u 5 tan21 c 113.4 m/s 22135.0 m 2 19.80 m/s2 2 d 5 27.68

Finalize Equation (3) shows that the banking angle is independent of the mass of the vehicle negotiating the curve. If a 
car rounds the curve at a speed less than 13.4 m/s, the centripetal acceleration decreases. Therefore, the normal force, 
which is unchanged, is sufficient to cause two accelerations: the lower centripetal acceleration and an acceleration of the 
car down the inclined roadway. Consequently, an additional friction force parallel to the roadway and upward is needed 
to keep the car from sliding down the bank (to the left in Fig. 6.5). Similarly, a driver attempting to negotiate the curve 
at a speed greater than 13.4 m/s has to depend on friction to keep from sliding up the bank (to the right in Fig. 6.5).

Imagine that this same roadway were built on Mars in the future to connect different colony centers. 
Could it be traveled at the same speed?

Answer The reduced gravitational force on Mars would mean that the car is not pressed as tightly to the roadway. The 
reduced normal force results in a smaller component of the normal force toward the center of the circle. This smaller 
component would not be sufficient to provide the centripetal acceleration associated with the original speed. The cen-
tripetal acceleration must be reduced, which can be done by reducing the speed v.
 Mathematically, notice that Equation (3) shows that the speed v is proportional to the square root of g for a roadway 
of fixed radius r banked at a fixed angle u. Therefore, if g is smaller, as it is on Mars, the speed v with which the roadway 
can be safely traveled is also smaller.

WHAT IF ?

normal force nS has a horizontal component toward the center of the curve. Because the road is to be designed so that 
the force of static friction is zero, the component nx 5 n sin u is the only force that causes the centripetal acceleration.

 

▸ 6.4 c o n t i n u e d

Example 6.5   Riding the Ferris Wheel 

A child of mass m rides on a Ferris wheel as shown 
in Figure 6.6a. The child moves in a vertical circle of 
radius 10.0 m at a constant speed of 3.00 m/s.

(A) Determine the force exerted by the seat on the 
child at the bottom of the ride. Express your answer in 
terms of the weight of the child, mg.

Conceptualize Look carefully at Figure 6.6a. Based 
on experiences you may have had on a Ferris wheel or 
driving over small hills on a roadway, you would expect 
to feel lighter at the top of the path. Similarly, you 
would expect to feel heavier at the bottom of the path. 
At both the bottom of the path and the top, the nor-
mal and gravitational forces on the child act in opposite 
directions. The vector sum of these two forces gives a 
force of constant magnitude that keeps the child moving in a circular path at a constant speed. To yield net force vec-
tors with the same magnitude, the normal force at the bottom must be greater than that at the top.
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 Figure 6.6 (Example 6.5) (a) A child rides on a Ferris wheel. 
(b) The forces acting on the child at the bottom of the path.  
(c) The forces acting on the child at the top of the path.

 6.1 Extending the Particle in Uniform Circular Motion Model 155

continued

Write Newton’s second law for the car in the radial direc-
tion, which is the x direction:

(1)   a  Fr 5 n sin u 5
mv 2

r

Apply the particle in equilibrium model to the car in the 
vertical direction:

 o Fy 5 n cos u 2 mg 5 0

(2)   n cos u 5 mg

Divide Equation (1) by Equation (2): (3)   tan u 5
v 2

rg

Solve for the angle u: u 5 tan21 c 113.4 m/s 22135.0 m 2 19.80 m/s2 2 d 5 27.68

Finalize Equation (3) shows that the banking angle is independent of the mass of the vehicle negotiating the curve. If a 
car rounds the curve at a speed less than 13.4 m/s, the centripetal acceleration decreases. Therefore, the normal force, 
which is unchanged, is sufficient to cause two accelerations: the lower centripetal acceleration and an acceleration of the 
car down the inclined roadway. Consequently, an additional friction force parallel to the roadway and upward is needed 
to keep the car from sliding down the bank (to the left in Fig. 6.5). Similarly, a driver attempting to negotiate the curve 
at a speed greater than 13.4 m/s has to depend on friction to keep from sliding up the bank (to the right in Fig. 6.5).

Imagine that this same roadway were built on Mars in the future to connect different colony centers. 
Could it be traveled at the same speed?

Answer The reduced gravitational force on Mars would mean that the car is not pressed as tightly to the roadway. The 
reduced normal force results in a smaller component of the normal force toward the center of the circle. This smaller 
component would not be sufficient to provide the centripetal acceleration associated with the original speed. The cen-
tripetal acceleration must be reduced, which can be done by reducing the speed v.
 Mathematically, notice that Equation (3) shows that the speed v is proportional to the square root of g for a roadway 
of fixed radius r banked at a fixed angle u. Therefore, if g is smaller, as it is on Mars, the speed v with which the roadway 
can be safely traveled is also smaller.

WHAT IF ?

normal force nS has a horizontal component toward the center of the curve. Because the road is to be designed so that 
the force of static friction is zero, the component nx 5 n sin u is the only force that causes the centripetal acceleration.

 

▸ 6.4 c o n t i n u e d

Example 6.5   Riding the Ferris Wheel 

A child of mass m rides on a Ferris wheel as shown 
in Figure 6.6a. The child moves in a vertical circle of 
radius 10.0 m at a constant speed of 3.00 m/s.

(A) Determine the force exerted by the seat on the 
child at the bottom of the ride. Express your answer in 
terms of the weight of the child, mg.

Conceptualize Look carefully at Figure 6.6a. Based 
on experiences you may have had on a Ferris wheel or 
driving over small hills on a roadway, you would expect 
to feel lighter at the top of the path. Similarly, you 
would expect to feel heavier at the bottom of the path. 
At both the bottom of the path and the top, the nor-
mal and gravitational forces on the child act in opposite 
directions. The vector sum of these two forces gives a 
force of constant magnitude that keeps the child moving in a circular path at a constant speed. To yield net force vec-
tors with the same magnitude, the normal force at the bottom must be greater than that at the top.
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A Banked Turn

Sharp turns in roads are often banked inwards to assist cars in
making the turn: the centripetal force comes from the normal
force, not friction.

154 Chapter 6 Circular Motion and Other Applications of Newton’s Laws

Finalize This speed is equivalent to 30.0 mi/h. Therefore, if the speed limit on this roadway is higher than 30 mi/h, 
this roadway could benefit greatly from some banking, as in the next example! Notice that the maximum speed does 
not depend on the mass of the car, which is why curved highways do not need multiple speed limits to cover the various 
masses of vehicles using the road.

Suppose a car travels this curve on a wet day and begins to skid on the curve when its speed reaches only 
8.00 m/s. What can we say about the coefficient of static friction in this case?

Answer The coefficient of static friction between the tires and a wet road should be smaller than that between the 
tires and a dry road. This expectation is consistent with experience with driving because a skid is more likely on a wet 
road than a dry road.
 To check our suspicion, we can solve Equation (2) for the coefficient of static friction:

ms 5
v2

max

gr

Substituting the numerical values gives

ms 5
v2

max

gr
5

18.00 m/s 2219.80 m/s2 2 135.0 m 2 5 0.187

which is indeed smaller than the coefficient of 0.523 for the dry road.

WHAT IF ?

Example 6.4   The Banked Roadway 

A civil engineer wishes to redesign the curved roadway in Example 6.3 in such a way 
that a car will not have to rely on friction to round the curve without skidding. In 
other words, a car moving at the designated speed can negotiate the curve even when 
the road is covered with ice. Such a road is usually banked, which means that the road-
way is tilted toward the inside of the curve as seen in the opening photograph for this 
chapter. Suppose the designated speed for the road is to be 13.4 m/s (30.0 mi/h) and 
the radius of the curve is 35.0 m. At what angle should the curve be banked?

Conceptualize The difference between this example and Example 6.3 is that the 
car is no longer moving on a flat roadway. Figure 6.5 shows the banked roadway, 
with the center of the circular path of the car far to the left of the figure. Notice 
that the horizontal component of the normal force participates in causing the car’s 
centripetal acceleration.

Categorize As in Example 6.3, the car is modeled as a particle in equilibrium in 
the vertical direction and a particle in uniform circular motion in the horizontal 
direction.

Analyze On a level (unbanked) road, the force that causes the centripetal accelera-
tion is the force of static friction between tires and the road as we saw in the pre-
ceding example. If the road is banked at an angle u as in Figure 6.5, however, the 
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Figure 6.5 (Example 6.4) A car 
moves into the page and is round-
ing a curve on a road banked at an 
angle u to the horizontal. When 
friction is neglected, the force that 
causes the centripetal accelera-
tion and keeps the car moving in 
its circular path is the horizontal 
component of the normal force.
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▸ 6.3 c o n t i n u e d

Apply Equation 6.1 from the particle in uniform circular motion 
model in the radial direction for the maximum speed condition:

(1)   fs,max 5 msn 5 m 
v 2

max

r

Apply the particle in equilibrium model to the car in the verti-
cal direction:

o Fy 5 0  S  n 2 mg 5 0  S  n 5 mg

Solve Equation (1) for the maximum speed and substitute for n: (2)   vmax 5 Åmsnr
m

5 Åmsmgr
m

5 "ms gr

Substitute numerical values: vmax 5 "10.523 2 19.80 m/s2 2 135.0 m 2 5 13.4 m/s

←



A Banked Turn

A turn has a radius r . What should the angle θ be so that a car
traveling at speed v can turn the corner without relying on friction?
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Finalize This speed is equivalent to 30.0 mi/h. Therefore, if the speed limit on this roadway is higher than 30 mi/h, 
this roadway could benefit greatly from some banking, as in the next example! Notice that the maximum speed does 
not depend on the mass of the car, which is why curved highways do not need multiple speed limits to cover the various 
masses of vehicles using the road.

Suppose a car travels this curve on a wet day and begins to skid on the curve when its speed reaches only 
8.00 m/s. What can we say about the coefficient of static friction in this case?

Answer The coefficient of static friction between the tires and a wet road should be smaller than that between the 
tires and a dry road. This expectation is consistent with experience with driving because a skid is more likely on a wet 
road than a dry road.
 To check our suspicion, we can solve Equation (2) for the coefficient of static friction:

ms 5
v2

max

gr

Substituting the numerical values gives

ms 5
v2

max

gr
5

18.00 m/s 2219.80 m/s2 2 135.0 m 2 5 0.187

which is indeed smaller than the coefficient of 0.523 for the dry road.

WHAT IF ?

Example 6.4   The Banked Roadway 

A civil engineer wishes to redesign the curved roadway in Example 6.3 in such a way 
that a car will not have to rely on friction to round the curve without skidding. In 
other words, a car moving at the designated speed can negotiate the curve even when 
the road is covered with ice. Such a road is usually banked, which means that the road-
way is tilted toward the inside of the curve as seen in the opening photograph for this 
chapter. Suppose the designated speed for the road is to be 13.4 m/s (30.0 mi/h) and 
the radius of the curve is 35.0 m. At what angle should the curve be banked?

Conceptualize The difference between this example and Example 6.3 is that the 
car is no longer moving on a flat roadway. Figure 6.5 shows the banked roadway, 
with the center of the circular path of the car far to the left of the figure. Notice 
that the horizontal component of the normal force participates in causing the car’s 
centripetal acceleration.

Categorize As in Example 6.3, the car is modeled as a particle in equilibrium in 
the vertical direction and a particle in uniform circular motion in the horizontal 
direction.

Analyze On a level (unbanked) road, the force that causes the centripetal accelera-
tion is the force of static friction between tires and the road as we saw in the pre-
ceding example. If the road is banked at an angle u as in Figure 6.5, however, the 
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Figure 6.5 (Example 6.4) A car 
moves into the page and is round-
ing a curve on a road banked at an 
angle u to the horizontal. When 
friction is neglected, the force that 
causes the centripetal accelera-
tion and keeps the car moving in 
its circular path is the horizontal 
component of the normal force.
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▸ 6.3 c o n t i n u e d

Apply Equation 6.1 from the particle in uniform circular motion 
model in the radial direction for the maximum speed condition:

(1)   fs,max 5 msn 5 m 
v 2

max

r

Apply the particle in equilibrium model to the car in the verti-
cal direction:

o Fy 5 0  S  n 2 mg 5 0  S  n 5 mg

Solve Equation (1) for the maximum speed and substitute for n: (2)   vmax 5 Åmsnr
m

5 Åmsmgr
m

5 "ms gr

Substitute numerical values: vmax 5 "10.523 2 19.80 m/s2 2 135.0 m 2 5 13.4 m/s

Hint: consider what the net force vector must be in this case.
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Finalize This speed is equivalent to 30.0 mi/h. Therefore, if the speed limit on this roadway is higher than 30 mi/h, 
this roadway could benefit greatly from some banking, as in the next example! Notice that the maximum speed does 
not depend on the mass of the car, which is why curved highways do not need multiple speed limits to cover the various 
masses of vehicles using the road.

Suppose a car travels this curve on a wet day and begins to skid on the curve when its speed reaches only 
8.00 m/s. What can we say about the coefficient of static friction in this case?

Answer The coefficient of static friction between the tires and a wet road should be smaller than that between the 
tires and a dry road. This expectation is consistent with experience with driving because a skid is more likely on a wet 
road than a dry road.
 To check our suspicion, we can solve Equation (2) for the coefficient of static friction:
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18.00 m/s 2219.80 m/s2 2 135.0 m 2 5 0.187

which is indeed smaller than the coefficient of 0.523 for the dry road.

WHAT IF ?

Example 6.4   The Banked Roadway 

A civil engineer wishes to redesign the curved roadway in Example 6.3 in such a way 
that a car will not have to rely on friction to round the curve without skidding. In 
other words, a car moving at the designated speed can negotiate the curve even when 
the road is covered with ice. Such a road is usually banked, which means that the road-
way is tilted toward the inside of the curve as seen in the opening photograph for this 
chapter. Suppose the designated speed for the road is to be 13.4 m/s (30.0 mi/h) and 
the radius of the curve is 35.0 m. At what angle should the curve be banked?

Conceptualize The difference between this example and Example 6.3 is that the 
car is no longer moving on a flat roadway. Figure 6.5 shows the banked roadway, 
with the center of the circular path of the car far to the left of the figure. Notice 
that the horizontal component of the normal force participates in causing the car’s 
centripetal acceleration.

Categorize As in Example 6.3, the car is modeled as a particle in equilibrium in 
the vertical direction and a particle in uniform circular motion in the horizontal 
direction.

Analyze On a level (unbanked) road, the force that causes the centripetal accelera-
tion is the force of static friction between tires and the road as we saw in the pre-
ceding example. If the road is banked at an angle u as in Figure 6.5, however, the 
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Finalize This speed is equivalent to 30.0 mi/h. Therefore, if the speed limit on this roadway is higher than 30 mi/h, 
this roadway could benefit greatly from some banking, as in the next example! Notice that the maximum speed does 
not depend on the mass of the car, which is why curved highways do not need multiple speed limits to cover the various 
masses of vehicles using the road.

Suppose a car travels this curve on a wet day and begins to skid on the curve when its speed reaches only 
8.00 m/s. What can we say about the coefficient of static friction in this case?

Answer The coefficient of static friction between the tires and a wet road should be smaller than that between the 
tires and a dry road. This expectation is consistent with experience with driving because a skid is more likely on a wet 
road than a dry road.
 To check our suspicion, we can solve Equation (2) for the coefficient of static friction:
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Substituting the numerical values gives

ms 5
v2

max

gr
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18.00 m/s 2219.80 m/s2 2 135.0 m 2 5 0.187

which is indeed smaller than the coefficient of 0.523 for the dry road.

WHAT IF ?

Example 6.4   The Banked Roadway 

A civil engineer wishes to redesign the curved roadway in Example 6.3 in such a way 
that a car will not have to rely on friction to round the curve without skidding. In 
other words, a car moving at the designated speed can negotiate the curve even when 
the road is covered with ice. Such a road is usually banked, which means that the road-
way is tilted toward the inside of the curve as seen in the opening photograph for this 
chapter. Suppose the designated speed for the road is to be 13.4 m/s (30.0 mi/h) and 
the radius of the curve is 35.0 m. At what angle should the curve be banked?

Conceptualize The difference between this example and Example 6.3 is that the 
car is no longer moving on a flat roadway. Figure 6.5 shows the banked roadway, 
with the center of the circular path of the car far to the left of the figure. Notice 
that the horizontal component of the normal force participates in causing the car’s 
centripetal acceleration.

Categorize As in Example 6.3, the car is modeled as a particle in equilibrium in 
the vertical direction and a particle in uniform circular motion in the horizontal 
direction.

Analyze On a level (unbanked) road, the force that causes the centripetal accelera-
tion is the force of static friction between tires and the road as we saw in the pre-
ceding example. If the road is banked at an angle u as in Figure 6.5, however, the 
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Apply Equation 6.1 from the particle in uniform circular motion 
model in the radial direction for the maximum speed condition:
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Apply the particle in equilibrium model to the car in the verti-
cal direction:
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Finalize This speed is equivalent to 30.0 mi/h. Therefore, if the speed limit on this roadway is higher than 30 mi/h, 
this roadway could benefit greatly from some banking, as in the next example! Notice that the maximum speed does 
not depend on the mass of the car, which is why curved highways do not need multiple speed limits to cover the various 
masses of vehicles using the road.

Suppose a car travels this curve on a wet day and begins to skid on the curve when its speed reaches only 
8.00 m/s. What can we say about the coefficient of static friction in this case?

Answer The coefficient of static friction between the tires and a wet road should be smaller than that between the 
tires and a dry road. This expectation is consistent with experience with driving because a skid is more likely on a wet 
road than a dry road.
 To check our suspicion, we can solve Equation (2) for the coefficient of static friction:

ms 5
v2

max

gr

Substituting the numerical values gives
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max
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18.00 m/s 2219.80 m/s2 2 135.0 m 2 5 0.187

which is indeed smaller than the coefficient of 0.523 for the dry road.

WHAT IF ?

Example 6.4   The Banked Roadway 

A civil engineer wishes to redesign the curved roadway in Example 6.3 in such a way 
that a car will not have to rely on friction to round the curve without skidding. In 
other words, a car moving at the designated speed can negotiate the curve even when 
the road is covered with ice. Such a road is usually banked, which means that the road-
way is tilted toward the inside of the curve as seen in the opening photograph for this 
chapter. Suppose the designated speed for the road is to be 13.4 m/s (30.0 mi/h) and 
the radius of the curve is 35.0 m. At what angle should the curve be banked?

Conceptualize The difference between this example and Example 6.3 is that the 
car is no longer moving on a flat roadway. Figure 6.5 shows the banked roadway, 
with the center of the circular path of the car far to the left of the figure. Notice 
that the horizontal component of the normal force participates in causing the car’s 
centripetal acceleration.

Categorize As in Example 6.3, the car is modeled as a particle in equilibrium in 
the vertical direction and a particle in uniform circular motion in the horizontal 
direction.

Analyze On a level (unbanked) road, the force that causes the centripetal accelera-
tion is the force of static friction between tires and the road as we saw in the pre-
ceding example. If the road is banked at an angle u as in Figure 6.5, however, the 
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Apply Equation 6.1 from the particle in uniform circular motion 
model in the radial direction for the maximum speed condition:
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Apply the particle in equilibrium model to the car in the verti-
cal direction:

o Fy 5 0  S  n 2 mg 5 0  S  n 5 mg

Solve Equation (1) for the maximum speed and substitute for n: (2)   vmax 5 Åmsnr
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Finalize This speed is equivalent to 30.0 mi/h. Therefore, if the speed limit on this roadway is higher than 30 mi/h, 
this roadway could benefit greatly from some banking, as in the next example! Notice that the maximum speed does 
not depend on the mass of the car, which is why curved highways do not need multiple speed limits to cover the various 
masses of vehicles using the road.

Suppose a car travels this curve on a wet day and begins to skid on the curve when its speed reaches only 
8.00 m/s. What can we say about the coefficient of static friction in this case?

Answer The coefficient of static friction between the tires and a wet road should be smaller than that between the 
tires and a dry road. This expectation is consistent with experience with driving because a skid is more likely on a wet 
road than a dry road.
 To check our suspicion, we can solve Equation (2) for the coefficient of static friction:
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max

gr

Substituting the numerical values gives

ms 5
v2

max

gr
5

18.00 m/s 2219.80 m/s2 2 135.0 m 2 5 0.187

which is indeed smaller than the coefficient of 0.523 for the dry road.

WHAT IF ?

Example 6.4   The Banked Roadway 

A civil engineer wishes to redesign the curved roadway in Example 6.3 in such a way 
that a car will not have to rely on friction to round the curve without skidding. In 
other words, a car moving at the designated speed can negotiate the curve even when 
the road is covered with ice. Such a road is usually banked, which means that the road-
way is tilted toward the inside of the curve as seen in the opening photograph for this 
chapter. Suppose the designated speed for the road is to be 13.4 m/s (30.0 mi/h) and 
the radius of the curve is 35.0 m. At what angle should the curve be banked?

Conceptualize The difference between this example and Example 6.3 is that the 
car is no longer moving on a flat roadway. Figure 6.5 shows the banked roadway, 
with the center of the circular path of the car far to the left of the figure. Notice 
that the horizontal component of the normal force participates in causing the car’s 
centripetal acceleration.

Categorize As in Example 6.3, the car is modeled as a particle in equilibrium in 
the vertical direction and a particle in uniform circular motion in the horizontal 
direction.

Analyze On a level (unbanked) road, the force that causes the centripetal accelera-
tion is the force of static friction between tires and the road as we saw in the pre-
ceding example. If the road is banked at an angle u as in Figure 6.5, however, the 
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Apply Equation 6.1 from the particle in uniform circular motion 
model in the radial direction for the maximum speed condition:
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Apply the particle in equilibrium model to the car in the verti-
cal direction:

o Fy 5 0  S  n 2 mg 5 0  S  n 5 mg

Solve Equation (1) for the maximum speed and substitute for n: (2)   vmax 5 Åmsnr
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Finalize This speed is equivalent to 30.0 mi/h. Therefore, if the speed limit on this roadway is higher than 30 mi/h, 
this roadway could benefit greatly from some banking, as in the next example! Notice that the maximum speed does 
not depend on the mass of the car, which is why curved highways do not need multiple speed limits to cover the various 
masses of vehicles using the road.

Suppose a car travels this curve on a wet day and begins to skid on the curve when its speed reaches only 
8.00 m/s. What can we say about the coefficient of static friction in this case?

Answer The coefficient of static friction between the tires and a wet road should be smaller than that between the 
tires and a dry road. This expectation is consistent with experience with driving because a skid is more likely on a wet 
road than a dry road.
 To check our suspicion, we can solve Equation (2) for the coefficient of static friction:
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Substituting the numerical values gives
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max
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5

18.00 m/s 2219.80 m/s2 2 135.0 m 2 5 0.187

which is indeed smaller than the coefficient of 0.523 for the dry road.

WHAT IF ?

Example 6.4   The Banked Roadway 

A civil engineer wishes to redesign the curved roadway in Example 6.3 in such a way 
that a car will not have to rely on friction to round the curve without skidding. In 
other words, a car moving at the designated speed can negotiate the curve even when 
the road is covered with ice. Such a road is usually banked, which means that the road-
way is tilted toward the inside of the curve as seen in the opening photograph for this 
chapter. Suppose the designated speed for the road is to be 13.4 m/s (30.0 mi/h) and 
the radius of the curve is 35.0 m. At what angle should the curve be banked?

Conceptualize The difference between this example and Example 6.3 is that the 
car is no longer moving on a flat roadway. Figure 6.5 shows the banked roadway, 
with the center of the circular path of the car far to the left of the figure. Notice 
that the horizontal component of the normal force participates in causing the car’s 
centripetal acceleration.

Categorize As in Example 6.3, the car is modeled as a particle in equilibrium in 
the vertical direction and a particle in uniform circular motion in the horizontal 
direction.

Analyze On a level (unbanked) road, the force that causes the centripetal accelera-
tion is the force of static friction between tires and the road as we saw in the pre-
ceding example. If the road is banked at an angle u as in Figure 6.5, however, the 

AM

S O L U T I O N

Figure 6.5 (Example 6.4) A car 
moves into the page and is round-
ing a curve on a road banked at an 
angle u to the horizontal. When 
friction is neglected, the force that 
causes the centripetal accelera-
tion and keeps the car moving in 
its circular path is the horizontal 
component of the normal force.

nx

ny

u

u

Fg
S

nS

 

▸ 6.3 c o n t i n u e d

Apply Equation 6.1 from the particle in uniform circular motion 
model in the radial direction for the maximum speed condition:

(1)   fs,max 5 msn 5 m 
v 2

max
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Apply the particle in equilibrium model to the car in the verti-
cal direction:

o Fy 5 0  S  n 2 mg 5 0  S  n 5 mg

Solve Equation (1) for the maximum speed and substitute for n: (2)   vmax 5 Åmsnr
m

5 Åmsmgr
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5 "ms gr

Substitute numerical values: vmax 5 "10.523 2 19.80 m/s2 2 135.0 m 2 5 13.4 m/s
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Conical pendulum

In a “conical pendulum” the bob moves in a horizontal circle at
the end of a string. The string traces out a cone shape.

152 Chapter 6 Circular Motion and Other Applications of Newton’s Laws

 

Example 6.1   The Conical Pendulum 

A small ball of mass m is suspended from a string of length L. The ball revolves 
with constant speed v in a horizontal circle of radius r as shown in Figure 6.3. 
(Because the string sweeps out the surface of a cone, the system is known as a 
conical pendulum.) Find an expression for v in terms of the geometry in Figure 6.3.

Conceptualize Imagine the motion of the ball in Figure 6.3a and convince your-
self that the string sweeps out a cone and that the ball moves in a horizontal circle.

Categorize The ball in Figure 6.3 does not accelerate vertically. Therefore, we 
model it as a particle in equilibrium in the vertical direction. It experiences a cen-
tripetal acceleration in the horizontal direction, so it is modeled as a particle in 
uniform circular motion in this direction.

Analyze Let u represent the angle between the string and the vertical. In the dia-
gram of forces acting on the ball in Figure 6.3b, the force T

S
 exerted by the string on the ball is resolved into a vertical 

component T cos u and a horizontal component T sin u acting toward the center of the circular path.
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Apply the particle in equilibrium model in the vertical 
direction:

o Fy 5 T cos u 2 mg 5 0

(1)   T cos u 5 mg

Use Equation 6.1 from the particle in uniform circular 
motion model in the horizontal direction:

(2)   a  Fx 5 T sin u 5 mac 5
mv2

r

Divide Equation (2) by Equation (1) and use  
sin u/cos u 5 tan u:

tan u 5
v2

rg

Solve for v:  v 5 "rg tan u

Incorporate r 5 L sin u from the geometry in Figure 6.3a:  v 5  "Lg sin u tan u

Finalize Notice that the speed is independent of the mass of the ball. Consider what happens when u goes to 908 so 
that the string is horizontal. Because the tangent of 908 is infinite, the speed v is infinite, which tells us the string can-
not possibly be horizontal. If it were, there would be no vertical component of the force T

S
 to balance the gravitational 

force on the ball. That is why we mentioned in regard to Figure 6.1 that the puck’s weight in the figure is supported by 
a frictionless table.

Imagine a moving object that can be mod-
eled as a particle. If it moves in a circular 
path of radius r at a constant speed v, it 
experiences a centripetal acceleration.  
Because the particle is accelerating, there 
must be a net force acting on the particle. 
That force is directed toward the center of 
the circular path and is given by 

 a  F 5 mac 5 m 
v2

r
 (6.1)

Analysis Model   Particle in Uniform Circular Motion (Extension)

Examples

acting on a rock twirled in a circle

traveling around the Sun in a perfectly 
circular orbit (Chapter 13)

particle moving in a uniform magnetic field (Chapter 29)

nucleus in the Bohr model of the hydrogen atom (Chapter 42)
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a b

Figure 6.3 (Example 6.1) (a) A 
conical pendulum. The path of the 
ball is a horizontal circle. (b) The 
forces acting on the ball.

Look at the force diagram, and think about which way the
acceleration vector points.

Does this situation look familiar?

1Serway & Jewett, page 152.



Summary

• Uniform circular motion with forces

• Banked turns
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