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Resistive Forces

Galileo predicted (correctly) that all objects at the Earth’s surface
accelerate at the same rate, g .

This was a revolutionary idea because it seems obvious that less
massive objects should fall more slowly: consider a feather and a
bowling ball.

What is happening there?

Air resistance can play a big role in determining an object’s motion.



Resistive Forces

Galileo predicted (correctly) that all objects at the Earth’s surface
accelerate at the same rate, g .

This was a revolutionary idea because it seems obvious that less
massive objects should fall more slowly: consider a feather and a
bowling ball.

What is happening there?

Air resistance can play a big role in determining an object’s motion.



Resistive Forces

Resistive forces act on an object when it moves through a fluid
medium, like a liquid or gas.

Is this object accelerating?
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can be either a liquid or a gas. The medium exerts a resistive force R
S

 on the object 
moving through it. Some examples are the air resistance associated with moving 
vehicles (sometimes called air drag) and the viscous forces that act on objects mov-
ing through a liquid. The magnitude of R

S
 depends on factors such as the speed of 

the object, and the direction of R
S

 is always opposite the direction of the object’s 
motion relative to the medium. This direction may or may not be in the direction 
opposite the object’s velocity according to the observer. For example, if a marble 
is dropped into a bottle of shampoo, the marble moves downward and the resis-
tive force is upward, resisting the falling of the marble. In contrast, imagine the 
moment at which there is no wind and you are looking at a flag hanging limply on 
a flagpole. When a breeze begins to blow toward the right, the flag moves toward 
the right. In this case, the drag force on the flag from the moving air is to the right 
and the motion of the flag in response is also to the right, the same direction as 
the drag force. Because the air moves toward the right with respect to the flag, the 
flag moves to the left relative to the air. Therefore, the direction of the drag force 
is indeed opposite to the direction of the motion of the flag with respect to the air!
 The magnitude of the resistive force can depend on speed in a complex way, 
and here we consider only two simplified models. In the first model, we assume 
the resistive force is proportional to the velocity of the moving object; this model is 
valid for objects falling slowly through a liquid and for very small objects, such as 
dust particles, moving through air. In the second model, we assume a resistive force 
that is proportional to the square of the speed of the moving object; large objects, 
such as skydivers moving through air in free fall, experience such a force.

Model 1: Resistive Force Proportional to Object Velocity
If we model the resistive force acting on an object moving through a liquid or gas as 
proportional to the object’s velocity, the resistive force can be expressed as

 R
S

5 2bvS (6.2)
where b is a constant whose value depends on the properties of the medium and on 
the shape and dimensions of the object and vS is the velocity of the object relative to 
the medium. The negative sign indicates that R

S
 is in the opposite direction to vS.

 Consider a small sphere of mass m released from rest in a liquid as in Figure 6.13a. 
Assuming the only forces acting on the sphere are the resistive force R

S
 5 2bvS and 

the gravitational force F
S

g, let us describe its motion.1 We model the sphere as a par-

1A buoyant force is also acting on the submerged object. This force is constant, and its magnitude is equal to the weight 
of the displaced liquid. This force can be modeled by changing the apparent weight of the sphere by a constant fac-
tor, so we will ignore the force here. We will discuss buoyant forces in Chapter 14.
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Figure 6.13 (a) A small sphere 
falling through a liquid. (b) A 
motion diagram of the sphere as 
it falls. Velocity vectors (red) and 
acceleration vectors (violet) are 
shown for each image after the 
first one. (c) A speed–time graph 
for the sphere.



Resistive Forces

Air resistance increases with speed.

Will the object continue to increase it’s velocity without bound?
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Model 2: Resistive Force Proportional to Object Speed Squared
For objects moving at high speeds through air, such as airplanes, skydivers, cars, 
and baseballs, the resistive force is reasonably well modeled as proportional to the 
square of the speed. In these situations, the magnitude of the resistive force can be 
expressed as

 R 5 1
2 DrAv2 (6.7)

where D is a dimensionless empirical quantity called the drag coefficient, r is the 
density of air, and A is the cross-sectional area of the moving object measured in a 
plane perpendicular to its velocity. The drag coefficient has a value of about 0.5 for 
spherical objects but can have a value as great as 2 for irregularly shaped objects.
 Let us analyze the motion of a falling object subject to an upward air resistive 
force of magnitude R 5 1

2 DrAv2. Suppose an object of mass m is released from rest. 
As Figure 6.14 shows, the object experiences two external forces:2 the downward 
gravitational force F

S
g 5 mgS and the upward resistive force R

S
. Hence, the magni-

tude of the net force is

 a F 5 mg 2 1
2 DrAv2 (6.8)

where we have taken downward to be the positive vertical direction. Modeling the 
object as a particle under a net force, with the net force given by Equation 6.8, we 
find that the object has a downward acceleration of magnitude

 a 5 g 2 aDrA
2m

bv2 (6.9)

 We can calculate the terminal speed vT by noticing that when the gravitational 
force is balanced by the resistive force, the net force on the object is zero and there-
fore its acceleration is zero. Setting a 5 0 in Equation 6.9 gives

g 2 aDrA
2m

bvT
2 5 0

Find the time t at which the sphere reaches a speed  
of 0.900vT  by setting v 5 0.900vT in Equation 6.6 and 
solving for t :

0.900vT 5 vT(1 2 e2t/t)

1 2 e2t/t 5 0.900

e2t/t 5 0.100

2
t
t

5 ln 10.100 2 5 22.30

t 5 2.30t 5 2.30(5.10 3 1023 s) 5 11.7 3 1023 s

5   11.7 ms

Finalize The sphere reaches 90.0% of its terminal speed in a very short time interval. You should have also seen this 
behavior if you performed the activity with the marble and the shampoo. Because of the short time interval required 
to reach terminal velocity, you may not have noticed the time interval at all. The marble may have appeared to imme-
diately begin moving through the shampoo at a constant velocity.
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Figure 6.14   (a) An object  
falling through air experiences 
a resistive force R

S
 and a gravi-

tational force F
S

g 5 mgS. (b) The 
object reaches terminal speed 
when the net force acting on it is 
zero, that is, when R

S
5 2 F

S
g or 

R 5 mg. 2As with Model 1, there is also an upward buoyant force that we neglect.

Evaluate the time constant t: t 5
m
b

5 m a vt

mgb 5
vt

g

Substitute numerical values: t 5
5.00 cm/s
980 cm/s2 5 5.10 3 1023 s

 

▸ 6.8 c o n t i n u e d



Resistive Forces

Air resistance increases with speed.

Will the object continue to increase it’s velocity without bound?
No.
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The velocity will not exceed some terminal value.



Resistive Forces
What is happening to the acceleration vector?
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vehicles (sometimes called air drag) and the viscous forces that act on objects mov-
ing through a liquid. The magnitude of R
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valid for objects falling slowly through a liquid and for very small objects, such as 
dust particles, moving through air. In the second model, we assume a resistive force 
that is proportional to the square of the speed of the moving object; large objects, 
such as skydivers moving through air in free fall, experience such a force.
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proportional to the object’s velocity, the resistive force can be expressed as
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where b is a constant whose value depends on the properties of the medium and on 
the shape and dimensions of the object and vS is the velocity of the object relative to 
the medium. The negative sign indicates that R
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 is in the opposite direction to vS.

 Consider a small sphere of mass m released from rest in a liquid as in Figure 6.13a. 
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S

g, let us describe its motion.1 We model the sphere as a par-

1A buoyant force is also acting on the submerged object. This force is constant, and its magnitude is equal to the weight 
of the displaced liquid. This force can be modeled by changing the apparent weight of the sphere by a constant fac-
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Figure 6.13 (a) A small sphere 
falling through a liquid. (b) A 
motion diagram of the sphere as 
it falls. Velocity vectors (red) and 
acceleration vectors (violet) are 
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Velocity increases up to the terminal velocity vT and a→ 0.



Resistive Forces Question

A feather and a bowling ball are dropped at the same time from
the top of an 100 story building. Over the course of the fall, which
experiences the largest force of air resistance?

(A) the feather

(B) the bowling ball
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A feather and a bowling ball are dropped at the same time from
the top of an 100 story building. Over the course of the fall, which
experiences the largest force of air resistance?
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where we have taken downward to be the positive vertical direction. Modeling the 
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Finalize The sphere reaches 90.0% of its terminal speed in a very short time interval. You should have also seen this 
behavior if you performed the activity with the marble and the shampoo. Because of the short time interval required 
to reach terminal velocity, you may not have noticed the time interval at all. The marble may have appeared to imme-
diately begin moving through the shampoo at a constant velocity.
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(A) the feather

(B) the bowling ball←



Resistive Forces

Resistive Forces resist motion.

They can play a big role in determining a an object’s motion.

There are two main models for how this happens. Either the
resistive force

#»

R

• is proportional to #»v , or

• is proportional to v2

Either way, this leads to a force in the opposite direction to the
object’s velocity, and that depends on the object’s speed through
the fluid.

Larger speed ⇒ larger resistive force.
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Resistive Forces resist motion.

They can play a big role in determining a an object’s motion.
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Model 1: Stokes Drag

The resistive force behaves like:

#»

R = −b #»v

where b is a constant that depends on the falling object and the
medium.

This model applies when the Reynolds Number of the fluid is very
low and/or the object is moving very slowly.

Reynolds Number, Re ∼ inertial forces
viscous forces .

More viscous fluids have lower Reynolds Numbers.
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medium.
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Model 1: Stokes Drag

Low Reynolds Number and/or low speed means there will be no
turbulence. Flow will be laminar, or close to laminar. (ie. smooth
flow lines, no vorticies)



Model 1: Stokes Drag

To summarize, cases where the resistive force will be proportional
to v :

• slow moving objects

• very viscous fluids

• laminar (smooth) flow in the fluid



Model 1: Stokes Drag

If
#»

R = −b #»v , what is the terminal velocity?

Remember, at terminal velocity, the object is in equilibrium.
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For objects moving at high speeds through air, such as airplanes, skydivers, cars, 
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where we have taken downward to be the positive vertical direction. Modeling the 
object as a particle under a net force, with the net force given by Equation 6.8, we 
find that the object has a downward acceleration of magnitude
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 We can calculate the terminal speed vT by noticing that when the gravitational 
force is balanced by the resistive force, the net force on the object is zero and there-
fore its acceleration is zero. Setting a 5 0 in Equation 6.9 gives
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Finalize The sphere reaches 90.0% of its terminal speed in a very short time interval. You should have also seen this 
behavior if you performed the activity with the marble and the shampoo. Because of the short time interval required 
to reach terminal velocity, you may not have noticed the time interval at all. The marble may have appeared to imme-
diately begin moving through the shampoo at a constant velocity.
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Model 1: Stokes Drag

If
#»

R = −b #»v , what is the terminal velocity?

Remember, at terminal velocity, the object is in equilibrium.
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gravitational force F

S
g 5 mgS and the upward resistive force R

S
. Hence, the magni-

tude of the net force is

 a F 5 mg 2 1
2 DrAv2 (6.8)

where we have taken downward to be the positive vertical direction. Modeling the 
object as a particle under a net force, with the net force given by Equation 6.8, we 
find that the object has a downward acceleration of magnitude

 a 5 g 2 aDrA
2m

bv2 (6.9)

 We can calculate the terminal speed vT by noticing that when the gravitational 
force is balanced by the resistive force, the net force on the object is zero and there-
fore its acceleration is zero. Setting a 5 0 in Equation 6.9 gives

g 2 aDrA
2m

bvT
2 5 0

Find the time t at which the sphere reaches a speed  
of 0.900vT  by setting v 5 0.900vT in Equation 6.6 and 
solving for t :

0.900vT 5 vT(1 2 e2t/t)

1 2 e2t/t 5 0.900

e2t/t 5 0.100

2
t
t

5 ln 10.100 2 5 22.30

t 5 2.30t 5 2.30(5.10 3 1023 s) 5 11.7 3 1023 s

5   11.7 ms

Finalize The sphere reaches 90.0% of its terminal speed in a very short time interval. You should have also seen this 
behavior if you performed the activity with the marble and the shampoo. Because of the short time interval required 
to reach terminal velocity, you may not have noticed the time interval at all. The marble may have appeared to imme-
diately begin moving through the shampoo at a constant velocity.

mgS mgS 

vS vT
S

R
S

R
S

ba

Figure 6.14   (a) An object  
falling through air experiences 
a resistive force R

S
 and a gravi-

tational force F
S

g 5 mgS. (b) The 
object reaches terminal speed 
when the net force acting on it is 
zero, that is, when R

S
5 2 F

S
g or 

R 5 mg. 2As with Model 1, there is also an upward buoyant force that we neglect.

Evaluate the time constant t: t 5
m
b

5 m a vt

mgb 5
vt

g

Substitute numerical values: t 5
5.00 cm/s
980 cm/s2 5 5.10 3 1023 s

 

▸ 6.8 c o n t i n u e d



Model 1: Stokes Drag

Equilibrium ⇒ Fnet = 0.

Fnet = bvT −mg = 0

vT =
mg

b
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 Problems 171

of kinetic friction mk between the backpack and the 
elevator floor.

 25. A small container of water is placed on a turntable 
inside a microwave oven, at a radius of 12.0 cm from 
the center. The turntable rotates steadily, turning one 
revolution in each 7.25 s. What angle does the water 
surface make with the horizontal?

Section 6.4 Motion in the Presence of Resistive Forces
 26. Review. (a) Estimate the terminal speed of a wooden 

sphere (density 0.830 g/cm3) falling through air, tak-
ing its radius as 8.00 cm and its drag coefficient as 
0.500. (b)  From what height would a freely falling 
object reach this speed in the absence of air resistance?

 27. The mass of a sports car is 1 200 kg. The shape of the 
body is such that the aerodynamic drag coefficient 
is 0.250 and the frontal area is 2.20 m2. Ignoring all 
other sources of friction, calculate the initial accelera-
tion the car has if it has been traveling at 100 km/h 
and is now shifted into neutral and allowed to coast.

 28. A skydiver of mass 80.0 kg jumps from a slow-moving 
aircraft and reaches a terminal speed of 50.0 m/s.  
(a) What is her acceleration when her speed is 30.0 m/s?  
What is the drag force on the skydiver when her speed 
is (b) 50.0 m/s and (c) 30.0 m/s?

 29. Calculate the force required to pull a copper ball of 
radius 2.00 cm upward through a fluid at the con-
stant speed 9.00 cm/s. Take the drag force to be pro-
portional to the speed, with proportionality constant 
0.950 kg/s. Ignore the buoyant force.

 30. A small piece of Styrofoam packing material is dropped 
from a height of 2.00 m above the ground. Until it 
reaches terminal speed, the magnitude of its accelera-
tion is given by a 5 g 2 Bv. After falling 0.500 m, the 
Styrofoam effectively reaches terminal speed and then 
takes 5.00 s more to reach the ground. (a) What is the 
value of the constant B? (b) What is the acceleration at 
t 5 0? (c) What is the acceleration when the speed is 
0.150 m/s?

 31. A small, spherical bead of mass 3.00 g is released from 
rest at t 5 0 from a point under the surface of a vis-
cous liquid. The terminal speed is observed to be vT 5  
2.00 cm/s. Find (a) the value of the constant b that 
appears in Equation 6.2, (b) the time t at which the 
bead reaches 0.632vT, and (c) the value of the resistive 
force when the bead reaches terminal speed.

 32. At major league baseball games, it is commonplace to 
flash on the scoreboard a speed for each pitch. This 
speed is determined with a radar gun aimed by an 
operator positioned behind home plate. The gun uses 
the Doppler shift of microwaves reflected from the 
baseball, an effect we will study in Chapter 39. The gun 
determines the speed at some particular point on the 
baseball’s path, depending on when the operator pulls 
the trigger. Because the ball is subject to a drag force 
due to air proportional to the square of its speed given 
by R 5 kmv2, it slows as it travels 18.3 m toward the 

W

M

lowest point instead of swinging up? (e) Explain your 
answer to part (d).

 19. An adventurous archeologist (m 5 85.0 kg) tries to cross 
a river by swinging from a vine. The vine is 10.0 m long, 
and his speed at the bottom of the swing is 8.00 m/s.  
The archeologist doesn’t know that the vine has a 
breaking strength of 1 000 N. Does he make it across 
the river without falling in?

Section 6.3 Motion in Accelerated Frames
 20. An object of mass m 5 

5.00  kg, attached to a 
spring scale, rests on a 
frictionless, horizontal 
surface as shown in Fig-
ure P6.20. The spring 
scale, attached to the 
front end of a boxcar, 
reads zero when the  
car is at rest. (a) Determine the acceleration of the car 
if the spring scale has a constant reading of 18.0 N 
when the car is in motion. (b) What constant reading 
will the spring scale show if the car moves with con-
stant velocity? Describe the forces on the object as 
observed (c) by someone in the car and (d) by some-
one at rest outside the car.

 21. An object of mass m 5 
0.500 kg is suspended 
from the ceiling of an 
accelerating truck as 
shown in Figure P6.21. 
Taking a 5 3.00 m/s2, 
find (a) the angle u that 
the string makes with 
the vertical and (b) the 
tension T in the string.

 22. A child lying on her back experiences 55.0 N tension in 
the muscles on both sides of her neck when she raises 
her head to look past her toes. Later, sliding feet first 
down a water slide at terminal speed 5.70 m/s and rid-
ing high on the outside wall of a horizontal curve of 
radius 2.40 m, she raises her head again to look for-
ward past her toes. Find the tension in the muscles on 
both sides of her neck while she is sliding.

 23. A person stands on a scale in an elevator. As the elevator 
starts, the scale has a constant reading of 591 N. As the 
elevator later stops, the scale reading is 391 N. Assum-
ing the magnitude of the acceleration is the same  
during starting and stopping, determine (a) the weight 
of the person, (b) the person’s mass, and (c) the accel-
eration of the elevator.

 24. Review. A student, along with her backpack on the 
floor next to her, are in an elevator that is accelerat-
ing upward with acceleration a. The student gives her 
backpack a quick kick at t 5 0, imparting to it speed 
v and causing it to slide across the elevator floor. 
At time t, the backpack hits the opposite wall a dis-
tance L away from the student. Find the coefficient 

m

Figure P6.20

u
m

aS

Figure P6.21

M

M

S
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(a) Terminal velocity vT = ∆x
∆t = 2.00−0.500 m

5.00 s = 0.300 m/s.

At terminal velocity a = 0 ⇒ g = Bv , B = g
v = 32.7 s−1.

(b) at t = 0, a = g , directed downward.

(c) at v = 0.150 m/s, a = g −Bv = 4.9 ms−2, directed downward.



Example

Page 171, #30

(a) Terminal velocity vT = ∆x
∆t = 2.00−0.500 m

5.00 s = 0.300 m/s.

At terminal velocity a = 0 ⇒ g = Bv , B = g
v = 32.7 s−1.

(b) at t = 0, a = g , directed downward.

(c) at v = 0.150 m/s, a = g −Bv = 4.9 ms−2, directed downward.



Example

Page 171, #30

(a) Terminal velocity vT = ∆x
∆t = 2.00−0.500 m

5.00 s = 0.300 m/s.

At terminal velocity a = 0 ⇒ g = Bv , B = g
v = 32.7 s−1.

(b) at t = 0, a = g , directed downward.

(c) at v = 0.150 m/s, a = g −Bv = 4.9 ms−2, directed downward.



Model 1: Stokes Drag

Can we find an expression for how the velocity changes with time
before reaching vT ?

Yes! In general, (calling down positive)

Fnet = mg − bv

ma = mg − bv

m
dv

dt
= mg − bv

A differential equation for v .
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Model 1: Stokes Drag

Solving1 m dv
dt = mg − bv :

Separate the variables:

m
dv

dt
= mg − bv

expression in v : expression in t (potentially):(
m

mg − bv

)
dv

dt
= 1

Integrating with respect to t, we can set v = 0 at t = 0:∫ v
0

(
m

mg − bv ′

)
dv ′ =

∫ t
0

1 dt’

1See the end of the slides for another way to solve.
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Model 1: Stokes Drag
Integrating with respect to t, we can set v = 0 at t = 0:∫ v

0

(
m

mg − bv ′

)
dv ′ =

∫ t
0

1 dt ′

[
−
m

b
ln
(
mg − bv ′)]v

0
= t

m

b
ln

(
mg

mg − bv

)
= t

mg − bv = mg e−bt/m

We have an expression for v .

v(t) =
mg

b
(1 − e−bt/m)
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Model 1: Stokes Drag
Integrating with respect to t, we can set v = 0 at t = 0:∫ v
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(
m
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0
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We have an expression for v .
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Model 1: Stokes Drag

Exercise: Check that the solution v(t) = mg
b (1 − e−bt/m) satisfies

the equation

m
dv

dt
= mg − bv

162 Chapter 6 Circular Motion and Other Applications of Newton’s Laws

can be either a liquid or a gas. The medium exerts a resistive force R
S

 on the object 
moving through it. Some examples are the air resistance associated with moving 
vehicles (sometimes called air drag) and the viscous forces that act on objects mov-
ing through a liquid. The magnitude of R

S
 depends on factors such as the speed of 

the object, and the direction of R
S

 is always opposite the direction of the object’s 
motion relative to the medium. This direction may or may not be in the direction 
opposite the object’s velocity according to the observer. For example, if a marble 
is dropped into a bottle of shampoo, the marble moves downward and the resis-
tive force is upward, resisting the falling of the marble. In contrast, imagine the 
moment at which there is no wind and you are looking at a flag hanging limply on 
a flagpole. When a breeze begins to blow toward the right, the flag moves toward 
the right. In this case, the drag force on the flag from the moving air is to the right 
and the motion of the flag in response is also to the right, the same direction as 
the drag force. Because the air moves toward the right with respect to the flag, the 
flag moves to the left relative to the air. Therefore, the direction of the drag force 
is indeed opposite to the direction of the motion of the flag with respect to the air!
 The magnitude of the resistive force can depend on speed in a complex way, 
and here we consider only two simplified models. In the first model, we assume 
the resistive force is proportional to the velocity of the moving object; this model is 
valid for objects falling slowly through a liquid and for very small objects, such as 
dust particles, moving through air. In the second model, we assume a resistive force 
that is proportional to the square of the speed of the moving object; large objects, 
such as skydivers moving through air in free fall, experience such a force.

Model 1: Resistive Force Proportional to Object Velocity
If we model the resistive force acting on an object moving through a liquid or gas as 
proportional to the object’s velocity, the resistive force can be expressed as

 R
S

5 2bvS (6.2)
where b is a constant whose value depends on the properties of the medium and on 
the shape and dimensions of the object and vS is the velocity of the object relative to 
the medium. The negative sign indicates that R

S
 is in the opposite direction to vS.

 Consider a small sphere of mass m released from rest in a liquid as in Figure 6.13a. 
Assuming the only forces acting on the sphere are the resistive force R

S
 5 2bvS and 

the gravitational force F
S

g, let us describe its motion.1 We model the sphere as a par-

1A buoyant force is also acting on the submerged object. This force is constant, and its magnitude is equal to the weight 
of the displaced liquid. This force can be modeled by changing the apparent weight of the sphere by a constant fac-
tor, so we will ignore the force here. We will discuss buoyant forces in Chapter 14.

v

vT

0.632vT

t

v ! 0 a ! g

v ! vT

a ! 0mgS 

R
S

vS

a b c

The sphere approaches a 
maximum (or terminal) 
speed vT.

The time constant t is the 
time at which the sphere 
reaches a speed of 0.632vT.

t

Figure 6.13 (a) A small sphere 
falling through a liquid. (b) A 
motion diagram of the sphere as 
it falls. Velocity vectors (red) and 
acceleration vectors (violet) are 
shown for each image after the 
first one. (c) A speed–time graph 
for the sphere.

Time constant, τ = m
b . The solution can also be written

v(t) = mg
b (1 − e−t/τ).
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Exercise: Check that the solution v(t) = mg
b (1 − e−bt/m) satisfies

the equation

m
dv

dt
= mg − bv
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Time constant, τ = m
b . The solution can also be written

v(t) = mg
b (1 − e−t/τ).



Model 1: Stokes Drag, Question

Time constant, τ = m
b .

Suppose two falling objects had different masses, but similar shapes
and fall through the same fluid, and so have the same constant b.

Which one reaches 99% of its terminal velocity first?

(A) the one with more mass

(B) the one with less mass
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Summary

• Stokes drag

• terminal velocity

Test Monday.

(Uncollected) Homework Serway & Jewett,

• Read Chapter 6 if you haven’t already.

• Ch 6, onward from page 171. Probs: 29, 31, 35, 43



Appendix: Stokes Drag - Alternate Way to Solve

Another way of solving dv
dt +

b
mv = g :

Use an integrating factor µ(t). This is just some unknown function
of t that we multiply through the equation.

µ(t)
dv

dt
+µ(t)

b

m
v = µ(t)g

But µ(t) was arbitrary, so let it have the property µ ′(t) = µ(t) b
m .

⇒ µ(t) = ebt/m

Our equation becomes

µ(t)
dv

dt
+µ ′(t)v = µ(t)g

Now we can integrate both sides! (Product rule...)
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Appendix: Stokes Drag - Alternate Way to Solve

µ(t)
dv

dt
+µ ′(t)v = µ(t)g

d

dt
(µ(t)v) = µ(t)g

Integrating with respect to t, and choosing v = 0 at t = 0 (falls
from rest):

µ(t)v =

∫ t
0
µ(t ′)gdt ′

v =

∫t
0 µgdt ′

µ

We have an expression for v . All we need to do is substitute back
for µ(t).



Appendix: Stokes Drag - Alternate Way to Solve

µ(t) = ebt/m:

v =

∫t
0 e

bt ′/mgdt ′

ebt/m

= e−bt/m
(mg

b
ebt/m −

mg

b

)
=

mg

b
−

mg

b
e−bt/m

v(t) =
mg

b
(1 − e−bt/m)



Summary (Again, to prevent confusion)

• Stokes drag

• terminal velocity

Test Monday.

(Uncollected) Homework Serway & Jewett,

• Read Chapter 6 if you haven’t already.

• Ch 6, onward from page 171. Probs: 29, 31, 35, 43


