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Last Time

• resistive forces: Drag Equation



Overview

• Energy (systems and environments)

• Work



Energy

Energy is almost impossible to clearly define, yet everyone has a
good intuitive notion of what it is.

Energy is a property of physical systems. It tells us something
about the states or configurations the system can be in. In fact, it
is possible to find the dynamics of a system purely from
understanding the distribution of energy in the system.

Importantly, it can neither be created or destroyed, but it can be
transferred between systems, and take different forms.
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Types of Energy

• motional energy (kinetic)

• energy as a result of object’s configurations or stored energy
(potential)

• heat, light, sound - can carry away energy from a mechanical
system



Kinetic Energy

Kinetic energy, K

the energy that a system has as a result of its motion, or the
motion of its constituent parts.

K =
1

2
mv2

The larger the speed of the system, or its parts, the higher the
kinetic energy.



Systems and Environments
To make some predictions about physical objects, you must
identify a system of interest. Some object or collection of objects.

System

They are modeled. The model may not be exactly accurate, just
good enough to make the predictions you want.

Outside influences on the system (eg. forces or energies) can be
included in the description, but the source of these effects is not
described.

Everything outside the system is the system’s environment.
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Kinetic energy is a type of energy that can be possessed by the
system.
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Work is an energy transfer from the environment to the system, or
vice versa.
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Kinetic energy is a type of energy that can be possessed by the
system.
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Kinetic Energy

← W

Work is an energy transfer from the environment to the system, or
vice versa.



Work

Let’s consider how the environment can affect the system by
exchanging energy with it.

Take the system to be a block. An external force (from the
environment) acts on it.

 7.2 Work Done by a Constant Force 179

eraser, which we identify as the system, and the eraser slides along the tray. If we 
want to know how effective the force is in moving the eraser, we must consider not 
only the magnitude of the force but also its direction. Notice that the finger in Fig-
ure 7.1 applies forces in three different directions on the eraser. Assuming the mag-
nitude of the applied force is the same in all three photographs, the push applied 
in Figure 7.1b does more to move the eraser than the push in Figure 7.1a. On the 
other hand, Figure 7.1c shows a situation in which the applied force does not move 
the eraser at all, regardless of how hard it is pushed (unless, of course, we apply a 
force so great that we break the chalkboard tray!). These results suggest that when 
analyzing forces to determine the influence they have on the system, we must con-
sider the vector nature of forces. We must also consider the magnitude of the force. 
Moving a force with a magnitude of 0 FS 0 5 2 N through a displacement represents a 
greater influence on the system than moving a force of magnitude 1 N through the 
same displacement. The magnitude of the displacement is also important. Moving 
the eraser 3 m along the tray represents a greater influence than moving it 2 cm if 
the same force is used in both cases.
 Let us examine the situation in Figure 7.2, where the object (the system) under-
goes a displacement along a straight line while acted on by a constant force of mag-
nitude F that makes an angle u with the direction of the displacement.

The work W done on a system by an agent exerting a constant force on the 
system is the product of the magnitude F of the force, the magnitude Dr of 
the displacement of the point of application of the force, and cos u, where u is  
the angle between the force and displacement vectors:

 W ; F Dr cos u (7.1)

 Notice in Equation 7.1 that work is a scalar, even though it is defined in terms 
of two vectors, a force F

S
 and a displacement D rS. In Section 7.3, we explore how to 

combine two vectors to generate a scalar quantity.
 Notice also that the displacement in Equation 7.1 is that of the point of application 
of the force. If the force is applied to a particle or a rigid object that can be modeled 
as a particle, this displacement is the same as that of the particle. For a deformable 
system, however, these displacements are not the same. For example, imagine press-
ing in on the sides of a balloon with both hands. The center of the balloon moves 
through zero displacement. The points of application of the forces from your hands 
on the sides of the balloon, however, do indeed move through a displacement as 
the balloon is compressed, and that is the displacement to be used in Equation 7.1. 
We will see other examples of deformable systems, such as springs and samples of 
gas contained in a vessel.
 As an example of the distinction between the definition of work and our every-
day understanding of the word, consider holding a heavy chair at arm’s length for 
3 min. At the end of this time interval, your tired arms may lead you to think you 

�W  Work done by a  
constant force
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Figure 7.1  An eraser being pushed along a chalkboard tray by a force acting at different angles 
with respect to the horizontal direction. 
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Figure 7.2  An object undergoes 
a displacement D rS under the 
action of a constant force F

S
.

Pitfall Prevention 7.2
Work Is Done by . . . on . . . Not 
only must you identify the system, 
you must also identify what agent 
in the environment is doing work 
on the system. When discussing 
work, always use the phrase, “the 
work done by . . . on . . . .” After 
“by,” insert the part of the environ-
ment that is interacting directly 
with the system. After “on,” insert 
the system. For example, “the work 
done by the hammer on the nail” 
identifies the nail as the system, 
and the force from the hammer 
represents the influence from the 
environment.
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This force effects the block: it can accelerate it.

It can also change the energy of the block.



Work
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For a constant applied force Work is defined as:

W =
#»

F · #  »

∆r

Work is the amount of energy transferred to a system by an
interaction with the environment.

Units: Joules, J.
1 J = 1 Nm



Vectors Properties and Operations
Multiplication by a vector:

The Dot Product
Let

#»

A = Ax î + Ay ĵ
#»

B = Bx î + By ĵ,

#»

A · #»

B = AxBx + AyBy

The output of this operation is a scalar.

Equivalently,

#»

A · #»

B = AB cos θ

Properties
• The dot product is commutative:

#»

A · #»

B =
#»

B · #»

A

• If
#»

A ‖ #»

B,
#»

A · #»

B = AB.

• If
#»

A ⊥ #»

B,
#»

A · #»

B = 0.
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Conceptualize  Figure 7.5 helps conceptualize the 
situation. Think about an experience in your life in 
which you pulled an object across the floor with a 
rope or cord.

Categorize   We are asked for the work done on 
an object by a force and are given the force on 
the object, the displacement of the object, and 
the angle between the two vectors, so we categorize this example as a substitution problem. We identify the vacuum 
cleaner as the system.

S O L U T I O N

7.3 The Scalar Product of Two Vectors
Because of the way the force and displacement vectors are combined in Equation 
7.1, it is helpful to use a convenient mathematical tool called the scalar product of 
two vectors. We write this scalar product of vectors A

S
 and B

S
 as A

S
? B

S
. (Because of 

the dot symbol, the scalar product is often called the dot product.)
 The scalar product of any two vectors A

S
 and B

S
 is defined as a scalar quantity 

equal to the product of the magnitudes of the two vectors and the cosine of the 
angle u between them:

 A
S

? B
S

; AB cos u (7.2)

As is the case with any multiplication, A
S

 and B
S

 need not have the same units.
 By comparing this definition with Equation 7.1, we can express Equation 7.1 as a 
scalar product:

 W 5 F Dr cos u 5 F
S

? D rS  (7.3)

In other words, F
S

? D rS  is a shorthand notation for F Dr cos u.
 Before continuing with our discussion of work, let us investigate some properties 
of the dot product. Figure 7.6 shows two vectors A

S
 and B

S
 and the angle u between 

them used in the definition of the dot product. In Figure 7.6, B cos u is the projec-
tion of B

S
 onto A

S
. Therefore, Equation 7.2 means that A

S
? B

S
 is the product of the 

magnitude of A
S

 and the projection of B
S

 onto A
S

.1
 From the right-hand side of Equation 7.2, we also see that the scalar product is 
commutative.2 That is,

A
S

? B
S

5 B
S

? A
S

WW  Scalar product of any two 
vectors A

S
 and B

S

Pitfall Prevention 7.4
Work Is a Scalar Although Equa-
tion 7.3 defines the work in terms 
of two vectors, work is a scalar; 
there is no direction associated 
with it. All types of energy and 
energy transfer are scalars. This 
fact is a major advantage of the 
energy approach because we don’t 
need vector calculations!

1This statement is equivalent to stating that A
S

? B
S

 equals the product of the magnitude of B
S

 and the projection of A
S

  
onto B

S
.

2In Chapter 11, you will see another way of combining vectors that proves useful in physics and is not commutative.

B cos 
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Figure 7.6  The scalar product 
A
S

? B
S

 equals the magnitude of A
S

  
multiplied by B cos u, which is the 
projection of B

S
 onto A

S
.

 

▸ 7.1 c o n t i n u e d

Use the definition of work (Eq. 7.1): W 5 F Dr cos u 5 150.0 N 2 13.00 m 2 1cos 30.08 2  
5  130 J

Notice in this situation that the normal force nS and the gravitational F
S

g 5 mgS do no work on the vacuum cleaner 
because these forces are perpendicular to the displacements of their points of application. Furthermore, there was 
no mention of whether there was friction between the vacuum cleaner and the floor. The presence or absence of fric-
tion is not important when calculating the work done by the applied force. In addition, this work does not depend on 
whether the vacuum moved at constant velocity or if it accelerated.

30.0!

50.0 N

mgS 

nS

Figure 7.5  (Example 7.1) A 
vacuum cleaner being pulled 
at an angle of 30.08 from the 
horizontal.



Vectors Properties and Operations
Multiplication by a vector:

The Dot Product
Let

#»

A = Ax î + Ay ĵ
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Vectors Properties and Operations

Multiplication by a vector: The Dot Product

Try it! Find
#»

A · #»

B when
#»

A is a vector of magnitude 6 N directed
at 60◦ above the x-axis and B is a vector of magnitude 2 m
pointed along the x-axis.

#»

A · #»

B = (6 N)(2 m) cos(60◦) = 6 J

(1 J = 1 Nm)

Now find
#»

A · #»

B when:

#»

A = 1 î + 2 ĵ ;
#»

B = −1 î − 4 ĵ

#»

A · #»

B = (1)(−1) + (2)(−4) = −9
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Work

If there are several forces acting on a system, each one can have an
associated work.

In other words, we can ask what is the work done on the system by
each force separately.

Wi =
#»

F i · (
#  »

∆r)



Work
180 Chapter 7 Energy of a System

have done a considerable amount of work on the chair. According to our defini-
tion, however, you have done no work on it whatsoever. You exert a force to support 
the chair, but you do not move it. A force does no work on an object if the force 
does not move through a displacement. If Dr 5 0, Equation 7.1 gives W 5 0, which is 
the situation depicted in Figure 7.1c.
 Also notice from Equation 7.1 that the work done by a force on a moving object 
is zero when the force applied is perpendicular to the displacement of its point of 
application. That is, if u 5 908, then W 5 0 because cos 908 5 0. For example, in 
Figure 7.3, the work done by the normal force on the object and the work done by 
the gravitational force on the object are both zero because both forces are perpen-
dicular to the displacement and have zero components along an axis in the direc-
tion of D rS.
 The sign of the work also depends on the direction of F

S
 relative to D rS. The work 

done by the applied force on a system is positive when the projection of F
S

 onto D rS 
is in the same direction as the displacement. For example, when an object is lifted, 
the work done by the applied force on the object is positive because the direction 
of that force is upward, in the same direction as the displacement of its point of 
application. When the projection of F

S
 onto D rS is in the direction opposite the dis-

placement, W is negative. For example, as an object is lifted, the work done by the 
gravitational force on the object is negative. The factor cos u in the definition of W 
(Eq. 7.1) automatically takes care of the sign.
 If an applied force F

S
 is in the same direction as the displacement D rS, then u 5 

0 and cos 0 5 1. In this case, Equation 7.1 gives

 W 5 F Dr 

 The units of work are those of force multiplied by those of length. Therefore, 
the SI unit of work is the newton ? meter (N ? m 5 kg ? m2/s2). This combination of 
units is used so frequently that it has been given a name of its own, the joule ( J).
 An important consideration for a system approach to problems is that work is an 
energy transfer. If W is the work done on a system and W is positive, energy is trans-
ferred to the system; if W is negative, energy is transferred from the system. There-
fore, if a system interacts with its environment, this interaction can be described 
as a transfer of energy across the system boundary. The result is a change in the 
energy stored in the system. We will learn about the first type of energy storage in 
Section 7.5, after we investigate more aspects of work.

Q uick Quiz 7.1  The gravitational force exerted by the Sun on the Earth holds the 
Earth in an orbit around the Sun. Let us assume that the orbit is perfectly cir-
cular. The work done by this gravitational force during a short time interval in 
which the Earth moves through a displacement in its orbital path is (a) zero  
(b) positive (c) negative (d) impossible to determine

Q uick Quiz 7.2  Figure 7.4 shows four situations in which a force is applied to an 
object. In all four cases, the force has the same magnitude, and the displace-
ment of the object is to the right and of the same magnitude. Rank the situa-
tions in order of the work done by the force on the object, from most positive to 
most negative.

u

F
S

mgS 

nS

!rS

   is the only force 
that does work on 
the block in this 
situation.

F
S

Figure 7.3  An object is dis-
placed on a frictionless, horizon-
tal surface. The normal force nS 
and the gravitational force mgS do 
no work on the object.

Pitfall Prevention 7.3
Cause of the Displacement We can 
calculate the work done by a force 
on an object, but that force is not 
necessarily the cause of the object’s 
displacement. For example, if you 
lift an object, (negative) work is 
done on the object by the gravi-
tational force, although gravity is 
not the cause of the object moving 
upward!

F
S

F
S

F
S

F
S

ba

dc
!rS

!rS

!rS

!rS

Figure 7.4  (Quick Quiz 7.2)  
A block is pulled by a force in four 
different directions. In each case, 
the displacement of the block 
is to the right and of the same 
magnitude.

Example 7.1   Mr. Clean

A man cleaning a floor pulls a vacuum cleaner with a force of magnitude F 5 50.0 N at an angle of 30.08 with the hori-
zontal (Fig. 7.5). Calculate the work done by the force on the vacuum cleaner as the vacuum cleaner is displaced 3.00 m  
to the right.

1Figure from Serway & Jewett.



Net Work

Work done on the system by each force separately:

Wi =
#»

F i · (
#  »

∆r)

Net Work

Wnet =
∑
i

Wi

where the sum includes the work of all forces acting on the system.

If the system is treated as a particle:

Wnet =
#»

Fnet · (
#  »

∆r)



Units of Work

Work can be positive or negative!

184 CHAPTER 7 WORK AND KINETIC ENERGY

Next, we present a Conceptual Checkpoint that compares the work required
to move an object along two different paths.

! d

F
! d

F !

d
F

< 90°–90° < ! < 270°90° < != ± 90°!

(a) (b) (c)

FIGURE 7–4 Positive, negative, and
zero work
Work is positive when the force is in the
same general direction as the displace-
ment and is negative if the force is gener-
ally opposite to the displacement. Zero
work is done if the force is at right angles
to the displacement.

▲

CONCEPTUAL CHECKPOINT 7–1 Path Dependence of Work
You want to load a box into the back of a truck. One way is to lift it straight up through a height h, as shown, doing a work W1. Alternatively, you can
slide the box up a loading ramp a distance L, doing a work W2. Assuming the box slides on the ramp without friction, which of the following is
correct: (a) W1 6 W2, (b) W1 = W2, (c) W1 7 W2?

Reasoning and Discussion
You might think that W2 is less than W1, since the force needed to slide the box up the ramp, F2, is less than the force needed to lift it straight up. On
the other hand, the distance up the ramp, L, is greater than the vertical distance, h, so perhaps W2 should be greater than W1. In fact, these two effects
cancel exactly, giving W1 = W2.

To see this, we first calculate W1. The force needed to lift the box with constant speed is F1 = mg, and the height is h, therefore W1 = mgh.

Next, the work to slide the box up the ramp with constant speed is W2 = F2L, where F2 is the force required to push against the tangential component of
gravity. In the figure we see that F2 = mg sin f. The figure also shows that sin f = h/L; thus W2 = (mg sin f)L = (mg)(h/L)L = mgh = W1.

Clearly, the ramp is a useful device—it reduces the force required to move the box upward from F1 = mg to F2 = mg(h/L). Even so, it doesn’t decrease
the amount of work we need to do. As we have seen, the reduced force on the ramp is offset by the increased distance.

Answer:
(b) W1 = W2

L

W1

h

F1

mg

φ

W2

L

F2

mg
φ

φ

mg sinφ

mg cos φ h

Negative Work and Total Work
Work depends on the angle between the force, and the displacement (or direc-
tion of motion), This dependence gives rise to three distinct possibilities, as
shown in Figure 7–4:

(i) Work is positive if the force has a component in the direction of motion

(ii) Work is zero if the force has no component in the direction of motion
(iii) Work is negative if the force has a component opposite to the direction of motion

Thus, whenever we calculate work, we must be careful about its sign and not just
assume it to be positive.

190° 6 u 6 270°2. 1u = ;90°2.1-90° 6 u 6 90°2.
d
!
.

F
!
,

WALKMC07_0131536311.QXD  12/8/05  17:24  Page 184

W = Fd cos θ > 0

positive work

W = Fd cos θ = 0

zero work

W = Fd cos θ < 0

negative work

For work done on a system:

• Positive ⇒ energy is transferred to the system.

• Negative ⇒ energy is transferred from the system.



Question

Quick Quiz 7.11 The gravitational force exerted by the Sun on
the Earth holds the Earth in an orbit around the Sun. Let us
assume that the orbit is perfectly circular. The work done by this
gravitational force during a short time interval in which the Earth
moves through a displacement in its orbital path is

(A) zero

(B) positive

(C) negative

(D) impossible to determine

1Serway and Jewett, page 180.



Question

Quick Quiz 7.11 The gravitational force exerted by the Sun on
the Earth holds the Earth in an orbit around the Sun. Let us
assume that the orbit is perfectly circular. The work done by this
gravitational force during a short time interval in which the Earth
moves through a displacement in its orbital path is

(A) zero ←
(B) positive

(C) negative

(D) impossible to determine

1Serway and Jewett, page 180.



Work example

Page 204, #1
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 8. If only one external force acts on a particle, does it nec-
essarily change the particle’s (a) kinetic energy? (b) Its 
velocity?

 9. Preparing to clean them, you pop all the removable 
keys off a computer keyboard. Each key has the shape 
of a tiny box with one side open. By accident, you spill 
the keys onto the floor. Explain why many more keys 
land letter-side down than land open-side down.

 10. You are reshelving books in a library. You lift a book 
from the floor to the top shelf. The kinetic energy of 
the book on the floor was zero and the kinetic energy 
of the book on the top shelf is zero, so no change 
occurs in the kinetic energy, yet you did some work in 
lifting the book. Is the work–kinetic energy theorem 
violated? Explain.

 11. A certain uniform spring has spring constant k. Now 
the spring is cut in half. What is the relationship 
between k and the spring constant k9 of each resulting 
smaller spring? Explain your reasoning.

 12. What shape would the graph of U versus x have if a par-
ticle were in a region of neutral equilibrium?

 13. Does the kinetic energy of an object depend on the 
frame of reference in which its motion is measured? 
Provide an example to prove this point.

 14. Cite two examples in which a force is exerted on an 
object without doing any work on the object.

 1. Can a normal force do work? If not, why not? If so, give 
an example.

 2. Object 1 pushes on object 2 as the objects move 
together, like a bulldozer pushing a stone. Assume 
object 1 does 15.0 J of work on object 2. Does object 2 
do work on object 1? Explain your answer. If possible, 
determine how much work and explain your reasoning.

 3. A student has the idea that the total work done on an 
object is equal to its final kinetic energy. Is this idea true  
always, sometimes, or never? If it is sometimes true, 
under what circumstances? If it is always or never  
true, explain why.

 4. (a) For what values of the angle u between two vectors 
is their scalar product positive? (b) For what values of u 
is their scalar product negative?

 5. Can kinetic energy be negative? Explain.
 6. Discuss the work done by a pitcher throwing a baseball. 

What is the approximate distance through which the 
force acts as the ball is thrown?

 7. Discuss whether any work is being done by each of the 
following agents and, if so, whether the work is posi-
tive or negative. (a) a chicken scratching the ground 
(b) a person studying (c) a crane lifting a bucket of 
concrete (d)  the gravitational force on the bucket in 
part (c) (e) the leg muscles of a person in the act of 
sitting down

Section 7.2 Work Done by a Constant Force

 1. A shopper in a supermarket pushes a cart with a  
force of 35.0 N directed at an angle of 25.08 below 
the horizontal. The force is just sufficient to bal-
ance various friction forces, so the cart moves at con-
stant speed. (a) Find the work done by the shopper 
on the cart as she moves down a 50.0-m-long aisle.  
(b) The shopper goes down the next aisle, pushing hor-
izontally and maintaining the same speed as before.  
If the friction force doesn’t change, would the shop-
per’s applied force be larger, smaller, or the same? 
(c) What about the work done on the cart by the 
shopper?

 2. A raindrop of mass 3.35 3 1025 kg falls vertically at 
constant speed under the influence of gravity and 
air resistance. Model the drop as a particle. As it falls  

Q/C

W

100 m, what is the work done on the raindrop (a) by 
the gravitational force and (b) by air resistance?

 3. In 1990, Walter Arfeuille of Belgium lifted a 281.5-kg 
object through a distance of 17.1 cm using only his 
teeth. (a) How much work was done on the object by 
Arfeuille in this lift, assuming the object was lifted at 
constant speed? (b) What total force was exerted on 
Arfeuille’s teeth during the lift?

 4. The record number of boat lifts, including the boat 
and its ten crew members, was achieved by Sami Hei-
nonen and Juha Räsänen of Sweden in 2000. They 
lifted a total mass of 653.2 kg approximately 4 in. off 
the ground a total of 24 times. Estimate the total work 
done by the two men on the boat in this record lift, 
ignoring the negative work done by the men when they 
lowered the boat back to the ground.

Conceptual Questions 1. denotes answer available in Student Solutions Manual/Study Guide

Problems

 
The problems found in this  

 chapter may be assigned 
online in Enhanced WebAssign

1.  straightforward; 2. intermediate;  
3. challenging

1.   full solution available in the Student 
Solutions Manual/Study Guide

AMT   Analysis Model tutorial available in 
Enhanced WebAssign

 GP  Guided Problem

 M   Master It tutorial available in Enhanced 
WebAssign

 W   Watch It video solution available in 
Enhanced WebAssign

BIO
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Work: more general definition
What if F is not constant?

 7.2 Work Done by a Constant Force 179

eraser, which we identify as the system, and the eraser slides along the tray. If we 
want to know how effective the force is in moving the eraser, we must consider not 
only the magnitude of the force but also its direction. Notice that the finger in Fig-
ure 7.1 applies forces in three different directions on the eraser. Assuming the mag-
nitude of the applied force is the same in all three photographs, the push applied 
in Figure 7.1b does more to move the eraser than the push in Figure 7.1a. On the 
other hand, Figure 7.1c shows a situation in which the applied force does not move 
the eraser at all, regardless of how hard it is pushed (unless, of course, we apply a 
force so great that we break the chalkboard tray!). These results suggest that when 
analyzing forces to determine the influence they have on the system, we must con-
sider the vector nature of forces. We must also consider the magnitude of the force. 
Moving a force with a magnitude of 0 FS 0 5 2 N through a displacement represents a 
greater influence on the system than moving a force of magnitude 1 N through the 
same displacement. The magnitude of the displacement is also important. Moving 
the eraser 3 m along the tray represents a greater influence than moving it 2 cm if 
the same force is used in both cases.
 Let us examine the situation in Figure 7.2, where the object (the system) under-
goes a displacement along a straight line while acted on by a constant force of mag-
nitude F that makes an angle u with the direction of the displacement.

The work W done on a system by an agent exerting a constant force on the 
system is the product of the magnitude F of the force, the magnitude Dr of 
the displacement of the point of application of the force, and cos u, where u is  
the angle between the force and displacement vectors:

 W ; F Dr cos u (7.1)

 Notice in Equation 7.1 that work is a scalar, even though it is defined in terms 
of two vectors, a force F

S
 and a displacement D rS. In Section 7.3, we explore how to 

combine two vectors to generate a scalar quantity.
 Notice also that the displacement in Equation 7.1 is that of the point of application 
of the force. If the force is applied to a particle or a rigid object that can be modeled 
as a particle, this displacement is the same as that of the particle. For a deformable 
system, however, these displacements are not the same. For example, imagine press-
ing in on the sides of a balloon with both hands. The center of the balloon moves 
through zero displacement. The points of application of the forces from your hands 
on the sides of the balloon, however, do indeed move through a displacement as 
the balloon is compressed, and that is the displacement to be used in Equation 7.1. 
We will see other examples of deformable systems, such as springs and samples of 
gas contained in a vessel.
 As an example of the distinction between the definition of work and our every-
day understanding of the word, consider holding a heavy chair at arm’s length for 
3 min. At the end of this time interval, your tired arms may lead you to think you 

�W  Work done by a  
constant force

a b c

Figure 7.1  An eraser being pushed along a chalkboard tray by a force acting at different angles 
with respect to the horizontal direction. 

!

u

F
S

rS 

Figure 7.2  An object undergoes 
a displacement D rS under the 
action of a constant force F

S
.

Pitfall Prevention 7.2
Work Is Done by . . . on . . . Not 
only must you identify the system, 
you must also identify what agent 
in the environment is doing work 
on the system. When discussing 
work, always use the phrase, “the 
work done by . . . on . . . .” After 
“by,” insert the part of the environ-
ment that is interacting directly 
with the system. After “on,” insert 
the system. For example, “the work 
done by the hammer on the nail” 
identifies the nail as the system, 
and the force from the hammer 
represents the influence from the 
environment.
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Work, W

For an applied force,
#»

F( #»r ):

W =

∫
#»

F( #»r ) · d #»r

Work is the amount of energy transferred to a system by an
interaction with the environment.



Work: more general definition
Consider moving an object across a surface, not necessarily in a
straight line. The force may also vary in magnitude and direction
during the motion.

Work is a path integral

W =

∫
#»

F · d #»s

Wa→b =

∫b
a
F cos θ ds



Work: more general definition
Fx is the x-component of

#»

F .
Break up our x-displacement into little slices; Fx can be different
in each slice. The work for each little slice is Wi = F (x)∆x

184 Chapter 7 Energy of a System

If the size of the small displacements is allowed to approach zero, the number of 
terms in the sum increases without limit but the value of the sum approaches a defi-
nite value equal to the area bounded by the Fx curve and the x axis:

lim
Dx S 0

axf

xi

 Fx  Dx 5 3
xf

xi

 Fx dx

Therefore, we can express the work done by Fx on the system of the particle as it 
moves from xi to xf as

 W 5 3
xf

xi

 Fx dx (7.7)

This equation reduces to Equation 7.1 when the component Fx 5 F cos u remains 
constant.
 If more than one force acts on a system and the system can be modeled as a particle, 
the total work done on the system is just the work done by the net force. If we 
express the net force in the x direction as o Fx, the total work, or net work, done as 
the particle moves from xi to xf is

aW 5 Wext 5 3
xf

xi

1 a Fx 2  dx (particle)

For the general case of a net force g  F
S

 whose magnitude and direction may both 
vary, we use the scalar product,

 aW 5 Wext 5 3 1 a F
S 2 ? d rS  (particle) (7.8)

where the integral is calculated over the path that the particle takes through space. 
The subscript “ext” on work reminds us that the net work is done by an external 
agent on the system. We will use this notation in this chapter as a reminder and to 
differentiate this work from an internal work to be described shortly.
 If the system cannot be modeled as a particle (for example, if the system is 
deformable), we cannot use Equation 7.8 because different forces on the system 
may move through different displacements. In this case, we must evaluate the work 
done by each force separately and then add the works algebraically to find the net 
work done on the system:

 aW 5 Wext 5 a
forces

 a3  F
S

? d rSb (deformable system) 

Fx Area  =  Fx  x

Fx

xxfxi

x

Fx

xxfxi

Work

!

!

The total work done for the 
displacement from xi to xf is 
approximately equal to the sum 
of the areas of all the rectangles.

The work done by the component 
Fx of the varying force as the par-
ticle moves from xi to xf is exactly 
equal to the area under the curve.

a

b

Figure 7.7  (a) The work done on 
a particle by the force component 
Fx for the small displacement Dx is 
Fx Dx, which equals the area of the 
shaded rectangle. (b) The width Dx 
of each rectangle is shrunk to zero.

Example 7.4   Calculating Total Work Done from a Graph

A force acting on a particle varies with x as shown in Figure 7.8. Calculate the 
work done by the force on the particle as it moves from x 5 0 to x 5 6.0 m.

Conceptualize  Imagine a particle subject to the force in Figure 7.8. The force 
remains constant as the particle moves through the first 4.0 m and then decreases 
linearly to zero at 6.0 m. In terms of earlier discussions of motion, the particle could 
be modeled as a particle under constant acceleration for the first 4.0 m because 
the force is constant. Between 4.0 m and 6.0 m, however, the motion does not fit 
into one of our earlier analysis models because the acceleration of the particle is 
changing. If the particle starts from rest, its speed increases throughout the motion, 
and the particle is always moving in the positive x direction. These details about its 
speed and direction are not necessary for the calculation of the work done, however.

Categorize  Because the force varies during the motion of the particle, we must 
use the techniques for work done by varying forces. In this case, the graphical representation in Figure 7.8 can be used 
to evaluate the work done.

S O L U T I O N

1 2 3 4 5 6
x (m)0

5

Fx (N)

!

" #

The net work done by this force 
is the area under the curve.

Figure 7.8  (Example 7.4) The 
force acting on a particle is constant 
for the first 4.0 m of motion and then 
decreases linearly with x from x# 5 
4.0 m to x! 5 6.0 m.

Then add them together: W =
∑

x Fx∆x (work done by x-comp)

As the length of the little slices goes to zero:

lim
∆x→0

∑
x

Fx∆x =

∫
F (x) dx



Work: more general definition

Work done is the area under a force-displacement curve.
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If the size of the small displacements is allowed to approach zero, the number of 
terms in the sum increases without limit but the value of the sum approaches a defi-
nite value equal to the area bounded by the Fx curve and the x axis:

lim
Dx S 0

axf

xi

 Fx  Dx 5 3
xf

xi

 Fx dx

Therefore, we can express the work done by Fx on the system of the particle as it 
moves from xi to xf as

 W 5 3
xf

xi

 Fx dx (7.7)

This equation reduces to Equation 7.1 when the component Fx 5 F cos u remains 
constant.
 If more than one force acts on a system and the system can be modeled as a particle, 
the total work done on the system is just the work done by the net force. If we 
express the net force in the x direction as o Fx, the total work, or net work, done as 
the particle moves from xi to xf is

aW 5 Wext 5 3
xf

xi

1 a Fx 2  dx (particle)

For the general case of a net force g  F
S

 whose magnitude and direction may both 
vary, we use the scalar product,

 aW 5 Wext 5 3 1 a F
S 2 ? d rS  (particle) (7.8)

where the integral is calculated over the path that the particle takes through space. 
The subscript “ext” on work reminds us that the net work is done by an external 
agent on the system. We will use this notation in this chapter as a reminder and to 
differentiate this work from an internal work to be described shortly.
 If the system cannot be modeled as a particle (for example, if the system is 
deformable), we cannot use Equation 7.8 because different forces on the system 
may move through different displacements. In this case, we must evaluate the work 
done by each force separately and then add the works algebraically to find the net 
work done on the system:
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Figure 7.7  (a) The work done on 
a particle by the force component 
Fx for the small displacement Dx is 
Fx Dx, which equals the area of the 
shaded rectangle. (b) The width Dx 
of each rectangle is shrunk to zero.

Example 7.4   Calculating Total Work Done from a Graph

A force acting on a particle varies with x as shown in Figure 7.8. Calculate the 
work done by the force on the particle as it moves from x 5 0 to x 5 6.0 m.

Conceptualize  Imagine a particle subject to the force in Figure 7.8. The force 
remains constant as the particle moves through the first 4.0 m and then decreases 
linearly to zero at 6.0 m. In terms of earlier discussions of motion, the particle could 
be modeled as a particle under constant acceleration for the first 4.0 m because 
the force is constant. Between 4.0 m and 6.0 m, however, the motion does not fit 
into one of our earlier analysis models because the acceleration of the particle is 
changing. If the particle starts from rest, its speed increases throughout the motion, 
and the particle is always moving in the positive x direction. These details about its 
speed and direction are not necessary for the calculation of the work done, however.

Categorize  Because the force varies during the motion of the particle, we must 
use the techniques for work done by varying forces. In this case, the graphical representation in Figure 7.8 can be used 
to evaluate the work done.
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The net work done by this force 
is the area under the curve.

Figure 7.8  (Example 7.4) The 
force acting on a particle is constant 
for the first 4.0 m of motion and then 
decreases linearly with x from x# 5 
4.0 m to x! 5 6.0 m.

If there are y and z components, the work of those components
also contributes:

W =

∫
#»

F(r) · d #»r =

∫
Fx dx+

∫
Fy dy +

∫
Fz dz

1Figures from Serway & Jewett.



Summary

• Energy, systems, environments

• Work

(Uncollected) Homework Serway & Jewett,

• Read Chapter 7.
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