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• energy
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• work



Warm Up Question

What is the work done by the force indicated in the graph as the
particle moves from x = 0 to x = 6 m?

184 Chapter 7 Energy of a System

If the size of the small displacements is allowed to approach zero, the number of 
terms in the sum increases without limit but the value of the sum approaches a defi-
nite value equal to the area bounded by the Fx curve and the x axis:

lim
Dx S 0

axf

xi

 Fx  Dx 5 3
xf

xi

 Fx dx

Therefore, we can express the work done by Fx on the system of the particle as it 
moves from xi to xf as

 W 5 3
xf

xi

 Fx dx (7.7)

This equation reduces to Equation 7.1 when the component Fx 5 F cos u remains 
constant.
 If more than one force acts on a system and the system can be modeled as a particle, 
the total work done on the system is just the work done by the net force. If we 
express the net force in the x direction as o Fx, the total work, or net work, done as 
the particle moves from xi to xf is

aW 5 Wext 5 3
xf

xi

1 a Fx 2  dx (particle)

For the general case of a net force g  F
S

 whose magnitude and direction may both 
vary, we use the scalar product,

 aW 5 Wext 5 3 1 a F
S 2 ? d rS  (particle) (7.8)

where the integral is calculated over the path that the particle takes through space. 
The subscript “ext” on work reminds us that the net work is done by an external 
agent on the system. We will use this notation in this chapter as a reminder and to 
differentiate this work from an internal work to be described shortly.
 If the system cannot be modeled as a particle (for example, if the system is 
deformable), we cannot use Equation 7.8 because different forces on the system 
may move through different displacements. In this case, we must evaluate the work 
done by each force separately and then add the works algebraically to find the net 
work done on the system:

 aW 5 Wext 5 a
forces

 a3  F
S

? d rSb (deformable system) 

Fx Area  =  Fx  x

Fx

xxfxi

x
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Work
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The total work done for the 
displacement from xi to xf is 
approximately equal to the sum 
of the areas of all the rectangles.

The work done by the component 
Fx of the varying force as the par-
ticle moves from xi to xf is exactly 
equal to the area under the curve.
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b

Figure 7.7  (a) The work done on 
a particle by the force component 
Fx for the small displacement Dx is 
Fx Dx, which equals the area of the 
shaded rectangle. (b) The width Dx 
of each rectangle is shrunk to zero.

Example 7.4   Calculating Total Work Done from a Graph

A force acting on a particle varies with x as shown in Figure 7.8. Calculate the 
work done by the force on the particle as it moves from x 5 0 to x 5 6.0 m.

Conceptualize  Imagine a particle subject to the force in Figure 7.8. The force 
remains constant as the particle moves through the first 4.0 m and then decreases 
linearly to zero at 6.0 m. In terms of earlier discussions of motion, the particle could 
be modeled as a particle under constant acceleration for the first 4.0 m because 
the force is constant. Between 4.0 m and 6.0 m, however, the motion does not fit 
into one of our earlier analysis models because the acceleration of the particle is 
changing. If the particle starts from rest, its speed increases throughout the motion, 
and the particle is always moving in the positive x direction. These details about its 
speed and direction are not necessary for the calculation of the work done, however.

Categorize  Because the force varies during the motion of the particle, we must 
use the techniques for work done by varying forces. In this case, the graphical representation in Figure 7.8 can be used 
to evaluate the work done.
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The net work done by this force 
is the area under the curve.

Figure 7.8  (Example 7.4) The 
force acting on a particle is constant 
for the first 4.0 m of motion and then 
decreases linearly with x from x# 5 
4.0 m to x! 5 6.0 m.

W = 25 J.
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Overview

• work as an integral and springs

• Work-Kinetic Energy theorem

• potential energy

• conservative forces and non-conservative forces



Work: more general definition
What if F is not constant?

 7.2 Work Done by a Constant Force 179

eraser, which we identify as the system, and the eraser slides along the tray. If we 
want to know how effective the force is in moving the eraser, we must consider not 
only the magnitude of the force but also its direction. Notice that the finger in Fig-
ure 7.1 applies forces in three different directions on the eraser. Assuming the mag-
nitude of the applied force is the same in all three photographs, the push applied 
in Figure 7.1b does more to move the eraser than the push in Figure 7.1a. On the 
other hand, Figure 7.1c shows a situation in which the applied force does not move 
the eraser at all, regardless of how hard it is pushed (unless, of course, we apply a 
force so great that we break the chalkboard tray!). These results suggest that when 
analyzing forces to determine the influence they have on the system, we must con-
sider the vector nature of forces. We must also consider the magnitude of the force. 
Moving a force with a magnitude of 0 FS 0 5 2 N through a displacement represents a 
greater influence on the system than moving a force of magnitude 1 N through the 
same displacement. The magnitude of the displacement is also important. Moving 
the eraser 3 m along the tray represents a greater influence than moving it 2 cm if 
the same force is used in both cases.
 Let us examine the situation in Figure 7.2, where the object (the system) under-
goes a displacement along a straight line while acted on by a constant force of mag-
nitude F that makes an angle u with the direction of the displacement.

The work W done on a system by an agent exerting a constant force on the 
system is the product of the magnitude F of the force, the magnitude Dr of 
the displacement of the point of application of the force, and cos u, where u is  
the angle between the force and displacement vectors:

 W ; F Dr cos u (7.1)

 Notice in Equation 7.1 that work is a scalar, even though it is defined in terms 
of two vectors, a force F

S
 and a displacement D rS. In Section 7.3, we explore how to 

combine two vectors to generate a scalar quantity.
 Notice also that the displacement in Equation 7.1 is that of the point of application 
of the force. If the force is applied to a particle or a rigid object that can be modeled 
as a particle, this displacement is the same as that of the particle. For a deformable 
system, however, these displacements are not the same. For example, imagine press-
ing in on the sides of a balloon with both hands. The center of the balloon moves 
through zero displacement. The points of application of the forces from your hands 
on the sides of the balloon, however, do indeed move through a displacement as 
the balloon is compressed, and that is the displacement to be used in Equation 7.1. 
We will see other examples of deformable systems, such as springs and samples of 
gas contained in a vessel.
 As an example of the distinction between the definition of work and our every-
day understanding of the word, consider holding a heavy chair at arm’s length for 
3 min. At the end of this time interval, your tired arms may lead you to think you 

�W  Work done by a  
constant force
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Figure 7.1  An eraser being pushed along a chalkboard tray by a force acting at different angles 
with respect to the horizontal direction. 
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Figure 7.2  An object undergoes 
a displacement D rS under the 
action of a constant force F

S
.

Pitfall Prevention 7.2
Work Is Done by . . . on . . . Not 
only must you identify the system, 
you must also identify what agent 
in the environment is doing work 
on the system. When discussing 
work, always use the phrase, “the 
work done by . . . on . . . .” After 
“by,” insert the part of the environ-
ment that is interacting directly 
with the system. After “on,” insert 
the system. For example, “the work 
done by the hammer on the nail” 
identifies the nail as the system, 
and the force from the hammer 
represents the influence from the 
environment.
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Work, W

For an applied force,
#»

F( #»r ):

W =

∫
#»

F( #»r ) · d #»r

Work is the amount of energy transferred to a system by an
interaction with the environment.



Springs and Work

The force exerted by many types of springs is governed by Hooke’s
Law.

#»

F spring = −k #»x

where

• #»x is the amount of displacement of one end of a spring from
its natural length. (The amount of compression or extension.

• k is the force constant or spring constant.

1Figure from CCRMA Stanford Univ.



Spring Force depends on position

 7.4 Work Done by a Varying Force 185

Analyze  The work done by the force is equal to the area under the curve from x! 5 0 to x" 5 6.0 m. This area is equal 
to the area of the rectangular section from ! to # plus the area of the triangular section from # to ".

Evaluate the area of the rectangle: W! to # 5 (5.0 N)(4.0 m) 5 20 J 

Evaluate the area of the triangle: W# to " 5 12(5.0 N)(2.0 m) 5 5.0 J

Find the total work done by the force on the particle: W! to " 5 W! to # 1 W# to " 5 20 J 1 5.0 J 5   25 J

Finalize  Because the graph of the force consists of straight lines, we can use rules for finding the areas of simple geo-
metric models to evaluate the total work done in this example. If a force does not vary linearly as in Figure 7.7, such 
rules cannot be used and the force function must be integrated as in Equation 7.7 or 7.8.

Work Done by a Spring
A model of a common physical system on which the force varies with position is 
shown in Figure 7.9. The system is a block on a frictionless, horizontal surface and 
connected to a spring. For many springs, if the spring is either stretched or com-
pressed a small distance from its unstretched (equilibrium) configuration, it exerts 
on the block a force that can be mathematically modeled as

 Fs 5 2kx (7.9)

where x is the position of the block relative to its equilibrium (x 5 0) position and k 
is a positive constant called the force constant or the spring constant of the spring. 
In other words, the force required to stretch or compress a spring is proportional 
to the amount of stretch or compression x. This force law for springs is known as 
Hooke’s law. The value of k is a measure of the stiffness of the spring. Stiff springs 
have large k values, and soft springs have small k values. As can be seen from Equa-
tion 7.9, the units of k are N/m.

�W Spring force

Figure 7.9 The force exerted 
by a spring on a block varies with 
the block’s position x relative to 
the equilibrium position x 5 0.  
(a) x is positive. (b) x is zero. (c) x 
is negative. (d) Graph of Fs versus 
x for the block–spring system.
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When x is positive 
(stretched spring), the 
spring force is directed 
to the left.

When x is zero 
(natural length of the 
spring), the spring 
force is zero.

When x is negative 
(compressed spring), 
the spring force is 
directed to the right.

The work done by the 
spring force on the 
block as it moves from 
"xmax to 0 is the area 
of the shaded triangle,
" kx 2

max
1
2 .

Fs
S

Fs
S

 

▸ 7.4 c o n t i n u e d

#»

F s = −kx î

where x can take a positive or negative sign.

W =

∫
#»

Fs(x) · d #»x



Work done by a spring on a block

 7.4 Work Done by a Varying Force 185

Analyze  The work done by the force is equal to the area under the curve from x! 5 0 to x" 5 6.0 m. This area is equal 
to the area of the rectangular section from ! to # plus the area of the triangular section from # to ".

Evaluate the area of the rectangle: W! to # 5 (5.0 N)(4.0 m) 5 20 J 

Evaluate the area of the triangle: W# to " 5 12(5.0 N)(2.0 m) 5 5.0 J

Find the total work done by the force on the particle: W! to " 5 W! to # 1 W# to " 5 20 J 1 5.0 J 5   25 J

Finalize  Because the graph of the force consists of straight lines, we can use rules for finding the areas of simple geo-
metric models to evaluate the total work done in this example. If a force does not vary linearly as in Figure 7.7, such 
rules cannot be used and the force function must be integrated as in Equation 7.7 or 7.8.

Work Done by a Spring
A model of a common physical system on which the force varies with position is 
shown in Figure 7.9. The system is a block on a frictionless, horizontal surface and 
connected to a spring. For many springs, if the spring is either stretched or com-
pressed a small distance from its unstretched (equilibrium) configuration, it exerts 
on the block a force that can be mathematically modeled as

 Fs 5 2kx (7.9)

where x is the position of the block relative to its equilibrium (x 5 0) position and k 
is a positive constant called the force constant or the spring constant of the spring. 
In other words, the force required to stretch or compress a spring is proportional 
to the amount of stretch or compression x. This force law for springs is known as 
Hooke’s law. The value of k is a measure of the stiffness of the spring. Stiff springs 
have large k values, and soft springs have small k values. As can be seen from Equa-
tion 7.9, the units of k are N/m.

�W Spring force

Figure 7.9 The force exerted 
by a spring on a block varies with 
the block’s position x relative to 
the equilibrium position x 5 0.  
(a) x is positive. (b) x is zero. (c) x 
is negative. (d) Graph of Fs versus 
x for the block–spring system.

x

x

x

Fs

x
0

kxmax

xmax
Fs ! "kx

x

x ! 0

x

x

b

c

d

a

When x is positive 
(stretched spring), the 
spring force is directed 
to the left.

When x is zero 
(natural length of the 
spring), the spring 
force is zero.

When x is negative 
(compressed spring), 
the spring force is 
directed to the right.

The work done by the 
spring force on the 
block as it moves from 
"xmax to 0 is the area 
of the shaded triangle,
" kx 2

max
1
2 .

Fs
S

Fs
S

 

▸ 7.4 c o n t i n u e d

The work done by the spring on
the block as the spring moves the
block from (−xmax)→ 0:

Ws =

∫0
−xmax

#»

Fs(x) · d #»x

=

∫0
−xmax

(−kx )̂i · d #»x

= −

∫0
−xmax

k x dx

=
1

2
k(xmax)

2



Work done by an applied force on block / spring

Why was the spring compressed to begin with? Suppose there is
an applied force. Suppose

#»

Fapp does not allow the block to
accelerate: block’s #»v is constant.
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This work is equal to the negative of the work done by the spring force for this dis-
placement (Eq. 7.11). The work is negative because the external agent must push 
inward on the spring to prevent it from expanding, and this direction is opposite 
the direction of the displacement of the point of application of the force as the 
block moves from 2xmax to 0.
 For an arbitrary displacement of the block, the work done on the system by the 
external agent is

 Wext 5 3
xf

xi

 kx dx 5 1
2kxf

2 2 1
2kxi

2 (7.13)

Notice that this equation is the negative of Equation 7.12.

Q uick Quiz 7.4  A dart is inserted into a spring-loaded dart gun by pushing the 
spring in by a distance x. For the next loading, the spring is compressed a dis-
tance 2x. How much work is required to load the second dart compared with 
that required to load the first? (a) four times as much (b) two times as much  
(c) the same (d) half as much (e) one-fourth as much

Example 7.5   Measuring k for a Spring 

A common technique used to measure the force constant of a spring is demon-
strated by the setup in Figure 7.11. The spring is hung vertically (Fig. 7.11a), and 
an object of mass m is attached to its lower end. Under the action of the “load” mg, 
the spring stretches a distance d from its equilibrium position (Fig. 7.11b).

(A)  If a spring is stretched 2.0 cm by a suspended object having a mass of 
0.55 kg, what is the force constant of the spring?

Conceptualize  Figure 7.11b shows what happens to the spring when the object is 
attached to it. Simulate this situation by hanging an object on a rubber band.

Categorize  The object in Figure 7.11b is at rest and not accelerating, so it is mod-
eled as a particle in equilibrium.

Analyze  Because the object is in equilibrium, the net force on it is zero and the 
upward spring force balances the downward gravitational force mgS (Fig. 7.11c).

AM

S O L U T I O N

d

mgS

Fs
S

The elongation d is 
caused by the weight mg 
of the attached object.

b ca

Figure 7.11  (Example 7.5) Deter-
mining the force constant k of a 
spring.

Apply Hooke’s law to give Fs 5 kd and solve for k: k 5
mg
d

5
10.55 kg 2 19.80 m/s2 2

2.0 3 1022 m
5 2.7 3 102 N/m

Apply the particle in equilibrium model to the object: F
S

s 1 mgS 5 0  S   Fs 2 mg 5 0  S   Fs 5 mg

continued

Use Equation 7.12 to find the work done by the spring 
on the object:

Ws 5 0 2 1
2kd 2 5 21

2 12.7 3 102 N/m 2 12.0 3 1022 m 22

5  25.4 3 1022 J

(B)  How much work is done by the spring on the object as it stretches through this distance?

S O L U T I O N

Finalize  This work is negative because the spring force acts upward on the object, but its point of application (where 
the spring attaches to the object) moves downward. As the object moves through the 2.0-cm distance, the gravitational 
force also does work on it. This work is positive because the gravitational force is downward and so is the displacement 

xi ! "xmax xf ! 0

Fs
S

Fapp
S

If the process of moving the 
block is carried out very slowly, 
then Fapp is equal in magnitude 
and opposite in direction to Fs 
at all times.

S

S

Figure 7.10  A block moves from  
xi 5 2xmax to xf 5 0 on a friction-
less surface as a force F

S
app is 

applied to the block.
Wapp =

∫0
−xmax

(kx)dx⇒Wapp = −Ws



Question

Quick Quiz 7.41 A dart is inserted into a spring-loaded dart gun
by pushing the spring in by a distance x . For the next loading, the
spring is compressed a distance 2x . How much work is required to
load the second dart compared with that required to load the first?

(A) four times as much

(B) two times as much

(C) the same

(D) half as much

2Serway & Jewett.
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by pushing the spring in by a distance x . For the next loading, the
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Work and Kinetic Energy

We have already said:

Kinetic energy, K

the energy that a system has as a result of its motion, or the
motion of its constituent parts.

K =
1

2
mv2

but where did this expression come from? Why is it an energy?



Work and Kinetic Energy: The Work-KE Theorem
We can relate work to kinetic energy.

Reminder: In general, work is a path integral.

W =

∫
#»

F · d #»s

Wa→b =

∫b
a
F cos θ ds



Work and Kinetic Energy: The Work-KE Theorem

The net work done on a (particle) system is the total energy that
is transferred to the system from the environment.

Consider a particle of mass m with forces on it. How much work
do we do as we change its speed?

For a particle,

Wnet =

∫
#»

Fnet · d #»r

=

∫
m #»a · d #»r

= m

∫
d #»v

dt
· d #»r



Work and Kinetic Energy: The Work-KE Theorem

d #»r = #»v dt, so

Wnet = m

∫
d #»v

dt
· d #»r

= m

∫
d #»v

dt
· #»v dt

Now, we need to evaluate that dot product d #»v
dt ·

#»v .

Product rule: d(v2)
dt = d #»v · #»v

dt = 2 d #»v
dt ·

#»v .



Work and Kinetic Energy: The Work-KE Theorem

d #»r = #»v dt, so

Wnet = m

∫
d #»v

dt
· d #»r

= m

∫
d #»v

dt
· #»v dt

Now, we need to evaluate that dot product d #»v
dt ·

#»v .

Product rule: d(v2)
dt = d #»v · #»v

dt = 2 d #»v
dt ·

#»v .



Work-KE Theorem

Therefore d #»v
dt ·

#»v = 1
2

d(v2)
dt ,

Wnet = m

∫ (
1

2

dv2

dt

)
dt

=
1

2
m

∫ v2
f

v2
i

d(v2)

=
1

2
m(v2f − v2i )

= Kf − Ki

= ∆K



Work-Kinetic Energy Theorem

So,

Wnet = ∆K

This is the Work-Kinetic Energy Theorem2, which could also be
stated as:

“When the environment does work on a system and the only
change in a system is in its speed, the net work done on the
system equals the change in kinetic energy of the system.”

2Note: we have assumed the system consists of only a particle. There is no
way to define a potential energy in this case.



Question

Quick Quiz 7.53 A dart is inserted into a spring-loaded dart gun
by pushing the spring in by a distance x . For the next loading, the
spring is compressed a distance 2x . How much faster does the
second dart leave the gun compared with the first?

(A) four times as fast

(B) two times as fast

(C) the same

(D) half as fast
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Work Done Lifting a Box

Work done by person (applied force) W = F (∆y) cos(0◦) = mgh.

8–1 CONSERVATIVE AND NONCONSERVATIVE FORCES 205

h

Work done by person = mgh Work done by gravity = mgh FIGURE 8–1 Work against gravity
Lifting a box against gravity with con-
stant speed takes a work mgh. When the
box is released, gravity does the same
work on the box as it falls. Gravity is a
conservative force.

▲

N

kN

mg

Work = 

!

kmgd!

kN!
d

FIGURE 8–2 Work against friction
Pushing a box with constant speed
against friction takes a work 
When the box is released, it quickly
comes to rest and friction does no further
work. Friction is a nonconservative force.

mkmgd.

▲

8–1 Conservative and Nonconservative Forces
In physics, we classify forces according to whether they are conservative or
nonconservative. The key distinction is that when a conservative force acts, the
work it does is stored in the form of energy that can be released at a later time. In
this section, we sharpen this distinction and explore some examples of conserva-
tive and nonconservative forces.

Perhaps the simplest case of a conservative force is gravity. Imagine lifting a
box of mass m from the floor to a height h, as in Figure 8–1. To lift the box with
constant speed, the force you must exert against gravity is mg. Since the upward
distance is h, the work you do on the box is If you now release the box
and allow it to drop back to the floor, gravity does the same work, and
in the process gives the box an equivalent amount of kinetic energy.

W = mgh,
W = mgh.

Contrast this with the force of kinetic friction, which is nonconservative. To
slide a box of mass m across the floor with constant speed, as shown in Figure 8–2,
you must exert a force of magnitude After sliding the box a distance
d, the work you have done is In this case, when you release the box
it simply stays put—friction does no work on it after you let go. Thus, the work
done by a nonconservative force cannot be recovered later as kinetic energy; in-
stead, it is converted to other forms of energy, such as a slight warming of the
floor and box in our example.

The differences between conservative and nonconservative forces are even
more apparent if we consider moving an object around a closed path. Consider,
for example, the path shown in Figure 8–3. If we move a box of mass m along this
path, the total work done by gravity is the sum of the work done on each segment
of the path; that is The work done by grav-
ity from A to B and from C to D is zero, since the force is at right angles to the dis-
placement on these segments. Thus On the segment from B to
C, gravity does negative work (displacement and force are in opposite directions),

WAB = WCD = 0.

Wtotal = WAB + WBC + WCD + WDA.

W = mkmgd.
mkN = mkmg.
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When box falls, this energy becomes kinetic energy.
Wnet = mgh = ∆K .
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path, the total work done by gravity is the sum of the work done on each segment
of the path; that is The work done by grav-
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placement on these segments. Thus On the segment from B to
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When the box is in the air, it has the “potential” to have kinetic
energy.

The man put in work lifting it, as long as the box is held in the air,
this energy is stored.



Potential Energy

This illustrates that there is another type of energy that it makes
intuitive sense to assign in some systems.

That is a kind of energy that results from the configuration of the
system, the potential energy.



Work Done Lifting a Box
Work done by person (applied force)
Wapp = F (∆y) cos(0◦) = mgh.
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you must exert a force of magnitude After sliding the box a distance
d, the work you have done is In this case, when you release the box
it simply stays put—friction does no work on it after you let go. Thus, the work
done by a nonconservative force cannot be recovered later as kinetic energy; in-
stead, it is converted to other forms of energy, such as a slight warming of the
floor and box in our example.

The differences between conservative and nonconservative forces are even
more apparent if we consider moving an object around a closed path. Consider,
for example, the path shown in Figure 8–3. If we move a box of mass m along this
path, the total work done by gravity is the sum of the work done on each segment
of the path; that is The work done by grav-
ity from A to B and from C to D is zero, since the force is at right angles to the dis-
placement on these segments. Thus On the segment from B to
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Work done by gravity Wg = F (∆y) cos(180◦) = −mgh.
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When could we define a potential energy for a system and have it
be meaningful?

When there is an internal, conservative force acting within our
system.



Conservative Forces

The work done by gravity when raising and lowering an object
around a closed path is zero.
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FIGURE 8–3 Work done by gravity on
a closed path is zero
Gravity does no work on the two hori-
zontal segments of the path. On the two
vertical segments, the amounts of work
done are equal in magnitude but oppo-
site in sign. Therefore, the total work
done by gravity on this—or any—closed
path is zero.
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FIGURE 8–4 Work done by friction 
on a closed path is nonzero
The work done by friction when an
object moves through a distance d is

Thus, the total work done by
friction on a closed path is nonzero. In
this case, it is equal to - 4 mkmgd.

-mkmgd.

▲

but it does positive work from D to A (displacement and force are in the same
direction). Hence, and As a result, the total work done
by gravity is zero:

With friction, the results are quite different. If we push the box around the
closed horizontal path shown in Figure 8–4, the total work done by friction does
not vanish. In fact, friction does the negative work on each
segment. Therefore, the total work done by kinetic friction is

These results lead to the following definition of a conservative force:

Conservative Force: Definition 1
A conservative force is a force that does zero total work on any closed path.

Wtotal = 1-mkmgd2 + 1-mkmgd2 + 1-mkmgd2 + 1-mkmgd2 = -4 mkmgd

W = -fkd = -mkmgd

Wtotal = 0 + 1-mgh2 + 0 + mgh = 0

WDA = mgh.WBC = -mgh
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The path taken doesn’t matter; if it comes back to the start, the
work done is zero.

Forces (like gravity) that behave this way are called conservative
forces.



Nonconservative Forces: Friction

The work done by kinetic friction is always negative.

Kinetic friction points in the opposite direction to the velocity /
instantaneous displacement.
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slide a box of mass m across the floor with constant speed, as shown in Figure 8–2,
you must exert a force of magnitude After sliding the box a distance
d, the work you have done is In this case, when you release the box
it simply stays put—friction does no work on it after you let go. Thus, the work
done by a nonconservative force cannot be recovered later as kinetic energy; in-
stead, it is converted to other forms of energy, such as a slight warming of the
floor and box in our example.

The differences between conservative and nonconservative forces are even
more apparent if we consider moving an object around a closed path. Consider,
for example, the path shown in Figure 8–3. If we move a box of mass m along this
path, the total work done by gravity is the sum of the work done on each segment
of the path; that is The work done by grav-
ity from A to B and from C to D is zero, since the force is at right angles to the dis-
placement on these segments. Thus On the segment from B to
C, gravity does negative work (displacement and force are in opposite directions),
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Wfk = −fkd = −µkNd

where d is the distance the object moves along the surface.



Nonconservative Forces

The work done by friction when pushing an object around a closed
path is not zero.
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but it does positive work from D to A (displacement and force are in the same
direction). Hence, and As a result, the total work done
by gravity is zero:

With friction, the results are quite different. If we push the box around the
closed horizontal path shown in Figure 8–4, the total work done by friction does
not vanish. In fact, friction does the negative work on each
segment. Therefore, the total work done by kinetic friction is

These results lead to the following definition of a conservative force:

Conservative Force: Definition 1
A conservative force is a force that does zero total work on any closed path.
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Forces (like friction) where the work done over a closed path is not
zero are called nonconservative forces.



Conservative and Nonconservative Forces

Conservative force

A force that has the property that the work done by the force on a
particle that moves between any given initial and final points is
independent of the path taken by the particle.

Equivalently, the work done by the force as the particle moves
through a closed path is zero.

examples:

• gravity

• spring force

Nonconservative force

Any force that is not a conservative force.

examples:

• friction

• air resistance



Summary

• work and springs

• kinetic energy

• Work-Kinetic Energy Theorem

• potential energy

• conservative and non-conservative forces

Assignment 2 has been posted, due Wednesday, Feb 19.

Presidents’ day weekend no classes Friday, 14th -
Monday, 17.

(Uncollected) Homework Serway & Jewett,

• Read Chapter 7.

• Ch 7, onward from page 205. Probs: 25, 35, 39, 43, 45


