# Energy <br> Work vs Potential Energy Energy and Friction 

Lana Sheridan<br>De Anza College

Feb 19, 2020

## Last time

- comment about conservation laws
- work vs. potential energy (nonisolated vs. isolated system models)
- energy conservation in isolated systems


## Overview

- energy conservation in isolated systems
- kinetic friction and energy


## How to Solve Energy Conservation Problems

(1) Draw (a) diagram(s). Free body diagrams or full pictures, as needed.
(2) Identify the system. State what it is. Is it isolated?
(3) Identify the initial point / configuration of the system.
(4) Identify the final point / configuration of the system.
(5) Write the energy conservation equation.
(6) Fill in the expressions as needed.
(7) Solve.

8 (Analyze answer: reasonable value?, check units, etc.)

## Isolated system example

Page 237, \#7
7. Two objects are connected

M by a light string passing over a light, frictionless pulley as shown in Figure P8.7. The object of mass $m_{1}=5.00 \mathrm{~kg}$ is released from rest at a height $h=4.00 \mathrm{~m}$ above the table. Using the isolated system model, (a) determine the speed of the object of mass $m_{2}=3.00 \mathrm{~kg}$ just as the $5.00-\mathrm{kg}$ object hits the table and (b) find the maximum height above the table to which the $3.00-\mathrm{kg}$ object rises.


Figure P8.7
Problems 7 and 8.

## Isolated system example

(a) find speed of $m_{2}$ as $m_{1}$ hits table

System: blocks + Earth, isolated.

Initial point, (i): $m_{2}$ is in contact with the table,
Final point, ©f: $m_{1}$ is just about to hit the table.
Let's choose the table surface to be $y=0, U=0$

$$
\mathbb{W}^{0}=\Delta K+\Delta U
$$

## Isolated system example

(a) find speed of $m_{2}$ as $m_{1}$ hits table

System: blocks + Earth, isolated.

Initial point, (i): $m_{2}$ is in contact with the table,
Final point, ©f: $m_{1}$ is just about to hit the table.
Let's choose the table surface to be $y=0, U=0$

$$
\begin{aligned}
\mathbb{W}^{0} & =\Delta K+\Delta U \\
0 & =\left(K_{f}-\not K_{i}^{0}\right)^{0}+\left(U_{g, f}-U_{g, i}\right) \\
0 & =\frac{1}{2}\left(m_{1}+m_{2}\right) v^{2}+\left(m_{1} g h-m_{2} g h\right) \\
v & =\sqrt{\frac{2\left(m_{1}-m_{2}\right) g h}{\left(m_{1}+m_{2}\right)}} \\
v & =4.43 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

## Isolated system example

(b) find max height above table of $m_{2}$

System: block $2+$ Earth, isolated.

Initial point, (i): $m_{2}$ at height $h, m_{1}$ is in contact with the table
Final point, (f): $m_{2}$ at max height.
Let the table surface to be $y=0, U=0$

$$
W^{0}=\Delta K+\Delta U
$$

## Isolated system example

(b) find max height above table of $m_{2}$

System: block $2+$ Earth, isolated.
Initial point, (i): $m_{2}$ at height $h, m_{1}$ is in contact with the table
Final point, (f): $m_{2}$ at max height.
Let the table surface to be $y=0, U=0$

$$
\begin{aligned}
\mathscr{W}^{0} & =\Delta K+\Delta U \\
0 & =\left(K_{f}-K_{i}\right)+\left(U_{g, f}-U_{g, i}\right) \\
0 & =-\frac{1}{2} m_{2} v^{2}+\left(m_{2} g h_{\max }-m_{2} g h\right) \\
h_{\max } & =h+\frac{v^{2}}{2 g} \\
h_{\max } & =\underline{5.00 \mathrm{~m}}
\end{aligned}
$$

## Example: Energy and Motion in a Circle

A block of mass $m$ slides from rest on a frictionless loop-the-loop track, as shown. What is the minimum release height, $h$, required for the block to maintain contact with the track at all times? Give your answer in terms of the radius of the loop, $r$.

${ }^{1}$ Walker, "Physics", Ch 8, prob 96.

## Example: Energy and Motion in a Circle

Under what condition would the block fall off the track before completing the loop?

## Example: Energy and Motion in a Circle

Under what condition would the block fall off the track before completing the loop?

When the block falls, the normal force on it from the track goes to zero.

If the block is on the verge of being able to make it around, the place it would just start to fall is the top of the loop. At the top of the loop:

## Example: Energy and Motion in a Circle

Under what condition would the block fall off the track before completing the loop?

When the block falls, the normal force on it from the track goes to zero.

If the block is on the verge of being able to make it around, the place it would just start to fall is the top of the loop. At the top of the loop:
System: block
$y$-direction:


$$
\begin{aligned}
F_{\text {net }, y} & =m a_{y} \\
-N-F_{g} & =m(-a) \\
-\mathcal{A}^{0}-m g & =-\frac{m v_{\min }^{2}}{r} \\
v_{\min } & =\sqrt{r g}
\end{aligned}
$$

## Example: Energy and Motion in a Circle

System: block + Earth, isolated.
Initial point, (i): $m$ at height $h$,
Final point, $\subseteq$ : $m$ at top of circle.
Choose the table bottom of the track to be $y=0, U=0$

$$
W^{00}=\Delta K+\Delta U
$$

## Example: Energy and Motion in a Circle

System: block + Earth, isolated.
Initial point, (i): $m$ at height $h$,
Final point, $\subsetneq: m$ at top of circle.
Choose the table bottom of the track to be $y=0, U=0$

$$
\begin{aligned}
W^{0} & =\Delta K+\Delta U \\
0 & =\left(K_{f}-\not K_{i}^{0}\right)^{0}+\left(U_{g, f}-U_{g, i}\right) \\
0 & =\frac{1}{2} m v_{\min }^{2}+(m g(2 r)-m g h) \\
h & =2 r+\frac{r}{2} \\
h & =\frac{5 r}{2}
\end{aligned}
$$

## Tracking Energy in a System, now with Internal Energy

In general we can express the conservation of energy for our system as:

$$
W=\Delta K+\Delta U+\Delta E_{\mathrm{int}}
$$

where

- $W$ is the net work done by all external forces on the system
- $\Delta K$ is the change in kinetic energy of the system
- $\Delta U$ is the change in potential energy of the system
- $\Delta E_{\text {int }}$ is the change in internal energy of the system


## Tracking Energy in a System

$$
W=\Delta K+\Delta U+\Delta E_{\mathrm{int}}
$$

where

- $W$ covers energy transfers into or out of the system
- $\Delta K$ is the change in motion of parts of the system
- $\Delta U$ is the change configuration of the system
- $\Delta E_{\text {int }}$ is energy converted to heating effects from friction in the system (or other non-conservative effects)


## Internal Energy and Kinetic Friction

When $\Delta E_{\text {int }}$ is energy converted to heating effects from friction in the system only:

$$
\Delta E_{i n t}=f_{k} s
$$

where $f_{k}$ is the magnitude of the friction force and $s$ is the total path length that the object travels with this friction force acting.

The longer the path, the larger $s$, the larger $\Delta E_{\text {int }}$.

## Kinetic Friction

Just as we had two choices for how treat a conservative force acting on our system (depending on what we call our system) we have two choices for how to think of the effect of friction.

## Kinetic Friction

Just as we had two choices for how treat a conservative force acting on our system (depending on what we call our system) we have two choices for how to think of the effect of friction.

Consider block sliding on a surface.


## Kinetic Friction: Two Views

View 1 (textbook's approach)
System: block (mass) + internal degrees of freedom of the block and the surface

By "internal degrees of freedom" we mean all of the ways energy could be stored in the molecules making up the block; molecular vibrations, etc.

$$
W_{\text {net,ext }}=\Delta K+\Delta E_{\mathrm{int}}
$$

## Kinetic Friction: Two Views

View 1 (textbook's approach)
System: block (mass) + internal degrees of freedom of the block and the surface

By "internal degrees of freedom" we mean all of the ways energy could be stored in the molecules making up the block; molecular vibrations, etc.

$$
\begin{aligned}
W_{\text {net,ext }} & =\Delta K+\Delta E_{\text {int }} \\
W_{\text {app }} & =\Delta K+f_{k} s \\
W_{\mathrm{app}}-f_{k} s & =\Delta K
\end{aligned}
$$

## Kinetic Friction: Two Views

View 2:
System: block (as a point mass)
The "internal" degrees of freedom are part of the environment.

$$
W_{\text {net, ext }}=\Delta K
$$

## Kinetic Friction: Two Views

View 2:
$\underline{\text { System: block (as a point mass) }}$
The "internal" degrees of freedom are part of the environment.

$$
\begin{aligned}
W_{\text {net }, \text { ext }} & =\Delta K \\
W_{\mathrm{app}}+W_{f_{s}} & =\Delta K \\
W_{\mathrm{app}}-f_{k} s & =\Delta K \quad \text { (same as view } 1)
\end{aligned}
$$

## Kinetic Friction


a


The point of application of the friction force moves through a displacement of magnitude $d / 2$.

## Summary

- energy conservation in isolated systems
- kinetic friction and energy

Next Test (Friday, Feb 28 OR Mon, Mar 2)..

## (Uncollected) Homework

Serway \& Jewett,

- prev: Ch 8, onward from page 236. Probs: 5, 9, 11, 45, 59, $64^{1}, 65$
- new: Ch 8 . Probs: $13,15,17,21,23$ (friction)
${ }^{1}$ Ans: $v=1.24 \mathrm{~m} / \mathrm{s}$

