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Last time

• comment about conservation laws

• work vs. potential energy (nonisolated vs. isolated system
models)

• energy conservation in isolated systems



Overview

• energy conservation in isolated systems

• kinetic friction and energy



How to Solve Energy Conservation Problems

1 Draw (a) diagram(s). Free body diagrams or full pictures, as
needed.

2 Identify the system. State what it is. Is it isolated?

3 Identify the initial point / configuration of the system.

4 Identify the final point / configuration of the system.

5 Write the energy conservation equation.

6 Fill in the expressions as needed.

7 Solve.

8 (Analyze answer: reasonable value?, check units, etc.)



Isolated system example
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duced high-frequency “microtremor” vibrations that 
were rapidly damped and did not travel far. Assume 
0.01% of the total energy was carried away by long-
range seismic waves. The magnitude of an earthquake 
on the Richter scale is given by

M 5
log E 2 4.8

1.5
  where E is the seismic wave energy in joules. According 

to this model, what was the magnitude of the demon-
stration quake?

 11. Review. The system shown in Figure 
P8.11 consists of a light, inextensible 
cord, light, frictionless pulleys, and 
blocks of equal mass. Notice that 
block B is attached to one of the pul-
leys. The system is initially held at 
rest so that the blocks are at the same 
height above the ground. The blocks 
are then released. Find the speed of 
block A at the moment the vertical 
separation of the blocks is h.

Section 8.3 Situations Involving Kinetic Friction
 12. A sled of mass m is given a kick on a frozen pond. The 

kick imparts to the sled an initial speed of 2.00 m/s. 
The coefficient of kinetic friction between sled and ice 
is 0.100. Use energy considerations to find the distance 
the sled moves before it stops.

 13. A sled of mass m is given a kick on a frozen pond. The 
kick imparts to the sled an initial speed of v. The coef-
ficient of kinetic friction between sled and ice is mk. 
Use energy considerations to find the distance the sled 
moves before it stops.

 14. A crate of mass 10.0 kg is pulled up a rough incline with 
an initial speed of 1.50 m/s. The pulling force is 100 N 
parallel to the incline, which makes an angle of 20.08 
with the horizontal. The coefficient of kinetic friction 
is 0.400, and the crate is pulled 5.00 m. (a) How much 
work is done by the gravitational force on the crate?  
(b) Determine the increase in internal energy of the 
crate–incline system owing to friction. (c) How much 
work is done by the 100-N force on the crate? (d) What 
is the change in kinetic energy of the crate? (e) What is 
the speed of the crate after being pulled 5.00 m?

 15. A block of mass m 5 2.00 kg 
is attached to a spring of 
force constant k 5 500 N/m 
as shown in Figure P8.15. 
The block is pulled to a posi-
tion xi 5 5.00 cm to the right 
of equilibrium and released 
from rest. Find the speed 
the block has as it passes 
through equilibrium if (a) the horizontal surface is 
frictionless and (b) the coefficient of friction between 
block and surface is mk 5 0.350.

 16. A 40.0-kg box initially at rest is pushed 5.00 m along 
a rough, horizontal floor with a constant applied 
horizontal force of 130 N. The coefficient of friction 
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Figure P8.15
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is its speed at point !? (b) How large is the normal 
force on the bead at point ! if its mass is 5.00 g?

 6. A block of mass m 5 5.00 kg is released from point ! 
and slides on the frictionless track shown in Figure 
P8.6. Determine (a) the block’s speed at points " and 
# and (b) the net work done by the gravitational force 
on the block as it moves from point ! to point #.

2.00 m

5.00 m
3.20 m

m
!

"

#

Figure P8.6

 7. Two objects are connected 
by a light string passing over 
a light, frictionless pulley as 
shown in Figure P8.7. The 
object of mass m1 5 5.00 kg 
is released from rest at a 
height h 5 4.00 m above the 
table. Using the isolated sys-
tem model, (a) determine 
the speed of the object of 
mass m2 5 3.00  kg just as 
the 5.00-kg object hits the 
table and (b) find the maxi-
mum height above the table 
to which the 3.00-kg object 
rises.

 8. Two objects are connected by a light string passing 
over a light, frictionless pulley as shown in Figure P8.7. 
The object of mass m1 is released from rest at height 
h above the table. Using the isolated system model,  
(a) determine the speed of m2 just as m1 hits the table 
and (b) find the maximum height above the table to 
which m2 rises.

 9. A light, rigid rod is 77.0 cm long. Its top end is piv-
oted on a frictionless, horizontal axle. The rod hangs 
straight down at rest with a small, massive ball attached 
to its bottom end. You strike the ball, suddenly giving 
it a horizontal velocity so that it swings around in a full 
circle. What minimum speed at the bottom is required 
to make the ball go over the top of the circle?

 10. At 11:00 a.m. on September 7, 2001, more than one 
million British schoolchildren jumped up and down 
for one minute to simulate an earthquake. (a) Find 
the energy stored in the children’s bodies that was con-
verted into internal energy in the ground and their 
bodies and propagated into the ground by seismic 
waves during the experiment. Assume 1 050 000 chil-
dren of average mass 36.0 kg jumped 12 times each, 
raising their centers of mass by 25.0 cm each time and 
briefly resting between one jump and the next. (b) Of 
the energy that propagated into the ground, most pro-
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h

 
m1

m2

Figure P8.7  
Problems 7 and 8.
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Isolated system example
(a) find speed of m2 as m1 hits table

System: blocks + Earth, isolated.

Initial point, i©: m2 is in contact with the table,

Final point, f©: m1 is just about to hit the table.

Let’s choose the table surface to be y = 0, U = 0

��>
0

W = ∆K + ∆U

0 = (Kf −���
0

Ki ) + (Ug ,f − Ug ,i )

0 =
1

2
(m1 +m2)v

2 + (m1gh −m2gh)

v =

√
2(m1 −m2)gh

(m1 +m2)

v = 4.43 m/s
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Isolated system example
(b) find max height above table of m2

System: block 2 + Earth, isolated.

Initial point, i©: m2 at height h, m1 is in contact with the table

Final point, f©: m2 at max height.

Let the table surface to be y = 0, U = 0

��>
0

W = ∆K + ∆U

0 = (��>
0

Kf − Ki ) + (Ug ,f − Ug ,i )

0 = −
1

2
m2v

2 + (m2ghmax −m2gh)

hmax = h +
v2

2g
hmax = 5.00 m



Isolated system example
(b) find max height above table of m2

System: block 2 + Earth, isolated.

Initial point, i©: m2 at height h, m1 is in contact with the table

Final point, f©: m2 at max height.

Let the table surface to be y = 0, U = 0

��>
0

W = ∆K + ∆U

0 = (��>
0

Kf − Ki ) + (Ug ,f − Ug ,i )

0 = −
1

2
m2v

2 + (m2ghmax −m2gh)

hmax = h +
v2

2g
hmax = 5.00 m



Example: Energy and Motion in a Circle

A block of mass m slides from rest on a frictionless loop-the-loop
track, as shown. What is the minimum release height, h, required
for the block to maintain contact with the track at all times? Give
your answer in terms of the radius of the loop, r .
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distance d the blocks travel before coming to rest. (Let
correspond to the initial position of block 2.) (b) Is the work done
on block 2 by the rope positive, negative, or zero? Explain. (c)
Calculate the work done on block 2 by the rope.

83. ••• IP Consider the system shown in Figure 8–31. (a) What
initial speed v is required if the blocks and

are to travel a distance before coming
to rest? Assume the coefficient of kinetic friction between 
and the tabletop is (b) Is the work done on by the
rope positive, negative, or zero? Explain. (c) Calculate the work
done on by the rope.

84. ••• IP Loop-the-Loop (a) A block of mass m slides from rest
on a frictionless loop-the-loop track, as shown in Figure 8–32.
What is the minimum release height, h, required for the block to
maintain contact with the track at all times? Give your answer
in terms of the radius of the loop, r. (b) Explain why the release
height obtained in part (a) is independent of the block’s mass.

m2

m2mk = 0.25.
m1

d = 6.5 cmm2 = 1.1 kg
m1 = 2.4 kg

U = 0

87. ••• IP Using Work and Energy to Calculate Tension
Consider the Atwood’s machine shown in Figure 8–23, with

and In this problem, we
show how to calculate the tension in the rope using energy and
work, rather than Newton’s laws. (a) Is the change in mechani-
cal energy for block 2 as it drops through the height h positive,
negative, or zero? Explain. (b) Use energy conservation applied
to the entire system to calculate the change in mechanical en-
ergy for block 2 as it drops through the height h. (c) Use your
answer to part (b), and the known drop height, to find the mag-
nitude of the tension in the rope.

Interactive Problems
88. •• Referring to Example 8–8 Suppose the block is released

from rest with the spring compressed 5.00 cm. The mass of the
block is 1.70 kg and the force constant of the spring is 955 N/m.
(a) What is the speed of the block when the spring expands to a
compression of only 2.50 cm? (b) What is the speed of the block
after it leaves the spring?

89. •• IP Referring to Example 8–8 Consider a spring with a
force constant of 955 N/m. (a) Suppose the mass of the block is
1.70 kg, but its initial speed can be varied. What initial speed is
required to give a maximum spring compression of 4.00 cm? (b)
Suppose the initial speed of the block is 1.09 m/s, but its mass
can be varied. What mass is required to give a maximum spring
compression of 4.00 cm?

90. •• Referring to Example 8–10 Suppose we would like the
landing speed of block 2 to be increased to 1.50 m/s. (a) Should
the coefficient of kinetic friction between block 1 and the table-
top be increased or decreased? (b) Find the required coefficient
of kinetic friction for a landing speed of 1.50 m/s. Note that

and 

91. ••• IP Referring to Example 8–10 Consider the case where
, and 

(a) Does the mechanical energy of block 2 increase, decrease, or
stay the same as it moves from point i to point f? (b) Find the
change in mechanical energy for block 2 as it moves from point
i to point f. (c) What is the nonconservative work done on block
2 by the tension in the rope? (d) What is the tension in the rope?
(e) What is the nonconservative work done on block 1 by the
tension in the rope?

mk = 0.450.d = 0.500 mm2 = 1.80 kg,m1 = 2.40 kg,

d = 0.500 m.m2 = 1.80 kg,m1 = 2.40 kg,

m2 = 4.1 kg.h = 1.2 m, m1 = 3.7 kg,

r
h

▲ FIGURE 8–32 Problem 84

85. ••• Figure 8–33 shows a 1.50-kg block at rest on a ramp of
height h. When the block is released, it slides without friction to
the bottom of the ramp, and then continues across a surface that
is frictionless except for a rough patch of width 10.0 cm that has
a coefficient of kinetic friction Find h such that the
block’s speed after crossing the rough patch is 3.50 m/s.

mk = 0.640.

5.0 cm

d
Rough patch

Equilibrium
position

v v = 0

▲ FIGURE 8–33 Problem 85

▲ FIGURE 8–34 Problem 86

h

10.0 cm

Rough patchv

across a surface that is frictionless except for a rough patch of
width 5.0 cm that has a coefficient of kinetic friction
Find d such that the block’s speed after crossing the rough
patch is 2.3 m/s.

mk = 0.44.

86. ••• In Figure 8–34 a 1.2-kg block is held at rest against a
spring with a force constant Initially, the spring
is compressed a distance d. When the block is released, it slides

k = 730 N/m.

WALKMC08_0131536311.QXD  12/8/05  17:48  Page 239

1Walker, ”Physics”, Ch 8, prob 96.



Example: Energy and Motion in a Circle
Under what condition would the block fall off the track before
completing the loop?

When the block falls, the normal force on it from the track goes to
zero.

If the block is on the verge of being able to make it around, the
place it would just start to fall is the top of the loop. At the top of
the loop:

System: block

126 CHAPTE R 6 FORCE AN D MOTION—I I

Sample Problem

KEY I DEAS

1. A centripetal force must act on the car because the car
is moving around a circular arc; that force must be
directed toward the center of curvature of the arc (here,
that is horizontally).

2. The only horizontal force acting on the car is a frictional
force on the tires from the road. So the required cen-
tripetal force is a frictional force.

3. Because the car is not sliding, the frictional force must
be a static frictional force (Fig. 6-10a).

4. Because the car is on the verge of sliding, the magnitude
fs is equal to the maximum value fs,max ! msFN, where FN

is the magnitude of the normal force acting on the
car from the track.

Radial calculations: The frictional force is shown in the
free-body diagram of Fig. 6-10b. It is in the negative direc-

f
:

s

F
:

N

f
:

s

Car in flat circular turn

Upside-down racing: A modern race car is designed so
that the passing air pushes down on it, allowing the car to
travel much faster through a flat turn in a Grand Prix without
friction failing.This downward push is called negative lift. Can
a race car have so much negative lift that it could be driven up-
side down on a long ceiling, as done fictionally by a sedan in
the first Men in Black movie?

Figure 6-10a represents a Grand Prix race car of mass 
m ! 600 kg as it travels on a flat track in a circular arc of
radius R ! 100 m. Because of the shape of the car and the
wings on it, the passing air exerts a negative lift down-
ward on the car. The coefficient of static friction between
the tires and the track is 0.75. (Assume that the forces on the
four tires are identical.)

(a) If the car is on the verge of sliding out of the turn when
its speed is 28.6 m/s, what is the magnitude of the negative
lift acting downward on the car?F

:
L

F
:

L

Fig. 6-9 (a) Contemporary advertisement for Diavolo and
(b) free-body diagram for the performer at the top of the loop.
(Photograph in part a reproduced with permission of Circus
World Museum)

y 

(b) 

(a) 

Diavolo  
and bicycle 

a 

Fg 

FN 
The net force
provides the
toward-the-center
acceleration.

The normal force
is from the
overhead loop.

Calculations: The forces on the particle when it is at the
top of the loop are shown in the free-body diagram of Fig 6-
9b. The gravitational force is downward along a y axis; so is
the normal force on the particle from the loop; so also is
the centripetal acceleration of the particle. Thus, Newton’s
second law for y components (Fnet,y ! may) gives us

"FN " Fg ! m("a)

and (6-19)

If the particle has the least speed v needed to remain in
contact, then it is on the verge of losing contact with the loop
(falling away from the loop), which means that FN ! 0 at the
top of the loop (the particle and loop touch but without any
normal force). Substituting 0 for FN in Eq. 6-19, solving for v,
and then substituting known values give us

(Answer)

Comments: Diavolo made certain that his speed at the top
of the loop was greater than 5.1 m/s so that he did not lose
contact with the loop and fall away from it. Note that this
speed requirement is independent of the mass of Diavolo
and his bicycle. Had he feasted on, say, pierogies before his
performance, he still would have had to exceed only 5.1 m/s
to maintain contact as he passed through the top of the loop.

 ! 5.1 m/s.

 v ! 2gR ! 2(9.8 m/s2)(2.7 m)

"FN " mg ! m!"
v2

R".

F
:

N

F
:

g

halliday_c06_116-139hr.qxd  17-09-2009  12:36  Page 126

y -direction:

Fnet,y = may

−N − Fg = m(−a)

−���
0

N −mg = −
mv2min

r

vmin =
√
rg
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Example: Energy and Motion in a Circle

System: block + Earth, isolated.

Initial point, i©: m at height h,

Final point, f©: m at top of circle.

Choose the table bottom of the track to be y = 0, U = 0

��>
0

W = ∆K + ∆U

0 = (Kf −���
0

Ki ) + (Ug ,f − Ug ,i )

0 =
1

2
mv2min + (mg(2r) −mgh)

h = 2r +
r

2

h =
5r

2



Example: Energy and Motion in a Circle

System: block + Earth, isolated.

Initial point, i©: m at height h,

Final point, f©: m at top of circle.

Choose the table bottom of the track to be y = 0, U = 0

��>
0

W = ∆K + ∆U

0 = (Kf −���
0

Ki ) + (Ug ,f − Ug ,i )

0 =
1

2
mv2min + (mg(2r) −mgh)

h = 2r +
r

2

h =
5r

2



Tracking Energy in a System, now with Internal
Energy

In general we can express the conservation of energy for our system
as:

W = ∆K + ∆U + ∆Eint

where

• W is the net work done by all external forces on the system

• ∆K is the change in kinetic energy of the system

• ∆U is the change in potential energy of the system

• ∆Eint is the change in internal energy of the system



Tracking Energy in a System

W = ∆K + ∆U + ∆Eint

where

• W covers energy transfers into or out of the system

• ∆K is the change in motion of parts of the system

• ∆U is the change configuration of the system

• ∆Eint is energy converted to heating effects from friction in
the system (or other non-conservative effects)



Internal Energy and Kinetic Friction

When ∆Eint is energy converted to heating effects from friction
in the system only:

∆Eint = fks

where fk is the magnitude of the friction force and s is the total
path length that the object travels with this friction force acting.

The longer the path, the larger s, the larger ∆Eint.



Kinetic Friction

Just as we had two choices for how treat a conservative force
acting on our system (depending on what we call our system) we
have two choices for how to think of the effect of friction.

Consider block sliding on a surface.
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The change in kinetic energy of this book–surface system is the same as the change 
in kinetic energy of the book alone because the book is the only part of the system 
that is moving. Therefore, incorporating Equation 8.13 with no work done by other 
forces gives

 2fkd 1 DEint 5 0 

 DEint 5 fkd (8.14)

Equation 8.14 tells us that the increase in internal energy of the system is equal 
to the product of the friction force and the path length through which the block 
moves. In summary, a friction force transforms kinetic energy in a system to inter-
nal energy. If work is done on the system by forces other than friction, Equation 
8.13, with the help of Equation 8.14, can be written as

 o Wother forces 5 W 5 DK 1 DEint (8.15)

which is a reduced form of Equation 8.2 and represents the nonisolated system 
model for a system within which a nonconservative force acts.

Q uick Quiz 8.5  You are traveling along a freeway at 65 mi/h. Your car has kinetic 
energy. You suddenly skid to a stop because of congestion in traffic. Where is 
the kinetic energy your car once had? (a) It is all in internal energy in the road. 
(b) It is all in internal energy in the tires. (c) Some of it has transformed to 
internal energy and some of it transferred away by mechanical waves. (d) It is all 
transferred away from your car by various mechanisms.

Change in internal energy X  
due to a constant friction 

force within the system

Example 8.4   A Block Pulled on a Rough Surface 

A 6.0-kg block initially at rest is pulled to the right along a horizontal surface by a 
constant horizontal force of 12 N.

(A)  Find the speed of the block after it has moved 3.0 m if the surfaces in contact 
have a coefficient of kinetic friction of 0.15.

Conceptualize  This example is similar to Example 
7.6 (page 190), but modified so that the surface is no 
longer frictionless. The rough surface applies a fric-
tion force on the block opposite to the applied force. 
As a result, we expect the speed to be lower than that 
found in Example 7.6.

Categorize  The block is pulled by a force and the 
surface is rough, so the block and the surface are 
modeled as a nonisolated system with a nonconservative force acting.

Analyze  Figure 8.8a illustrates this situation. Neither the normal force nor the gravitational force does work on the 
system because their points of application are displaced horizontally.

AM

S O L U T I O N

Figure 8.8 (Example 8.4) 
(a) A block pulled to the right 
on a rough surface by a con-
stant horizontal force. (b) The 
applied force is at an angle u 
to the horizontal.
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Find the work done on the system by the applied force 
just as in Example 7.6:

o Wother forces 5 WF 5 F Dx 

Apply the particle in equilibrium model to the block in the 
vertical direction:

o Fy 5 0   S   n 2 mg 5 0   S   n 5 mg 

Find the magnitude of the friction force: fk 5 mkn 5 mkmg  5 (0.15)(6.0 kg)(9.80 m/s2) 5 8.82 N
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Find the work done on the system by the applied force 
just as in Example 7.6:

o Wother forces 5 WF 5 F Dx 

Apply the particle in equilibrium model to the block in the 
vertical direction:
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Kinetic Friction: Two Views

View 1 (textbook’s approach)

System: block (mass) + internal degrees of freedom of the
block and the surface

By “internal degrees of freedom” we mean all of the ways energy
could be stored in the molecules making up the block; molecular
vibrations, etc.

Wnet,ext = ∆K + ∆Eint

Wapp = ∆K + fks

Wapp − fks = ∆K
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vibrations, etc.
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Kinetic Friction: Two Views

View 2:

System: block (as a point mass)

The “internal” degrees of freedom are part of the
environment.

Wnet,ext = ∆K

Wapp +Wfs = ∆K

Wapp − fks = ∆K (same as view 1)
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System: block (as a point mass)

The “internal” degrees of freedom are part of the
environment.

Wnet,ext = ∆K
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Kinetic Friction

The textbook does
not ever refer to Wfk .
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8.3 Situations Involving Kinetic Friction
Consider again the book in Figure 7.18a sliding to the right on the surface of a heavy 
table and slowing down due to the friction force. Work is done by the friction force 
on the book because there is a force and a displacement. Keep in mind, however, 
that our equations for work involve the displacement of the point of application of the 
force. A simple model of the friction force between the book and the surface is shown 
in Figure 8.7a. We have represented the entire friction force between the book and 
surface as being due to two identical teeth that have been spot-welded together.2 
One tooth projects upward from the surface, the other downward from the book, 
and they are welded at the points where they touch. The friction force acts at the 
junction of the two teeth. Imagine that the book slides a small distance d to the right 
as in Figure 8.7b. Because the teeth are modeled as identical, the junction of the 
teeth moves to the right by a distance d/2. Therefore, the displacement of the point 
of application of the friction force is d/2, but the displacement of the book is d!
 In reality, the friction force is spread out over the entire contact area of an object 
sliding on a surface, so the force is not localized at a point. In addition, because the 
magnitudes of the friction forces at various points are constantly changing as indi-
vidual spot welds occur, the surface and the book deform locally, and so on, the dis-
placement of the point of application of the friction force is not at all the same as the 
displacement of the book. In fact, the displacement of the point of application of the 
friction force is not calculable and so neither is the work done by the friction force.
 The work–kinetic energy theorem is valid for a particle or an object that can be 
modeled as a particle. When a friction force acts, however, we cannot calculate the 
work done by friction. For such situations, Newton’s second law is still valid for the 
system even though the work–kinetic energy theorem is not. The case of a nonde-
formable object like our book sliding on the surface3 can be handled in a relatively 
straightforward way.
 Starting from a situation in which forces, including friction, are applied to the 
book, we can follow a similar procedure to that done in developing Equation 7.17. 
Let us start by writing Equation 7.8 for all forces on an object other than friction:

 a  Wother forces 5 3
  
1a  F

S
other forces 2 ? d rS (8.11)

d
2

Book
Surface

d

The entire friction force is 
modeled to be applied at the 
interface between two identical 
teeth projecting from the book 
and the surface.

The point of application of the 
friction force moves through a 
displacement of magnitude d/2.

a

b

Figure 8.7  (a) A simplified 
model of friction between a book 
and a surface. (b) The book is 
moved to the right by a distance d.

2Figure 8.7 and its discussion are inspired by a classic article on friction: B. A. Sherwood and W. H. Bernard, “Work 
and heat transfer in the presence of sliding friction,” American Journal of Physics, 52:1001, 1984.
3The overall shape of the book remains the same, which is why we say it is nondeformable. On a microscopic level, 
however, there is deformation of the book’s face as it slides over the surface.

▸ 8.3 c o n t i n u e d

Write Equation (1) again for the system between points 
! and ":

DK 1 DUg 1 DUs 5 0

Substitute for the initial and final energies: 1  1
2mv"

2 2 0 2 1 10 2 mgy! 2 1 10 2  1
2kx2 2 5 0

Solve for v": v" 5 Åkx2

m
1 2gy!

Substitute numerical values: v" 5 Å 1958 N/m 2 10.120 m 2210.035 0 kg 2 1 2 19.80 m/s2 2 120.120 m 2 5 19.8 m/s

Finalize  This example is the first one we have seen in which we must include two different types of potential energy. 
Notice in part (A) that we never needed to consider anything about the speed of the ball between points ! and #, 
which is part of the power of the energy approach: changes in kinetic and potential energy depend only on the initial 
and final values, not on what happens between the configurations corresponding to these values.

 



Summary

• energy conservation in isolated systems

• kinetic friction and energy

Next Test (Friday, Feb 28 OR Mon, Mar 2)..

(Uncollected) Homework
Serway & Jewett,

• prev: Ch 8, onward from page 236. Probs: 5, 9, 11, 45, 59,
641, 65

• new: Ch 8. Probs: 13, 15, 17, 21, 23 (friction)

1Ans: v = 1.24 m/s


