Kinematics
 Motion in 1 Dimension and Graphs

Lana Sheridan

De Anza College

Jan 8, 2020

Last time

- motion in 1-dimension
- some kinematic quantities
- graphs

Overview

- velocity and speed
- acceleration
- more graphs

Position vs. Time Graphs

${ }^{1}$ Figures from Serway \& Jewett

Velocity from Position vs. Time Graphs

The slope of the position vs. time graph is the velocity at that point.

$$
v_{x}=\lim _{\Delta t \rightarrow 0} \frac{x(t+\Delta t)-x(t)}{t+\Delta t-t}=\lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t}=\frac{\mathrm{dx}}{\mathrm{dt}}
$$

Kinematics Part I: Motion in 1 Dimension Velocity

How position changes with time.
(instantaneous) velocity $\overrightarrow{\mathbf{v}}=\frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}$
average velocity $\quad \overrightarrow{\mathbf{v}}_{\mathrm{avg}}=\frac{\overrightarrow{\Delta r}}{\Delta t}$
instantaneous speed $\quad v$ or $|\overrightarrow{\mathbf{v}}|$
$\frac{d}{\Delta t}$
speed and direction
"speedometer speed"
distance divided by time

Kinematics Part I: Motion in 1 Dimension Velocity

How position changes with time.
(instantaneous) velocity $\overrightarrow{\mathbf{v}}=\frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}$
average velocity $\quad \overrightarrow{\mathbf{v}}_{\mathrm{avg}}=\frac{\overrightarrow{\Delta r}}{\Delta t}$
instantaneous speed $\quad v$ or $|\overrightarrow{\mathbf{v}}|$
average speed $\quad \frac{d}{\Delta t}$
speed and direction
"speedometer speed"
distance divided by time

Can velocity be negative?

Kinematics Part I: Motion in 1 Dimension Velocity

How position changes with time.
(instantaneous) velocity $\overrightarrow{\mathbf{v}}=\frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}$
average velocity $\quad \overrightarrow{\mathbf{v}}_{\mathrm{avg}}=\frac{\overrightarrow{\Delta r}}{\Delta t}$
instantaneous speed $\quad v$ or $|\overrightarrow{\mathbf{v}}|$
average speed $\quad \frac{d}{\Delta t}$
speed and direction
"speedometer speed"
distance divided by time

Can velocity be negative?
Can speed be negative?

Kinematics Part I: Motion in 1 Dimension Velocity

How position changes with time.
(instantaneous) velocity $\overrightarrow{\mathbf{v}}=\frac{\mathrm{d} \overrightarrow{\mathbf{r}}}{\mathrm{dt}}$
speed and direction

average velocity	$\overrightarrow{\mathbf{v}}_{\text {avg }}=\frac{\overrightarrow{\Delta r}}{\Delta t}$	
instantaneous speed	v or $\|\overrightarrow{\mathbf{v}}\|$	"speedometer speed"
average speed	$\frac{d}{\Delta t}$	distance divided by time

Can velocity be negative?
Can speed be negative?
Does average speed always equal average velocity?

Kinematics Part I: Motion in 1 Dimension Velocity

How position changes with time.
(instantaneous) velocity $\overrightarrow{\mathbf{v}}=\frac{\mathrm{d} \overrightarrow{\mathbf{r}}}{\mathrm{dt}}$
speed and direction

average velocity	$\overrightarrow{\mathbf{v}}_{\mathrm{avg}}=\frac{\overrightarrow{\Delta r}}{\Delta t}$	
instantaneous speed	v or $\|\overrightarrow{\mathbf{v}}\|$	"speedometer speed"
average speed	$\frac{d}{\Delta t}$	distance divided by time

Can velocity be negative?
Can speed be negative?
Does average speed always equal average velocity?
Units: meters per second, m/s

Some Examples

Traveling with constant velocity:

- a car doing exactly the speed limit on a straight road
- Voyager I (nearly)

Some Examples

Traveling with constant velocity:

- a car doing exactly the speed limit on a straight road
- Voyager I (nearly)

Traveling with constant speed:

- a car doing exactly the speed limit on a road with curves
- a planet traveling in a perfectly circular orbit

Conceptual Question

1. If the average velocity of an object is zero in some time interval, what can you say about the displacement of the object for that interval?
${ }^{1}$ Serway \& Jewett, page 50.

Question

Quick Quiz 2.1 ${ }^{1}$ Under which of the following conditions is the magnitude of the average velocity of a particle moving in one dimension smaller than the average speed over some time interval?

A A particle moves in the $+x$ direction without reversing.
B A particle moves in the $-x$ direction without reversing.
C A particle moves in the $+x$ direction and then reverses the direction of its motion.

D There are no conditions for which this is true.

Question

Quick Quiz 2.1 ${ }^{1}$ Under which of the following conditions is the magnitude of the average velocity of a particle moving in one dimension smaller than the average speed over some time interval?

A A particle moves in the $+x$ direction without reversing.
B A particle moves in the $-x$ direction without reversing.
C A particle moves in the $+x$ direction and then reverses the direction of its motion.

D There are no conditions for which this is true.

Velocity vs. Time Graphs

$$
\Delta x=\lim _{\Delta t \rightarrow 0} \sum_{n} v_{x n} \Delta t=\int_{t_{i}}^{t_{f}} v_{x} \mathrm{dt}
$$

where Δx represents the change in position (displacement) in the time interval t_{i} to t_{f}.

Velocity vs. Time Graphs

Or we can write

$$
x(t)=\int_{t_{i}}^{t} v_{x} \mathrm{dt}^{\prime}
$$

if the object starts at position $x=0$ when $t=t_{i}$.
t^{\prime} is called a "dummy variable".

Velocity vs. Time Graphs

Velocity vs. Time Graphs

What does the slope represent?

Velocity vs. Time Graphs

The slope at any point of the velocity-time curve is the acceleration at that time.

Acceleration

$$
\begin{array}{cl}
\text { acceleration } & \overrightarrow{\mathbf{a}}=\frac{\mathrm{d} \overrightarrow{\mathbf{v}}}{\mathrm{dt}}=\frac{\mathrm{d}^{2} \vec{r}}{\mathrm{~d} t^{2}} \\
\text { average acceleration } & \overrightarrow{\mathbf{a}}_{\mathrm{avg}}=\frac{\overrightarrow{\Delta \mathbf{v}}}{\Delta t}
\end{array}
$$

Acceleration is also a vector quantity.

Acceleration

$$
\begin{array}{cl}
\text { acceleration } & \overrightarrow{\mathbf{a}}=\frac{\mathrm{d} \overrightarrow{\mathrm{v}}}{\mathrm{dt}}=\frac{\mathrm{d}^{2} \vec{r}}{\mathrm{dt}} \\
\text { average acceleration } & \overrightarrow{\mathbf{a}}_{\text {avg }}=\overrightarrow{\overrightarrow{\Delta v}} \Delta t
\end{array}
$$

Acceleration is also a vector quantity.

Units: meters per second per second, $\mathrm{m} / \mathrm{s}^{2}$

Acceleration

$$
\begin{array}{cl}
\text { acceleration } & \overrightarrow{\mathbf{a}}=\frac{\mathrm{d} \overrightarrow{\mathbf{v}}}{\mathrm{dt}}=\frac{\mathrm{d}^{2} \vec{r}}{\mathrm{~d} t^{2}} \\
\text { average acceleration } & \overrightarrow{\mathbf{a}}_{\mathrm{avg}}=\frac{\overrightarrow{\Delta v}}{\Delta t}
\end{array}
$$

Acceleration is also a vector quantity.

Units: meters per second per second, $\mathrm{m} / \mathrm{s}^{2}$

In general, acceleration can be a function of time $\overrightarrow{\mathbf{a}}(t)$.

Acceleration and Velocity-Time Graphs

If the acceleration vector is pointed in the same direction as the velocity vector (ie. both are positive or both negative), the particle's speed is increasing.

Acceleration and Velocity-Time Graphs

If the acceleration vector is pointed in the same direction as the velocity vector (ie. both are positive or both negative), the particle's speed is increasing.

If the acceleration vector is pointed in the opposite direction as the velocity vector (ie. one is positive the other is negative), the particle's speed is decreasing. (It is "decelerating".)

Example

Suppose a particle has a velocity described by:

$$
\overrightarrow{\mathbf{v}}=(3+4 t) \hat{\mathbf{i}} \mathrm{m} / \mathrm{s}
$$

What is the acceleration of this particle?
What is the displacement of this particle over the interval $t=0$ to $t=3 \mathrm{~s}$?

Example

Suppose a particle has a velocity described by:

$$
\overrightarrow{\mathbf{v}}=(3+4 t) \hat{\mathbf{i}} \mathrm{m} / \mathrm{s}
$$

What is the acceleration of this particle?
What is the displacement of this particle over the interval $t=0$ to $t=3 \mathrm{~s}$?

$$
\overrightarrow{\mathbf{a}}=\frac{\mathrm{d} \overrightarrow{\mathbf{v}}}{\mathrm{dt}}=4 \hat{\mathbf{i}} \mathrm{~m} \mathrm{~s}^{-2}
$$

Example

Suppose a particle has a velocity described by:

$$
\overrightarrow{\mathbf{v}}=(3+4 t) \hat{\mathbf{i}} \mathrm{m} / \mathrm{s}
$$

What is the acceleration of this particle?
What is the displacement of this particle over the interval $t=0$ to $t=3 \mathrm{~s}$?

$$
\begin{aligned}
\overrightarrow{\mathbf{a}} & =\frac{\mathrm{d} \overrightarrow{\mathbf{v}}}{\mathrm{dt}}=4 \hat{\mathbf{i}} \mathrm{~m} \mathrm{~s}^{-2} \\
\overrightarrow{\Delta r} & =\int_{0}^{3} \overrightarrow{\mathbf{v}} d t=27 \hat{\mathbf{i}} \mathrm{~m}
\end{aligned}
$$

Summary

- velocity and acceleration
- graphs
- kinematic quantities are related by derivatives / antiderivatives

Assignment Posted today. Due in class Thursday, Jan 16.
Quiz Start of class Friday, Jan 10.

(Uncollected) Homework

Serway \& Jewett,

- Set yesterday: Ch 2, onward from page 49. Obj. Q: 1; CQ: Concep. Q: 1; Probs: 1, 3, 7, 11
- New: Ch 2, onward from page 49. Conceptual Q: 4, 5; Probs: 17, 19, 62

[^0]
[^0]: *Ans for 62: (a) 0 , (b) $6 \mathrm{~m} / \mathrm{s}^{2}$, (c) $-3.6 \mathrm{~m} / \mathrm{s}^{2}$, (d) $t=6 \mathrm{~s}$ and $t=18 \mathrm{~s}$, (e) $t=18 \mathrm{~s},(\mathrm{f}) x=84 \mathrm{~m},(\mathrm{~g}) d=204 \mathrm{~m}$.

