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obtain reasonably accurate data about its orbit. This approximation is justified because the 
radius of the Earth’s orbit is large compared with the dimensions of the Earth and the Sun. 
As an example on a much smaller scale, it is possible to explain the pressure exerted by a gas 
on the walls of a container by treating the gas molecules as particles, without regard for the 
internal structure of the molecules.

2.1 Position, Velocity, and Speed
A particle’s position x  is the location of the particle with respect to a chosen ref-
erence point that we can consider to be the origin of a coordinate system. The 
motion of a particle is completely known if the particle’s position in space is known 
at all times.
 Consider a car moving back and forth along the x axis as in Figure 2.1a. When 
we begin collecting position data, the car is 30 m to the right of the reference posi-
tion x 5 0. We will use the particle model by identifying some point on the car, 
perhaps the front door handle, as a particle representing the entire car.
 We start our clock, and once every 10 s we note the car’s position. As you can see 
from Table 2.1, the car moves to the right (which we have defined as the positive 
direction) during the first 10 s of motion, from position ! to position ". After ", 
the position values begin to decrease, suggesting the car is backing up from position 
" through position #. In fact, at $, 30 s after we start measuring, the car is at the 
origin of coordinates (see Fig. 2.1a). It continues moving to the left and is more than 
50 m to the left of x 5 0 when we stop recording information after our sixth data 
point. A graphical representation of this information is presented in Figure 2.1b. 
Such a plot is called a position–time graph.
 Notice the alternative representations of information that we have used for the 
motion of the car. Figure 2.1a is a pictorial representation, whereas Figure 2.1b is a 
graphical representation. Table 2.1 is a tabular representation of the same information. 
Using an alternative representation is often an excellent strategy for understanding 
the situation in a given problem. The ultimate goal in many problems is a math-
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Figure 2.1 A car moves back and forth along a straight line. Because we are interested only in the 
car’s translational motion, we can model it as a particle. Several representations of the information 
about the motion of the car can be used. Table 2.1 is a tabular representation of the information.  
(a) A pictorial representation of the motion of the car. (b) A graphical representation (position–time 
graph) of the motion of the car.

1Figures from Serway & Jewett



Velocity from Position vs. Time Graphs

The slope of the position vs. time graph is the velocity at that
point.26 Chapter 2 Motion in One Dimension

Conceptual Example 2.2   The Velocity of Different Objects

Consider the following one-dimensional motions: (A) a ball thrown directly upward rises to a highest point and falls 
back into the thrower’s hand; (B) a race car starts from rest and speeds up to 100 m/s; and (C) a spacecraft drifts 
through space at constant velocity. Are there any points in the motion of these objects at which the instantaneous 
velocity has the same value as the average velocity over the entire motion? If so, identify the point(s).

represents the velocity of the car at point !. What we have done is determine the 
instantaneous velocity at that moment. In other words, the instantaneous velocity vx 
equals the limiting value of the ratio Dx/Dt as Dt approaches zero:1

 vx ; lim
Dt S 0

 Dx
Dt

 (2.4)

In calculus notation, this limit is called the derivative of x with respect to t, written 
dx/dt:

 vx ; lim
Dt S 0

 Dx
Dt

5
dx
dt

 (2.5)

The instantaneous velocity can be positive, negative, or zero. When the slope of the 
position–time graph is positive, such as at any time during the first 10 s in Figure 2.3, 
vx is positive and the car is moving toward larger values of x. After point ", vx is nega-
tive because the slope is negative and the car is moving toward smaller values of x. 
At point ", the slope and the instantaneous velocity are zero and the car is momen-
tarily at rest.
 From here on, we use the word velocity to designate instantaneous velocity. When 
we are interested in average velocity, we shall always use the adjective average.
 The instantaneous speed of a particle is defined as the magnitude of its instan-
taneous velocity. As with average speed, instantaneous speed has no direction asso-
ciated with it. For example, if one particle has an instantaneous velocity of 125 m/s 
along a given line and another particle has an instantaneous velocity of 225 m/s 
along the same line, both have a speed2 of 25 m/s.

Q uick Quiz 2.2 Are members of the highway patrol more interested in (a) your 
average speed or (b) your instantaneous speed as you drive?
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Figure 2.3 (a) Graph representing the motion of the car in Figure 2.1. (b) An enlargement of the 
upper-left-hand corner of the graph.

1Notice that the displacement Dx also approaches zero as Dt approaches zero, so the ratio looks like 0/0. While this 
ratio may appear to be difficult to evaluate, the ratio does have a specific value. As Dx and Dt become smaller and 
smaller, the ratio Dx/Dt approaches a value equal to the slope of the line tangent to the x -versus-t curve.
2As with velocity, we drop the adjective for instantaneous speed. Speed means “instantaneous speed.”

Pitfall Prevention 2.3
Instantaneous Speed and Instan-
taneous Velocity In Pitfall Pre-
vention 2.1, we argued that the 
magnitude of the average velocity 
is not the average speed. The mag-
nitude of the instantaneous veloc-
ity, however, is the instantaneous 
speed. In an infinitesimal time 
interval, the magnitude of the dis-
placement is equal to the distance 
traveled by the particle.

Pitfall Prevention 2.2
Slopes of Graphs In any graph of 
physical data, the slope represents 
the ratio of the change in the 
quantity represented on the verti-
cal axis to the change in the quan-
tity represented on the horizontal 
axis. Remember that a slope has 
units (unless both axes have the 
same units). The units of slope in 
Figures 2.1b and 2.3 are meters 
per second, the units of velocity.

vx = lim
∆t→0

x(t + ∆t) − x(t)

t + ∆t − t
= lim

∆t→0

∆x

∆t
=

dx

dt



Kinematics Part I: Motion in 1 Dimension
Velocity
How position changes with time.

(instantaneous) velocity ~v = d #»r
dt speed and direction

average velocity ~vavg =
#  »

∆r
∆t

instantaneous speed v or |~v| “speedometer speed”

average speed d
∆t distance divided by time

Can velocity be negative?

Can speed be negative?

Does average speed always equal average velocity?

Units: meters per second, m/s
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Some Examples

Traveling with constant velocity:

• a car doing exactly the speed limit on a straight road

• Voyager I (nearly)

Traveling with constant speed:

• a car doing exactly the speed limit on a road with curves

• a planet traveling in a perfectly circular orbit
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Conceptual Question
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 18. Each of the strobe photographs (a), (b), and (c) in Fig-
ure OQ2.18 was taken of a single disk moving toward 
the right, which we take as the positive direction. 
Within each photograph, the time interval between 
images is constant. (i)  Which photograph shows 
motion with zero acceleration? (ii) Which photograph 
shows motion with positive acceleration? (iii) Which 
photograph shows motion with negative acceleration?
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Figure OQ2.18 Objective Question 18 and Problem 23.
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 16. A ball is thrown straight up in the air. For which situa-
tion are both the instantaneous velocity and the accel-
eration zero? (a) on the way up (b) at the top of its 
flight path (c)  on the way down (d) halfway up and 
halfway down (e) none of the above

 17. A hard rubber ball, 
not affected by air 
resistance in its mo- 
tion, is tossed upward 
from shoulder height, 
falls to the sidewalk, 
rebounds to a smaller 
maximum height, and 
is caught on its way 
down again. This mo-
tion is represented in 
Figure OQ2.17, where 
the successive positions of the ball ! through " are not 
equally spaced in time. At point # the center of the ball 
is at its lowest point in the motion. The motion of the 
ball is along a straight, vertical line, but the diagram 
shows successive positions offset to the right to avoid 
overlapping. Choose the positive y direction to be up-
ward. (a) Rank the situations ! through " according 
to the speed of the ball uvy u at each point, with the larg-
est speed first. (b) Rank the same situations according 
to the acceleration ay of the ball at each point. (In both 
rankings, remember that zero is greater than a negative 
value. If two values are equal, show that they are equal 
in your ranking.)

! $

"

#

%

Figure OQ2.17

 1. If the average velocity of an object is zero in some time 
interval, what can you say about the displacement of 
the object for that interval?

 2. Try the following experiment away from traffic where 
you can do it safely. With the car you are driving mov-
ing slowly on a straight, level road, shift the transmis-
sion into neutral and let the car coast. At the moment 
the car comes to a complete stop, step hard on the 
brake and notice what you feel. Now repeat the same 
experiment on a fairly gentle, uphill slope. Explain the 
difference in what a person riding in the car feels in 
the two cases. (Brian Popp suggested the idea for this 
question.)

 3. If a car is traveling eastward, can its acceleration be 
westward? Explain.

 4. If the velocity of a particle is zero, can the particle’s 
acceleration be zero? Explain.

 5. If the velocity of a particle is nonzero, can the particle’s 
acceleration be zero? Explain.

 6. You throw a ball vertically upward so that it leaves the 
ground with velocity 15.00 m/s. (a) What is its velocity 
when it reaches its maximum altitude? (b) What is its 
acceleration at this point? (c) What is the velocity with 
which it returns to ground level? (d) What is its accel-
eration at this point?

 7. (a) Can the equations of kinematics (Eqs. 2.13–2.17) 
be used in a situation in which the acceleration varies 
in time? (b) Can they be used when the acceleration is 
zero?

 8. (a) Can the velocity of an object at an instant of time 
be greater in magnitude than the average velocity over 
a time interval containing the instant? (b) Can it be 
less?

 9. Two cars are moving in the same direction in paral-
lel lanes along a highway. At some instant, the velocity 
of car A exceeds the velocity of car B. Does that mean 
that the acceleration of car A is greater than that of car 
B? Explain.

Conceptual Questions 1. denotes answer available in Student Solutions Manual/Study Guide

1Serway & Jewett, page 50.



Question

Quick Quiz 2.11 Under which of the following conditions is the
magnitude of the average velocity of a particle moving in one
dimension smaller than the average speed over some time interval?

A A particle moves in the +x direction without reversing.

B A particle moves in the −x direction without reversing.

C A particle moves in the +x direction and then reverses the
direction of its motion.

D There are no conditions for which this is true.

1Serway & Jewett, page 24.
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under the curve in the velocity–time graph. Therefore, in the limit n S ,̀ or Dtn S 0, 
the displacement is

 Dx 5 lim
Dtn S 0an

 vxn,avg Dtn (2.18)

If we know the vx–t graph for motion along a straight line, we can obtain the dis-
placement during any time interval by measuring the area under the curve corre-
sponding to that time interval.
 The limit of the sum shown in Equation 2.18 is called a definite integral and is 
written

  lim
Dtn S 0an

 vxn,avg Dtn 5 3
tf

ti

 vx 1 t 2  dt (2.19)

where vx(t) denotes the velocity at any time t. If the explicit functional form of vx(t) 
is known and the limits are given, the integral can be evaluated. Sometimes the 
vx–t graph for a moving particle has a shape much simpler than that shown in Fig-
ure 2.15. For example, suppose an object is described with the particle under con-
stant velocity model. In this case, the vx–t graph is a horizontal line as in Figure 2.16 
and the displacement of the particle during the time interval Dt is simply the area 
of the shaded rectangle:

Dx 5 vxi Dt (when vx 5 vxi 5 constant)

Kinematic Equations
We now use the defining equations for acceleration and velocity to derive two of 
our kinematic equations, Equations 2.13 and 2.16.
 The defining equation for acceleration (Eq. 2.10),

ax 5
dvx

dt
may be written as dvx 5 ax dt or, in terms of an integral (or antiderivative), as

vxf 2 vxi 5 3
t

0
 ax dt

For the special case in which the acceleration is constant, ax can be removed from 
the integral to give

 vxf 2 vxi 5 ax 3
t

0
 dt 5 ax 1 t 2 0 2 5 axt (2.20)

which is Equation 2.13 in the particle under constant acceleration model.
 Now let us consider the defining equation for velocity (Eq. 2.5):

vx 5
dx
dt

Definite integral X

Figure 2.16  The velocity–time 
curve for a particle moving with 
constant velocity vxi. The displace-
ment of the particle during the 
time interval tf 2 ti is equal to the 
area of the shaded rectangle.
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ti

vx

vxi
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t

"t n

t i t f

vxn,avg

The area of the shaded rectangle 
is equal to the displacement in 
the time interval "tn.

Figure 2.15 Velocity versus time 
for a particle moving along the 
x axis. The total area under the 
curve is the total displacement of 
the particle.

∆x = lim
∆t→0

∑
n

vxn ∆t =

∫ tf
ti

vx dt

where ∆x represents the change in position (displacement) in the
time interval ti to tf .



Velocity vs. Time Graphs44 Chapter 2 Motion in One Dimension

under the curve in the velocity–time graph. Therefore, in the limit n S ,̀ or Dtn S 0, 
the displacement is

 Dx 5 lim
Dtn S 0an

 vxn,avg Dtn (2.18)

If we know the vx–t graph for motion along a straight line, we can obtain the dis-
placement during any time interval by measuring the area under the curve corre-
sponding to that time interval.
 The limit of the sum shown in Equation 2.18 is called a definite integral and is 
written

  lim
Dtn S 0an

 vxn,avg Dtn 5 3
tf

ti

 vx 1 t 2  dt (2.19)

where vx(t) denotes the velocity at any time t. If the explicit functional form of vx(t) 
is known and the limits are given, the integral can be evaluated. Sometimes the 
vx–t graph for a moving particle has a shape much simpler than that shown in Fig-
ure 2.15. For example, suppose an object is described with the particle under con-
stant velocity model. In this case, the vx–t graph is a horizontal line as in Figure 2.16 
and the displacement of the particle during the time interval Dt is simply the area 
of the shaded rectangle:

Dx 5 vxi Dt (when vx 5 vxi 5 constant)

Kinematic Equations
We now use the defining equations for acceleration and velocity to derive two of 
our kinematic equations, Equations 2.13 and 2.16.
 The defining equation for acceleration (Eq. 2.10),

ax 5
dvx

dt
may be written as dvx 5 ax dt or, in terms of an integral (or antiderivative), as

vxf 2 vxi 5 3
t

0
 ax dt

For the special case in which the acceleration is constant, ax can be removed from 
the integral to give

 vxf 2 vxi 5 ax 3
t

0
 dt 5 ax 1 t 2 0 2 5 axt (2.20)

which is Equation 2.13 in the particle under constant acceleration model.
 Now let us consider the defining equation for velocity (Eq. 2.5):

vx 5
dx
dt

Definite integral X

Figure 2.16  The velocity–time 
curve for a particle moving with 
constant velocity vxi. The displace-
ment of the particle during the 
time interval tf 2 ti is equal to the 
area of the shaded rectangle.

vx ! vxi ! constant

tf

vxi

t

"t

ti

vx

vxi

vx

t

"t n

t i t f

vxn,avg

The area of the shaded rectangle 
is equal to the displacement in 
the time interval "tn.

Figure 2.15 Velocity versus time 
for a particle moving along the 
x axis. The total area under the 
curve is the total displacement of 
the particle.

Or we can write

x(t) =

∫ t
ti

vx dt
′

if the object starts at position x = 0 when t = ti .

t ′ is called a “dummy variable”.
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 So far, we have evaluated the derivatives of a function by starting with the def-
inition of the function and then taking the limit of a specific ratio. If you are 
familiar with calculus, you should recognize that there are specific rules for taking 

Example 2.6   Average and Instantaneous Acceleration

The velocity of a particle moving along the x axis varies according to the expres-
sion vx 5 40 2 5t 2, where vx is in meters per second and t is in seconds.

(A) Find the average acceleration in the time interval t 5 0 to t 5 2.0 s.

Think about what the particle is doing from the 
mathematical representation. Is it moving at t 5 
0? In which direction? Does it speed up or slow 
down? Figure 2.9 is a vx–t graph that was created 
from the velocity versus time expression given in 
the problem statement. Because the slope of the 
entire vx–t curve is negative, we expect the accel-
eration to be negative.

S O L U T I O N

Find the velocities at ti 5 t! 5 0 and tf 5 t" 5 2.0 s by 
substituting these values of t into the expression for the 
velocity:

vx ! 5 40 2 5t!
2 5 40 2 5(0)2 5 140 m/s

vx " 5 40 2 5t"
2 5 40 2 5(2.0)2 5 120 m/s

Find the average acceleration in the specified time inter-
val Dt 5 t" 2 t! 5 2.0 s:

 ax,avg 5
vxf 2 vxi

tf 2 ti
5

vx " 2 vx !

t " 2 t !

5
20 m/s 2 40 m/s

2.0 s 2 0 s

5   210 m/s2

The negative sign is consistent with our expectations: the average acceleration, represented by the slope of the blue 
line joining the initial and final points on the velocity–time graph, is negative.

(B) Determine the acceleration at t 5 2.0 s.

S O L U T I O N

Knowing that the initial velocity at any time t is  
vxi 5 40 2 5t 2, find the velocity at any later time t 1 Dt:

  vxf 5 40 2 5(t 1 Dt)2 5 40 2 5t 2 2 10t Dt 2 5(Dt)2

Find the change in velocity over the time interval Dt: Dvx 5 vxf 2 vxi 5 210t Dt 2 5(Dt)2

To find the acceleration at any time t, divide this 
expression by Dt and take the limit of the result as Dt 
approaches zero:

   ax 5 lim
Dt S 0

 
Dvx

Dt
5 lim

Dt S 0
1210t 2 5 Dt 2 5 210t

Substitute t 5 2.0 s:    ax 5 (210)(2.0) m/s2 5   220 m/s2

Because the velocity of the particle is positive and the acceleration is negative at this instant, the particle is slowing 
down.
 Notice that the answers to parts (A) and (B) are different. The average acceleration in part (A) is the slope of the 
blue line in Figure 2.9 connecting points ! and ". The instantaneous acceleration in part (B) is the slope of the green 
line tangent to the curve at point ". Notice also that the acceleration is not constant in this example. Situations involv-
ing constant acceleration are treated in Section 2.6.

 

Figure 2.9 (Example 2.6) 
The velocity–time graph for a 
particle moving along the x axis 
according to the expression  
vx 5 40 2 5t 2.
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vx " 5 40 2 5t"
2 5 40 2 5(2.0)2 5 120 m/s

Find the average acceleration in the specified time inter-
val Dt 5 t" 2 t! 5 2.0 s:

 ax,avg 5
vxf 2 vxi

tf 2 ti
5

vx " 2 vx !

t " 2 t !

5
20 m/s 2 40 m/s

2.0 s 2 0 s

5   210 m/s2

The negative sign is consistent with our expectations: the average acceleration, represented by the slope of the blue 
line joining the initial and final points on the velocity–time graph, is negative.

(B) Determine the acceleration at t 5 2.0 s.

S O L U T I O N

Knowing that the initial velocity at any time t is  
vxi 5 40 2 5t 2, find the velocity at any later time t 1 Dt:

  vxf 5 40 2 5(t 1 Dt)2 5 40 2 5t 2 2 10t Dt 2 5(Dt)2

Find the change in velocity over the time interval Dt: Dvx 5 vxf 2 vxi 5 210t Dt 2 5(Dt)2

To find the acceleration at any time t, divide this 
expression by Dt and take the limit of the result as Dt 
approaches zero:

   ax 5 lim
Dt S 0

 
Dvx

Dt
5 lim

Dt S 0
1210t 2 5 Dt 2 5 210t

Substitute t 5 2.0 s:    ax 5 (210)(2.0) m/s2 5   220 m/s2

Because the velocity of the particle is positive and the acceleration is negative at this instant, the particle is slowing 
down.
 Notice that the answers to parts (A) and (B) are different. The average acceleration in part (A) is the slope of the 
blue line in Figure 2.9 connecting points ! and ". The instantaneous acceleration in part (B) is the slope of the green 
line tangent to the curve at point ". Notice also that the acceleration is not constant in this example. Situations involv-
ing constant acceleration are treated in Section 2.6.

 

Figure 2.9 (Example 2.6) 
The velocity–time graph for a 
particle moving along the x axis 
according to the expression  
vx 5 40 2 5t 2.

10

!10

0

0 1 2 3 4

t (s)

vx (m/s)

20

30

40

!20

!30

!

"

The acceleration at " is equal to 
the slope of the green tangent 
line at t " 2 s, which is !20 m/s2.

The slope at any point of the velocity-time curve is the
acceleration at that time.



Acceleration

acceleration ~a = d #»v
dt = d2~r

dt2

average acceleration ~aavg =
#   »

∆v
∆t

Acceleration is also a vector quantity.

Units: meters per second per second, m/s2

In general, acceleration can be a function of time ~a(t).
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Acceleration

acceleration ~a = d #»v
dt = d2~r

dt2

average acceleration ~aavg =
#   »

∆v
∆t

Acceleration is also a vector quantity.

Units: meters per second per second, m/s2
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Acceleration and Velocity-Time Graphs

If the acceleration vector is pointed in the same direction as the
velocity vector (ie. both are positive or both negative), the
particle’s speed is increasing.

If the acceleration vector is pointed in the opposite direction as
the velocity vector (ie. one is positive the other is negative), the
particle’s speed is decreasing. (It is “decelerating”.)
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Example

Suppose a particle has a velocity described by:

#»v = (3+ 4t) î m/s

What is the acceleration of this particle?

What is the displacement of this particle over the interval t = 0 to
t = 3 s?

#»a =
d #»v

dt
= 4 î m s−2

#  »

∆r =

∫3
0

#»v dt = 27 î m
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Summary

• velocity and acceleration

• graphs

• kinematic quantities are related by derivatives / antiderivatives

Assignment Posted today. Due in class Thursday, Jan 16.

Quiz Start of class Friday, Jan 10.

(Uncollected) Homework
Serway & Jewett,

• Set yesterday: Ch 2, onward from page 49. Obj. Q: 1; CQ:
Concep. Q: 1; Probs: 1, 3, 7, 11

• New: Ch 2, onward from page 49. Conceptual Q: 4, 5; Probs:
17, 19, 62

∗Ans for 62: (a) 0, (b) 6 m/s2, (c) −3.6 m/s2, (d) t = 6 s and t = 18 s,
(e) t = 18 s, (f) x = 84 m, (g) d = 204 m.


