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Last time

• energy conservation in isolated systems

• kinetic friction and energy



Overview

• examples with friction

• relation between conservative forces and potential energy

• potential energy diagrams



Kinetic Friction

The textbook does
not ever refer to Wfk .
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8.3 Situations Involving Kinetic Friction
Consider again the book in Figure 7.18a sliding to the right on the surface of a heavy 
table and slowing down due to the friction force. Work is done by the friction force 
on the book because there is a force and a displacement. Keep in mind, however, 
that our equations for work involve the displacement of the point of application of the 
force. A simple model of the friction force between the book and the surface is shown 
in Figure 8.7a. We have represented the entire friction force between the book and 
surface as being due to two identical teeth that have been spot-welded together.2 
One tooth projects upward from the surface, the other downward from the book, 
and they are welded at the points where they touch. The friction force acts at the 
junction of the two teeth. Imagine that the book slides a small distance d to the right 
as in Figure 8.7b. Because the teeth are modeled as identical, the junction of the 
teeth moves to the right by a distance d/2. Therefore, the displacement of the point 
of application of the friction force is d/2, but the displacement of the book is d!
 In reality, the friction force is spread out over the entire contact area of an object 
sliding on a surface, so the force is not localized at a point. In addition, because the 
magnitudes of the friction forces at various points are constantly changing as indi-
vidual spot welds occur, the surface and the book deform locally, and so on, the dis-
placement of the point of application of the friction force is not at all the same as the 
displacement of the book. In fact, the displacement of the point of application of the 
friction force is not calculable and so neither is the work done by the friction force.
 The work–kinetic energy theorem is valid for a particle or an object that can be 
modeled as a particle. When a friction force acts, however, we cannot calculate the 
work done by friction. For such situations, Newton’s second law is still valid for the 
system even though the work–kinetic energy theorem is not. The case of a nonde-
formable object like our book sliding on the surface3 can be handled in a relatively 
straightforward way.
 Starting from a situation in which forces, including friction, are applied to the 
book, we can follow a similar procedure to that done in developing Equation 7.17. 
Let us start by writing Equation 7.8 for all forces on an object other than friction:

 a  Wother forces 5 3
  
1a  F

S
other forces 2 ? d rS (8.11)
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The entire friction force is 
modeled to be applied at the 
interface between two identical 
teeth projecting from the book 
and the surface.

The point of application of the 
friction force moves through a 
displacement of magnitude d/2.

a

b

Figure 8.7  (a) A simplified 
model of friction between a book 
and a surface. (b) The book is 
moved to the right by a distance d.

2Figure 8.7 and its discussion are inspired by a classic article on friction: B. A. Sherwood and W. H. Bernard, “Work 
and heat transfer in the presence of sliding friction,” American Journal of Physics, 52:1001, 1984.
3The overall shape of the book remains the same, which is why we say it is nondeformable. On a microscopic level, 
however, there is deformation of the book’s face as it slides over the surface.

▸ 8.3 c o n t i n u e d

Write Equation (1) again for the system between points 
! and ":

DK 1 DUg 1 DUs 5 0

Substitute for the initial and final energies: 1  1
2mv"

2 2 0 2 1 10 2 mgy! 2 1 10 2  1
2kx2 2 5 0

Solve for v": v" 5 Åkx2

m
1 2gy!

Substitute numerical values: v" 5 Å 1958 N/m 2 10.120 m 2210.035 0 kg 2 1 2 19.80 m/s2 2 120.120 m 2 5 19.8 m/s

Finalize  This example is the first one we have seen in which we must include two different types of potential energy. 
Notice in part (A) that we never needed to consider anything about the speed of the ball between points ! and #, 
which is part of the power of the energy approach: changes in kinetic and potential energy depend only on the initial 
and final values, not on what happens between the configurations corresponding to these values.

 



Example: Block pulled across surface

Example 8.4, Page 224

A 6.0 kg block initially at rest is pulled to the right along a
horizontal surface by a constant horizontal force of 12 N.

Find the speed of the block after it has moved 3.0 m if the surfaces
in contact have a coefficient of kinetic friction of µk = 0.15.
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The change in kinetic energy of this book–surface system is the same as the change 
in kinetic energy of the book alone because the book is the only part of the system 
that is moving. Therefore, incorporating Equation 8.13 with no work done by other 
forces gives

 2fkd 1 DEint 5 0 

 DEint 5 fkd (8.14)

Equation 8.14 tells us that the increase in internal energy of the system is equal 
to the product of the friction force and the path length through which the block 
moves. In summary, a friction force transforms kinetic energy in a system to inter-
nal energy. If work is done on the system by forces other than friction, Equation 
8.13, with the help of Equation 8.14, can be written as

 o Wother forces 5 W 5 DK 1 DEint (8.15)

which is a reduced form of Equation 8.2 and represents the nonisolated system 
model for a system within which a nonconservative force acts.

Q uick Quiz 8.5  You are traveling along a freeway at 65 mi/h. Your car has kinetic 
energy. You suddenly skid to a stop because of congestion in traffic. Where is 
the kinetic energy your car once had? (a) It is all in internal energy in the road. 
(b) It is all in internal energy in the tires. (c) Some of it has transformed to 
internal energy and some of it transferred away by mechanical waves. (d) It is all 
transferred away from your car by various mechanisms.

Change in internal energy X  
due to a constant friction 

force within the system

Example 8.4   A Block Pulled on a Rough Surface 

A 6.0-kg block initially at rest is pulled to the right along a horizontal surface by a 
constant horizontal force of 12 N.

(A)  Find the speed of the block after it has moved 3.0 m if the surfaces in contact 
have a coefficient of kinetic friction of 0.15.

Conceptualize  This example is similar to Example 
7.6 (page 190), but modified so that the surface is no 
longer frictionless. The rough surface applies a fric-
tion force on the block opposite to the applied force. 
As a result, we expect the speed to be lower than that 
found in Example 7.6.

Categorize  The block is pulled by a force and the 
surface is rough, so the block and the surface are 
modeled as a nonisolated system with a nonconservative force acting.

Analyze  Figure 8.8a illustrates this situation. Neither the normal force nor the gravitational force does work on the 
system because their points of application are displaced horizontally.

AM

S O L U T I O N

Figure 8.8 (Example 8.4) 
(a) A block pulled to the right 
on a rough surface by a con-
stant horizontal force. (b) The 
applied force is at an angle u 
to the horizontal.
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Find the work done on the system by the applied force 
just as in Example 7.6:

o Wother forces 5 WF 5 F Dx 

Apply the particle in equilibrium model to the block in the 
vertical direction:

o Fy 5 0   S   n 2 mg 5 0   S   n 5 mg 

Find the magnitude of the friction force: fk 5 mkn 5 mkmg  5 (0.15)(6.0 kg)(9.80 m/s2) 5 8.82 N

i© f©



Example 8.4

W = ∆K + ∆Eint

We can relate the final kinetic energy (starting from rest) to the
forces:

K − 0 = W − ∆Eint

K =

∫
F · dr−fks

=

∫
F · dr−fks

1

2
mv2 = Fs − µk(mg)s

v =

√
2(Fs − µk(mg)s)

m

=

√
2
(
(12 N)(3 m) − (0.15)(6 kg)g(3 m)

)
6 kg

= 1.8 m s−1
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Example 8.4

Suppose the force F is applied at an angle θ. At what angle should
the force be applied to achieve the largest possible speed after the
block has moved 3.0 m to the right?
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The change in kinetic energy of this book–surface system is the same as the change 
in kinetic energy of the book alone because the book is the only part of the system 
that is moving. Therefore, incorporating Equation 8.13 with no work done by other 
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(A)  Find the speed of the block after it has moved 3.0 m if the surfaces in contact 
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As a result, we expect the speed to be lower than that 
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surface is rough, so the block and the surface are 
modeled as a nonisolated system with a nonconservative force acting.

Analyze  Figure 8.8a illustrates this situation. Neither the normal force nor the gravitational force does work on the 
system because their points of application are displaced horizontally.
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S O L U T I O N

Figure 8.8 (Example 8.4) 
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applied force is at an angle u 
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Find the work done on the system by the applied force 
just as in Example 7.6:
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vertical direction:
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Example 8.4

θ for largest v?

W = ∆K + ∆Eint

Again, we’d like an expression for K :

K = W − ∆Eint

=

∫
#»

F · d #»r −fks

= Fs cos θ− µk(mg − F sin θ)s

where we noticed n = mg − F sin θ.
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Example 8.4

K = Fs cos θ− µk(mg − F sin θ)s

Maximize v , and therefore K , with respect to θ. Find the
derivative, set it to zero:

dK

dθ
= −Fs sin θ− µk(−F cos θ)s

= Fs(µk cos θ− sin θ)

Fs(µk cos θ− sin θ) = 0⇒ µk cos θ = sin θ

θ = tan−1 µk = 8.5◦
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Question

Example 8.51 A car traveling at an initial speed v slides a
distance d to a halt after its brakes lock. (This means the car is in
a skid.) If the car’s initial speed is instead 2v at the moment the
brakes lock, what is the distance it slides?

(A) d

(B) 2d

(C) 4d

(D) 8d

1Drawn from Serway and Jewett, page 225.
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distance d to a halt after its brakes lock. (This means the car is in
a skid.) If the car’s initial speed is instead 2v at the moment the
brakes lock, what is the distance it slides?

(A) d

(B) 2d

(C) 4d ←
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1Drawn from Serway and Jewett, page 225.



Energy Distribution
Question. Would you expect to see an evolution of an isolated
system in a mechanics problem to go from a state with this energy
distribution:

 8.4 Changes in Mechanical Energy for Nonconservative Forces 231

Write the appropriate reduction of Equation 8.2: (1)   DUg 1 DUs 1 DEint 5 0 

Substitute for the energies, noting that as the hanging block falls a 
distance h, the horizontally moving block moves the same distance h 
to the right, and the spring stretches by a distance h:

10 2 m2gh 2 1 11
2kh2 2 0 2 1 fkh 5 0 

Substitute for the friction force: 2m2gh 1 1
2kh2 1 mkm1gh 5 0 

Solve for mk: mk 5
m2g 2 1

2kh
m1g

 

Finalize  This setup represents a method of measuring the coefficient of kinetic friction between an object and some 
surface. Notice how we have solved the examples in this chapter using the energy approach. We begin with Equation 
8.2 and then tailor it to the physical situation. This process may include deleting terms, such as the kinetic energy term 
and all terms on the right-hand side of Equation 8.2 in this example. It can also include expanding terms, such as 
rewriting DU due to two types of potential energy in this example.

 

▸ 8.9 c o n t i n u e d

Conceptual Example 8.10    Interpreting the Energy Bars

The energy bar charts in Figure 8.13 show three instants in 
the motion of the system in Figure 8.12 and described in 
Example 8.9. For each bar chart, identify the configuration 
of the system that corresponds to the chart.

In Figure 8.13a, there is no kinetic energy in the system. 
Therefore, nothing in the system is moving. The bar chart 
shows that the system contains only gravitational potential 
energy and no internal energy yet, which corresponds to the 
configuration with the darker blocks in Figure 8.12 and rep-
resents the instant just after the system is released.
 In Figure 8.13b, the system contains four types of energy. 
The height of the gravitational potential energy bar is at 
50%, which tells us that the hanging block has moved half-
way between its position corresponding to Figure 8.13a and 
the position defined as y 5 0. Therefore, in this configura-
tion, the hanging block is between the dark and light images 
of the hanging block in Figure 8.12. The system has gained 
kinetic energy because the blocks are moving, elastic poten-
tial energy because the spring is stretching, and internal 
energy because of friction between the block of mass m1 and 
the surface.
 In Figure 8.13c, the height of the gravitational potential energy bar is zero, telling us that the hanging block is at y 5 
0. In addition, the height of the kinetic energy bar is zero, indicating that the blocks have stopped moving momentarily. 
Therefore, the configuration of the system is that shown by the light images of the blocks in Figure 8.12. The height of 
the elastic potential energy bar is high because the spring is stretched its maximum amount. The height of the internal 
energy bar is higher than in Figure 8.13b because the block of mass m1 has continued to slide over the surface after the 
configuration shown in Figure 8.13b.
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Figure 8.13 (Conceptual Example 8.10) Three energy bar 
charts are shown for the system in Figure 8.12.

 

because the vertical coordinate of the horizontally sliding block does not change. The initial and final kinetic energies 
of the system are zero, so DK 5 0.

to this one?
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Finalize  This setup represents a method of measuring the coefficient of kinetic friction between an object and some 
surface. Notice how we have solved the examples in this chapter using the energy approach. We begin with Equation 
8.2 and then tailor it to the physical situation. This process may include deleting terms, such as the kinetic energy term 
and all terms on the right-hand side of Equation 8.2 in this example. It can also include expanding terms, such as 
rewriting DU due to two types of potential energy in this example.
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In Figure 8.13a, there is no kinetic energy in the system. 
Therefore, nothing in the system is moving. The bar chart 
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0. In addition, the height of the kinetic energy bar is zero, indicating that the blocks have stopped moving momentarily. 
Therefore, the configuration of the system is that shown by the light images of the blocks in Figure 8.12. The height of 
the elastic potential energy bar is high because the spring is stretched its maximum amount. The height of the internal 
energy bar is higher than in Figure 8.13b because the block of mass m1 has continued to slide over the surface after the 
configuration shown in Figure 8.13b.
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because the vertical coordinate of the horizontally sliding block does not change. The initial and final kinetic energies 
of the system are zero, so DK 5 0.

(A) Yes, you might.

(B) No, you would not.



Energy Distribution
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because the vertical coordinate of the horizontally sliding block does not change. The initial and final kinetic energies 
of the system are zero, so DK 5 0.
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Finalize  This setup represents a method of measuring the coefficient of kinetic friction between an object and some 
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8.2 and then tailor it to the physical situation. This process may include deleting terms, such as the kinetic energy term 
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rewriting DU due to two types of potential energy in this example.
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because the vertical coordinate of the horizontally sliding block does not change. The initial and final kinetic energies 
of the system are zero, so DK 5 0.

(A) Yes, you might.

(B) No, you would not. ←



Mechanical Energy Decreasing due to
Nonconservative Forces

In the problems you will encounter in this course ∆Eint is always
positive or zero. (Eint increases with time!)

In a simple isolated system, there is no way to recover energy used
overcoming friction or drag forces.

A system’s mechanical energy can increase only if work is done on
it by an external force.

If no work is done (isolated system) the system’s mechanical
energy decreases (or stays the same) over time.
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Conservative and Nonconservative Forces

Conservative force

A force that has the property that the work done by the force when
on a particle that moves between any give initial and final points is
independent of the path taken by the particle.

Equivalently, the work done by the force as the particle moves
through a closed path is zero.

examples:

• gravity

• spring force

Nonconservative force

Any force that is not a conservative force.

examples:

• friction

• air resistance



Conservative Forces and Potential Energy

We now return to conservative forces.

Potential energy

energy that system has as a result of its configuration. Is always
the result of the effect of a conservative force.

∆U = −Wcons



Conservative Forces and Potential Energy

In general, a conservative force F can be related to its potential
energy:

∆U = −Wcons = −

∫ f
i

#»

F · d #»r



Conservative Forces and Potential Energy

For conservative forces, when the particle moves along the x-axis,

∆U = −

∫ xf
xi

Fx dx

and

Fx = −
dU

dx



Conservative Forces and Potential Energy

In general, for a conservative force
#»

F the particle might move
along an arbitrary path s:

∆U = −

∫
s

#»

F · d #»r

and2

#»

F = −∇U

where:

∇U =
∂

∂x
U î+

∂

∂y
U ĵ+

∂

∂z
U k̂

1If you are not yet familiar with this vector calculus notation, you will not
need it for this course.



Energy Diagrams
Potential energy can be plotted as a function of position. eg.
potential energy of a spring:200 Chapter 7 Energy of a System

energy function for a block–spring system, given by Us 5 1
2kx2. This function is 

plotted versus x in Figure 7.20a, where x is the position of the block. The force Fs 
exerted by the spring on the block is related to Us through Equation 7.29:

Fs 5 2
dUs

dx
5 2kx

As we saw in Quick Quiz 7.8, the x component of the force is equal to the nega-
tive of the slope of the U -versus-x curve. When the block is placed at rest at the 
equilibrium position of the spring (x 5 0), where Fs 5 0, it will remain there unless 
some external force Fext acts on it. If this external force stretches the spring from 
equilibrium, x is positive and the slope dU/dx is positive; therefore, the force Fs 
exerted by the spring is negative and the block accelerates back toward x 5 0 when 
released. If the external force compresses the spring, x is negative and the slope is 
negative; therefore, Fs is positive and again the mass accelerates toward x 5 0 upon 
release.
 From this analysis, we conclude that the x 5 0 position for a block–spring sys-
tem is one of stable equilibrium. That is, any movement away from this position 
results in a force directed back toward x 5 0. In general, configurations of a sys-
tem in stable equilibrium correspond to those for which U(x) for the system is a 
minimum.
 If the block in Figure 7.20 is moved to an initial position xmax and then released 
from rest, its total energy initially is the potential energy 12kx2

max stored in the spring. 
As the block starts to move, the system acquires kinetic energy and loses potential 
energy. The block oscillates (moves back and forth) between the two points x 5 
2xmax and x 5 1xmax, called the turning points. In fact, because no energy is trans-
formed to internal energy due to friction, the block oscillates between 2xmax and 
1xmax forever. (We will discuss these oscillations further in Chapter 15.)
 Another simple mechanical system with a configuration of stable equilibrium is 
a ball rolling about in the bottom of a bowl. Anytime the ball is displaced from its 
lowest position, it tends to return to that position when released.
 Now consider a particle moving along the x axis under the influence of a conser-
vative force Fx, where the U -versus-x curve is as shown in Figure 7.21. Once again,  
Fx 5 0 at x 5 0, and so the particle is in equilibrium at this point. This position, 
 however, is one of unstable equilibrium for the following reason. Suppose the 
particle is displaced to the right (x . 0). Because the slope is negative for x . 0,  
Fx 5 2dU/dx is positive and the particle accelerates away from x 5 0. If instead the 
particle is at x 5 0 and is displaced to the left (x , 0), the force is negative because 
the slope is positive for x , 0 and the particle again accelerates away from the equi-
librium position. The position x 5 0 in this situation is one of unstable equilibrium 
because for any displacement from this point, the force pushes the particle farther 
away from equilibrium and toward a position of lower potential energy. A pencil 
balanced on its point is in a position of unstable equilibrium. If the pencil is dis-
placed slightly from its absolutely vertical position and is then released, it will surely 
fall over. In general, configurations of a system in unstable equilibrium correspond 
to those for which U(x) for the system is a maximum.
 Finally, a configuration called neutral equilibrium arises when U is constant 
over some region. Small displacements of an object from a position in this region 
produce neither restoring nor disrupting forces. A ball lying on a flat, horizontal 
surface is an example of an object in neutral equilibrium.
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U
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x ! 0 x " 0

Figure 7.21  A plot of U versus  
x for a particle that has a position 
of unstable equilibrium located 
at x 5 0. For any finite displace-
ment of the particle, the force on 
the particle is directed away from 
x 5 0.

Pitfall Prevention 7.10
Energy Diagrams A common 
mistake is to think that potential 
energy on the graph in an energy 
diagram represents the height of 
some object. For example, that 
is not the case in Figure 7.20, 
where the block is only moving 
horizontally.
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Figure 7.20 (a) Potential energy 
as a function of x for the friction-
less block–spring system shown in 
(b). For a given energy E of the sys-
tem, the block oscillates between 
the turning points, which have the 
coordinates x 5 6xmax.
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Energy Diagrams and Equilibrium

System is in equilibrium when Fnet = Fs = 0. This happens when
the slope of U(x) is zero.200 Chapter 7 Energy of a System
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Figure 7.20 (a) Potential energy 
as a function of x for the friction-
less block–spring system shown in 
(b). For a given energy E of the sys-
tem, the block oscillates between 
the turning points, which have the 
coordinates x 5 6xmax.

In this case, the force is always back toward the x = 0 point, so
this is a stable equilibrium.
Examples:

• spring force

• ball inside a bowl



Energy Diagrams and Equilibrium

System is in equilibrium when Fnet = Fs = 0. This happens when
the slope of U(x) is zero.
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Figure 7.20 (a) Potential energy 
as a function of x for the friction-
less block–spring system shown in 
(b). For a given energy E of the sys-
tem, the block oscillates between 
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In this case, the force is always away from the x = 0 point, so this
is a unstable equilibrium.
Examples:

• the L1 Lagrange point between the Sun and Earth

• ball on upside-down a bowl



Neutral Equilibrium

A system can also be in neutral equilibrium.

In this case, no forces act, even when the system is displaced left
or right.

Example:

• ball on a flat surface



Summary

• examples with friction

• relation between conservative forces and potential energy

• potential energy diagrams

Quiz tomorrow.

(Uncollected) Homework Serway & Jewett,

• Ch 7, onward from page 207. Probs: 49, 51, 52

• Ch 8, onward from page 236. Probs: 21, 23, 27


