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Last time

• introduced momentum

• Newton’s Second Law: more general form

• relation to force

• momentum vs kinetic energy



Overview

• conservation of momentum

• relation to Newton’s third law

• the rocket equation

• applying the rocket equation

• conservation of momentum in isolated systems



Conservation of Linear Momentum

For an isolated system, ie. a system with no external forces, total
linear momentum is conserved.

 9.2 Analysis Model: Isolated System (Momentum) 251

Example 9.1   The Archer 

Let us consider the situation proposed at the beginning of Section 9.1. A 60-kg archer 
stands at rest on frictionless ice and fires a 0.030-kg arrow horizontally at 85 m/s (Fig. 
9.2). With what velocity does the archer move across the ice after firing the arrow?

Conceptualize  You may have conceptualized this problem already when it was 
introduced at the beginning of Section 9.1. Imagine the arrow being fired one way 
and the archer recoiling in the opposite direction.

Categorize  As discussed in Section 9.1, we cannot solve this problem with models 
based on motion, force, or energy. Nonetheless, we can solve this problem very eas-
ily with an approach involving momentum.
 Let us take the system to consist of the archer (including the bow) and the arrow. 
The system is not isolated because the gravitational force and the normal force from 
the ice act on the system. These forces, however, are vertical and perpendicular to 
the motion of the system. There are no external forces in the horizontal direction, 
and we can apply the isolated system (momentum) model in terms of momentum com-
ponents in this direction.

Analyze  The total horizontal momentum of the system before the arrow is fired is zero because nothing in the sys-
tem is moving. Therefore, the total horizontal momentum of the system after the arrow is fired must also be zero. We 
choose the direction of firing of the arrow as the positive x direction. Identifying the archer as particle 1 and the arrow 
as particle 2, we have m1 5 60 kg, m2 5 0.030 kg, and vS2f 5 85 î m/s.

AM

S O L U T I O N

Figure 9.2  (Example 9.1) An 
archer fires an arrow horizontally 
to the right. Because he is standing 
on frictionless ice, he will begin to 
slide to the left across the ice.

Using the isolated system (momentum) model, 
begin with Equation 9.5:

DpS 5 0    S    pSf  2 pSi 5 0    S    pSf  5 pSi    S    m1 vS1f 1 m2 vS2f 5 0

Solve this equation for vS1f  and substitute 
numerical values:

vS1f 5 2
m 2

m1
 vS2f 5 2a0.030 kg

60 kg
b 185 î m/s 2 5 20.042 î m/s

Analysis Model   Isolated System (Momentum)
Imagine you have identified a system to be analyzed and have defined a 
system boundary. If there are no external forces on the system, the system 
is isolated. In that case, the total momentum of the system, which is the 
vector sum of the momenta of all members of the system, is conserved: 

 DpStot 5 0 (9.5)

Examples: 

each other (Chapter 21)

Momentum

System
boundary

If no external forces act on the 
system, the total momentum of 
the system is constant.

continued

Finalize  The negative sign for vS1f  indicates that the archer is moving to the left in Figure 9.2 after the arrow is fired, in 
the direction opposite the direction of motion of the arrow, in accordance with Newton’s third law. Because the archer 

1Figures from Serway & Jewett.
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For an isolated system, ie. a system with no external forces, total
linear momentum is conserved:

∆ #»p net = 0

This corresponds to a translational symmetry in the equations of
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energy” now, for momentum, it means, no external forces act on the
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Newton’s Third Law and Conservation of
Momentum
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applying a conservation principle, conservation of energy. Let us consider another 
situation and see if we can solve it with the models we have developed so far:

A 60-kg archer stands at rest on frictionless ice and fires a 0.030-kg arrow 
horizontally at 85 m/s. With what velocity does the archer move across the ice 
after firing the arrow?

From Newton’s third law, we know that the force that the bow exerts on the arrow 
is paired with a force in the opposite direction on the bow (and the archer). This 
force causes the archer to slide backward on the ice with the speed requested in the 
problem. We cannot determine this speed using motion models such as the particle 
under constant acceleration because we don’t have any information about the accel-
eration of the archer. We cannot use force models such as the particle under a net 
force because we don’t know anything about forces in this situation. Energy models 
are of no help because we know nothing about the work done in pulling the bow-
string back or the elastic potential energy in the system related to the taut bowstring.
 Despite our inability to solve the archer problem using models learned so far, 
this problem is very simple to solve if we introduce a new quantity that describes 
motion, linear momentum. To generate this new quantity, consider an isolated system 
of two particles (Fig. 9.1) with masses m1 and m2 moving with velocities vS1 and vS2 at 
an instant of time. Because the system is isolated, the only force on one particle is 
that from the other particle. If a force from particle 1 (for example, a gravitational 
force) acts on particle 2, there must be a second force—equal in magnitude but 
opposite in direction—that particle 2 exerts on particle 1. That is, the forces on the 
particles form a Newton’s third law action–reaction pair, and F

S
12 5 2 F

S
21. We can 

express this condition as

F
S

21 1 F
S

12 5 0

From a system point of view, this equation says that if we add up the forces on the 
particles in an isolated system, the sum is zero.
 Let us further analyze this situation by incorporating Newton’s second law. At 
the instant shown in Figure 9.1, the interacting particles in the system have accel-
erations corresponding to the forces on them. Therefore, replacing the force on 
each particle with maS for the particle gives

m1 aS1 1 m2 aS2 5 0

Now we replace each acceleration with its definition from Equation 4.5:

m1 
d vS1

dt
1 m2 

d vS2

dt
5 0

If the masses m1 and m2 are constant, we can bring them inside the derivative oper-
ation, which gives

d 1m1 vS1 2
dt

1
d 1m2 vS2 2

dt
5 0

 
d
dt
1m1 vS1 1 m2 vS2 2 5 0 (9.1)

Notice that the derivative of the sum m1 vS1 1 m2 vS2 with respect to time is zero. 
Consequently, this sum must be constant. We learn from this discussion that the 
quantity mvS for a particle is important in that the sum of these quantities for an 
isolated system of particles is conserved. We call this quantity linear momentum:

The linear momentum of a particle or an object that can be modeled as a 
particle of mass m moving with a velocity vS is defined to be the product of the 
mass and velocity of the particle:

 pS ; mvS (9.2)

Definition of linear X 
momentum of a particle

m2

m1
F21
S

F12
S

v1
S

v2
S

Figure 9.1  Two particles inter-
act with each other. According to 
Newton’s third law, we must have 
F
S

12 5 2 F
S

21.

Newton’s third law for two interacting particles:

#»

F21 = −
#»

F12
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21.Newton’s third law for two interacting particles:

#»

F21 = −
#»

F12

d #»p 1

dt
= −

d #»p 2

dt

d

dt
( #»p 1 +

#»p 2) = 0

Implies:
#»p net =

#»p 1 +
#»p 2 does not change with time. Or, ∆ #»p net = 0.
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#»p 1 +
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Newton’s Third Law and Conservation of
Momentum

Newton’s third law ⇔ conservation of momentum

No external forces (only internal action-reaction pairs):

∆ #»p net = 0



The Rocket Equation
A case where the mass is changing.

A famous example: what happens to a rocket as it burns fuel.
(“The rocket equation”)



The Rocket Equation

Main idea: conserve momentum between the rocket and the
ejected propellant.

Suppose that the rocket burns fuel at a steady rate with respect to
time, and let the initial mass of the rocket and propellent be mi

(at time ti ) and the final mass be mf (at tf ).

Newton’s third law:

#»

F rocket = −
#»

F exhaust

0Figure by Wikipedia user Skorkmaz.



The Rocket Equation

Consider this interaction in the frame of the rocket and suppose
the force Fr on the rocket is constant with time.

Newton’s Second Law for the rocket:

#»

F e→r =
d #»p

dt
= m

d #»v

dt
+ #»v

dm

dt

In the rocket frame, the rocket is not moving ( #»v = 0).

Newton’s second law for the exhaust:

#»

F r→e = me
d #»ve
dt

+ #»ve
dme

dt

Constant force ⇒ constant exhaust velocity in the frame of the
rocket. (dvedt = 0)
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The Rocket Equation
So, if #»v is the velocity of the rocket

−
#»

F e→r =
#»

F r→e

− #»ve
dme

dt
= m

d #»v

dt

but dme
dt = − dm

dt since the rate mass in ejected is equal to the rate
of loss of rocket mass:

#»ve
dm

dt
= m

d #»v

dt

Consider the x-axis to drop the vector notation, noticing #»ve points
in the opposite direction of #»v and d #»v

dt . Therefore,

(−ve ��̂i)
dm

dt
= m

(
dv

dt
��̂i

)
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The Rocket Equation

Rocket’s change in velocity, ∆v?

dv

dt
= −

ve
m

dm

dt

∆v = −

∫ tf
ti

ve
m(t)

dm

dt
dt

= −

∫mf

mi

ve
m

dm

= −ve
[

ln(m)
]mf

mi

∆v = ve ln

(
mi

mf

)
(the “Tsiolkovsky rocket equation”)
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The Rocket Equation

For a rocket burning fuel at a constant rate:

vf = vi + ve ln

(
mi

mf

)

where mi is the initial mass of the rocket and mf is the final
(smaller) mass.

The thrust on an object is the forward force on the object
generated by engines / a propulsion system.

For a contant velocity of the exhaust, ve :

Thrust =

∣∣∣∣ve dm

dt

∣∣∣∣
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Example 9.17

A rocket moving in space, far from all other objects, has a speed of
3.0× 103 m/s relative to the Earth. Its engines are turned on, and
fuel is ejected in a direction opposite the rocket’s motion at a
speed of 5.0× 103 m/s relative to the rocket.1

(a) What is the speed of the rocket relative to the Earth once the
rocket’s mass is reduced to half its mass before ignition?

(b) What is the thrust on the rocket if it burns fuel at the rate of
50 kg/s?

3Serway & Jewett, page 279.



Example 9.17

(a) Speed with half of mass gone? Let initial mass be mi

vf = vi + ve ln

(
mi

mf

)

vf = (3.0× 103) + (5.0× 103) ln

(
mi

(1/2)mi

)
vf = (3.0× 103) + (5.0× 103) ln (2)

vf = 6.5× 103 m/s

(b) Thrust if
∣∣dm
dt

∣∣ = 50 kg/s?

FThrust =

∣∣∣∣ve dm

dt

∣∣∣∣
FThrust = (5.0× 103)(50)

FThrust = 2.5× 105 N
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Isolated Systems and Linear Momentum

If we have a system that interacts internally, but does not
experience external forces, momentum is conserved.

Example 9.2
When discussing energy, we ignored the kinetic energy of the Earth
when considering the energy of a system consisting of the Earth
and a dropped ball. (∆Kball + ∆Ug = 0.) Verify this is a
reasonable thing to do.
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Isolated Systems and Linear Momentum
Example 9.2
When discussing energy, we ignored the kinetic energy of the Earth
when considering the energy of a system consisting of the Earth
and a dropped ball. (∆Kball + ∆Ug = 0.) Verify this is a
reasonable thing to do.

Need to argue that ∆KEarth << ∆Kball.

Momentum is conserved when we drop a ball, if we include the
Earth in our system: ∆ #»p b + ∆

#»pE = 0.

∆ #»p b = −∆ #»pE
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Need to argue that ∆KEarth << ∆Kball.

This is equivalent to saying ∆KEarth
∆Kball

<< 1.

∆KEarth

∆Kball
=

1
2mEv

2
E ,f

1
2mbv

2
b,f

=
mE

mb

(
vE ,f

vb,f

)2

=
mE

mb

(
mb

mE

)2

=
mb

mE

=
1 kg

1025 kg
<< 1



Isolated Systems and Linear Momentum

Need to argue that ∆KEarth << ∆Kball.

This is equivalent to saying ∆KEarth
∆Kball

<< 1.

∆KEarth

∆Kball
=

1
2mEv

2
E ,f

1
2mbv

2
b,f

=
mE

mb

(
vE ,f

vb,f

)2

=
mE

mb

(
mb

mE

)2

=
mb

mE

=
1 kg

1025 kg
<< 1



Isolated Systems and Linear Momentum

Need to argue that ∆KEarth << ∆Kball.

This is equivalent to saying ∆KEarth
∆Kball

<< 1.

∆KEarth

∆Kball
=

1
2mEv

2
E ,f

1
2mbv

2
b,f

=
mE

mb

(
vE ,f

vb,f

)2

=
mE

mb

(
mb

mE

)2

=
mb

mE

=
1 kg

1025 kg
<< 1



Isolated Systems and Linear Momentum

Need to argue that ∆KEarth << ∆Kball.

This is equivalent to saying ∆KEarth
∆Kball

<< 1.

∆KEarth

∆Kball
=

1
2mEv

2
E ,f

1
2mbv

2
b,f

=
mE

mb

(
vE ,f

vb,f

)2

=
mE

mb

(
mb

mE

)2

=
mb

mE

=
1 kg

1025 kg
<< 1



Summary

• conservation of momentum and Newton’s third law

• the rocket equation

• using the rocket equation

(Uncollected) Homework Serway & Jewett,

• Read along in Chapter 9.

• Ch 9, onward from page 283. Probs: 1, 3, 5, 7, 61, 63


