Linear Momentum Isolated Systems: Conservation of Momentum

Lana Sheridan
De Anza College

Feb 25, 2020

Last time

- introduced momentum
- Newton's Second Law: more general form
- relation to force
- momentum vs kinetic energy

Overview

- conservation of momentum
- relation to Newton's third law
- the rocket equation
- applying the rocket equation
- conservation of momentum in isolated systems

Conservation of Linear Momentum

For an isolated system, ie. a system with no external forces, total linear momentum is conserved.

${ }^{1}$ Figures from Serway \& Jewett.

Conservation of Linear Momentum

For an isolated system, ie. a system with no external forces, total linear momentum is conserved:

$$
\Delta \overrightarrow{\mathbf{p}}_{\text {net }}=0
$$

Conservation of Linear Momentum

For an isolated system, ie. a system with no external forces, total linear momentum is conserved:

$$
\Delta \overrightarrow{\mathbf{p}}_{\text {net }}=0
$$

This corresponds to a translational symmetry in the equations of motion.

Conservation of Linear Momentum

For an isolated system, ie. a system with no external forces, total linear momentum is conserved:

$$
\Delta \overrightarrow{\mathbf{p}}_{\text {net }}=0
$$

This corresponds to a translational symmetry in the equations of motion.
(Note: before when speaking of energy "isolated" meant "not exchanging energy" now, for momentum, it means, no external forces act on the system.)

Newton's Third Law and Conservation of Momentum

Newton's third law for two interacting particles:

$$
\overrightarrow{\mathbf{F}}_{21}=-\overrightarrow{\mathbf{F}}_{12}
$$

Newton's Third Law and Conservation of Momentum

Newton's third law for two interacting particles:

$$
\begin{aligned}
\overrightarrow{\mathbf{F}}_{21} & =-\overrightarrow{\mathbf{F}}_{12} \\
\frac{\mathrm{~d} \overrightarrow{\mathbf{p}}_{1}}{\mathrm{dt}} & =-\frac{\mathrm{d} \overrightarrow{\mathbf{p}}_{2}}{\mathrm{dt}}
\end{aligned}
$$

Newton's Third Law and Conservation of Momentum

Newton's third law for two interacting particles:

$$
\begin{aligned}
\overrightarrow{\mathbf{F}}_{21} & =-\overrightarrow{\mathbf{F}}_{12} \\
\frac{\mathrm{~d} \overrightarrow{\mathbf{p}}_{1}}{\mathrm{dt}} & =-\frac{\mathrm{d} \overrightarrow{\mathbf{p}}_{2}}{\mathrm{dt}} \\
\frac{\mathrm{~d}}{\mathrm{dt}}\left(\overrightarrow{\mathbf{p}}_{1}+\overrightarrow{\mathbf{p}}_{2}\right) & =0
\end{aligned}
$$

Implies:
$\overrightarrow{\mathbf{p}}_{\text {net }}=\overrightarrow{\mathbf{p}}_{1}+\overrightarrow{\mathbf{p}}_{2}$ does not change with time. Or, $\Delta \overrightarrow{\mathbf{p}}_{\text {net }}=0$.

Newton's Third Law and Conservation of Momentum

Newton's third law \Leftrightarrow conservation of momentum

No external forces (only internal action-reaction pairs):

$$
\Delta \overrightarrow{\mathbf{p}}_{\text {net }}=0
$$

The Rocket Equation

A case where the mass is changing.
A famous example: what happens to a rocket as it burns fuel. ("The rocket equation")

SATURN \mathbf{Y}

The Rocket Equation

Main idea: conserve momentum between the rocket and the ejected propellant.

Suppose that the rocket burns fuel at a steady rate with respect to time, and let the initial mass of the rocket and propellent be m_{i} (at time t_{i}) and the final mass be m_{f} (at t_{f}).

Newton's third law:

$$
\overrightarrow{\mathbf{F}}_{\text {rocket }}=-\overrightarrow{\boldsymbol{F}}_{\text {exhaust }}
$$

${ }^{0}$ Figure by Wikipedia user Skorkmaz.

The Rocket Equation

Consider this interaction in the frame of the rocket and suppose the force F_{r} on the rocket is constant with time.

Newton's Second Law for the rocket:

$$
\overrightarrow{\mathbf{F}}_{e \rightarrow r}=\frac{\mathrm{d} \overrightarrow{\mathbf{p}}}{\mathrm{dt}}=m \frac{\mathrm{~d} \overrightarrow{\mathbf{v}}}{\mathrm{dt}}+\overrightarrow{\mathbf{v}} \frac{\mathrm{dm}}{\mathrm{dt}}
$$

The Rocket Equation

Consider this interaction in the frame of the rocket and suppose the force F_{r} on the rocket is constant with time.

Newton's Second Law for the rocket:

$$
\overrightarrow{\mathbf{F}}_{e \rightarrow r}=\frac{\mathrm{d} \overrightarrow{\mathbf{p}}}{\mathrm{dt}}=m \frac{\mathrm{~d} \overrightarrow{\mathbf{v}}}{\mathrm{dt}}+\overrightarrow{\mathbf{v}} / \mathrm{d} / h^{0}
$$

In the rocket frame, the rocket is not moving ($\overrightarrow{\mathbf{v}}=0$).

The Rocket Equation

Consider this interaction in the frame of the rocket and suppose the force F_{r} on the rocket is constant with time.

Newton's Second Law for the rocket:

$$
\overrightarrow{\mathbf{F}}_{e \rightarrow r}=\frac{\mathrm{d} \overrightarrow{\mathbf{p}}}{\mathrm{dt}}=m \frac{\mathrm{~d} \overrightarrow{\mathbf{v}}}{\mathrm{dt}}+\overrightarrow{\mathbf{v}} / \mathrm{d} / h^{0}
$$

In the rocket frame, the rocket is not moving ($\overrightarrow{\mathbf{v}}=0$).
Newton's second law for the exhaust:

$$
\overrightarrow{\boldsymbol{F}}_{r \rightarrow e}=m_{e} \frac{\mathrm{~d} \overrightarrow{\mathbf{v}_{\mathbf{e}}}}{\mathrm{dt}}+\overrightarrow{\mathbf{v}_{\mathbf{e}}} \frac{\mathrm{dm}}{\mathrm{e}} \text { }
$$

The Rocket Equation

Consider this interaction in the frame of the rocket and suppose the force F_{r} on the rocket is constant with time.

Newton's Second Law for the rocket:

$$
\overrightarrow{\mathbf{F}}_{e \rightarrow r}=\frac{\mathrm{d} \overrightarrow{\mathbf{p}}}{\mathrm{dt}}=m \frac{\mathrm{~d} \overrightarrow{\mathbf{v}}}{\mathrm{dt}}+\overrightarrow{\mathbf{v}} / \mathrm{d} / \mathrm{m}^{0}
$$

In the rocket frame, the rocket is not moving ($\overrightarrow{\mathbf{v}}=0$).
Newton's second law for the exhaust:

$$
\overrightarrow{\mathbf{F}}_{r \rightarrow e}=m_{e} \frac{\mathrm{~d} \overrightarrow{\mathbf{v}}_{\mathrm{e}}^{-0}}{\mathrm{dt}}+{\overrightarrow{\mathbf{v}_{\mathrm{e}}}}_{\mathrm{dm}}^{\mathrm{dt}}
$$

Constant force \Rightarrow constant exhaust velocity in the frame of the rocket. ($\frac{d v_{e}}{d t}=0$)

The Rocket Equation

So, if $\overrightarrow{\mathbf{v}}$ is the velocity of the rocket

$$
\begin{aligned}
&-\overrightarrow{\mathbf{F}}_{e \rightarrow r}=\overrightarrow{\mathbf{F}}_{r \rightarrow e} \\
&-\overrightarrow{\mathbf{v}_{\mathrm{e}}} \frac{\mathrm{dm}}{\mathrm{e}} \\
& \mathrm{dt}=m \frac{\mathrm{~d} \overrightarrow{\mathbf{v}}}{\mathrm{dt}}
\end{aligned}
$$

The Rocket Equation

So, if $\overrightarrow{\mathbf{v}}$ is the velocity of the rocket

$$
\begin{aligned}
&-\overrightarrow{\mathbf{F}}_{e \rightarrow r}=\overrightarrow{\mathbf{F}}_{r \rightarrow e} \\
&-\overrightarrow{\mathbf{v}_{\mathbf{e}}} \frac{\mathrm{dm}}{\mathrm{e}} \\
& \mathrm{dt}=m \frac{\mathrm{~d} \overrightarrow{\mathbf{v}}}{\mathrm{dt}}
\end{aligned}
$$

but $\frac{d m_{e}}{d t}=-\frac{d m}{d t}$ since the rate mass in ejected is equal to the rate of loss of rocket mass:

$$
\overrightarrow{\mathbf{v}_{\mathbf{e}}} \frac{\mathrm{dm}}{\mathrm{dt}}=m \frac{\mathrm{~d} \overrightarrow{\mathbf{v}}}{\mathrm{dt}} \quad \begin{aligned}
& \left(\frac{\mathrm{dm}}{\mathrm{dt}} \text { is }-\mathrm{ve}, \overrightarrow{\mathbf{v}_{\mathbf{e}}} \text { and } \frac{\mathrm{d} \overrightarrow{\mathbf{v}}}{\mathrm{dt}}\right. \\
& \text { point in opposite dirs. })
\end{aligned}
$$

The Rocket Equation

So, if $\overrightarrow{\mathbf{v}}$ is the velocity of the rocket

$$
\begin{aligned}
-\overrightarrow{\mathbf{F}}_{e \rightarrow r} & =\overrightarrow{\mathbf{F}}_{r \rightarrow e} \\
-\overrightarrow{\mathbf{v}_{\mathbf{e}}} \frac{\mathrm{dm}_{\mathrm{e}}}{\mathrm{dt}} & =m \frac{\mathrm{~d} \overrightarrow{\mathbf{v}}}{\mathrm{dt}}
\end{aligned}
$$

but $\frac{d m_{e}}{d t}=-\frac{d m}{d t}$ since the rate mass in ejected is equal to the rate of loss of rocket mass:

$$
\overrightarrow{\mathbf{v}_{\mathbf{e}}} \frac{\mathrm{dm}}{\mathrm{dt}}=m \frac{\mathrm{~d} \overrightarrow{\mathbf{v}}}{\mathrm{dt}} \quad \begin{aligned}
& \left(\frac{\mathrm{dm}}{\mathrm{dt}} \text { is }-\mathrm{ve}, \overrightarrow{\mathbf{v}_{\mathbf{e}}} \text { and } \frac{\mathrm{d} \overrightarrow{\mathbf{v}}}{\mathrm{dt}}\right. \\
& \text { point in opposite dirs. })
\end{aligned}
$$

Consider the x-axis to drop the vector notation, noticing $\overrightarrow{\mathbf{v}_{\mathbf{e}}}$ points in the opposite direction of \vec{v} and $\frac{d \vec{v}}{d t}$. Therefore,

$$
\left(-v_{e} \hat{\mathbf{i}}^{\mathbf{f}}\right) \frac{\mathrm{dm}}{\mathrm{dt}}=m\left(\frac{\mathrm{~d} v}{\mathrm{dt}} \hat{\mathbf{f}}\right)
$$

The Rocket Equation

Rocket's change in velocity, Δv ?

$$
\frac{\mathrm{dv}}{\mathrm{dt}}=-\frac{v_{e}}{m} \frac{\mathrm{dm}}{\mathrm{dt}}
$$

The Rocket Equation

Rocket's change in velocity, Δv ?

$$
\begin{aligned}
& \frac{\mathrm{dv}}{\mathrm{dt}}=-\frac{v_{e}}{m} \frac{\mathrm{dm}}{\mathrm{dt}} \\
& \Delta v=-\int_{t_{i}}^{t_{f}} \frac{v_{e}}{m(t)} \frac{\mathrm{dm}}{\mathrm{dt}} \mathrm{dt}
\end{aligned}
$$

The Rocket Equation

Rocket's change in velocity, Δv ?

$$
\begin{aligned}
\frac{\mathrm{dv}}{\mathrm{dt}} & =-\frac{v_{e}}{m} \frac{\mathrm{dm}}{\mathrm{dt}} \\
\Delta v & =-\int_{t_{i}}^{t_{f}} \frac{v_{e}}{m(t)} \frac{\mathrm{dm}}{\mathrm{dt}} \mathrm{dt} \\
& =-\int_{m_{i}}^{m_{f}} \frac{v_{e}}{m} \mathrm{dm}
\end{aligned}
$$

The Rocket Equation

Rocket's change in velocity, Δv ?

$$
\begin{aligned}
\frac{\mathrm{dv}}{\mathrm{dt}} & =-\frac{v_{e}}{m} \frac{\mathrm{dm}}{\mathrm{dt}} \\
\Delta v & =-\int_{t_{i}}^{t_{f}} \frac{v_{e}}{m(t)} \frac{\mathrm{dm}}{\mathrm{dt}} \mathrm{dt} \\
& =-\int_{m_{i}}^{m_{f}} \frac{v_{e}}{m} \mathrm{dm} \\
& =-v_{e}[\ln (m)]_{m_{i}}^{m_{f}} \\
\Delta v & =v_{e} \ln \left(\frac{m_{i}}{m_{f}}\right)
\end{aligned}
$$

(the "Tsiolkovsky rocket equation")

The Rocket Equation

For a rocket burning fuel at a constant rate:

$$
v_{f}=v_{i}+v_{e} \ln \left(\frac{m_{i}}{m_{f}}\right)
$$

where m_{i} is the initial mass of the rocket and m_{f} is the final (smaller) mass.

The Rocket Equation

For a rocket burning fuel at a constant rate:

$$
v_{f}=v_{i}+v_{e} \ln \left(\frac{m_{i}}{m_{f}}\right)
$$

where m_{i} is the initial mass of the rocket and m_{f} is the final (smaller) mass.

The thrust on an object is the forward force on the object generated by engines / a propulsion system.

For a contant velocity of the exhaust, v_{e} :

$$
\text { Thrust }=\left|v_{e} \frac{\mathrm{dm}}{\mathrm{dt}}\right|
$$

Example 9.17

A rocket moving in space, far from all other objects, has a speed of $3.0 \times 10^{3} \mathrm{~m} / \mathrm{s}$ relative to the Earth. Its engines are turned on, and fuel is ejected in a direction opposite the rocket's motion at a speed of $5.0 \times 10^{3} \mathrm{~m} / \mathrm{s}$ relative to the rocket. ${ }^{1}$
(a) What is the speed of the rocket relative to the Earth once the rocket's mass is reduced to half its mass before ignition?
(b) What is the thrust on the rocket if it burns fuel at the rate of $50 \mathrm{~kg} / \mathrm{s}$?
${ }^{3}$ Serway \& Jewett, page 279.

Example 9.17

(a) Speed with half of mass gone? Let initial mass be m_{i}

$$
v_{f}=v_{i}+v_{e} \ln \left(\frac{m_{i}}{m_{f}}\right)
$$

Example 9.17

(a) Speed with half of mass gone? Let initial mass be m_{i}

$$
\begin{aligned}
& v_{f}=v_{i}+v_{e} \ln \left(\frac{m_{i}}{m_{f}}\right) \\
& v_{f}=\left(3.0 \times 10^{3}\right)+\left(5.0 \times 10^{3}\right) \ln \left(\frac{m_{i}}{(1 / 2) m_{i}}\right) \\
& v_{f}=\left(3.0 \times 10^{3}\right)+\left(5.0 \times 10^{3}\right) \ln (2)
\end{aligned}
$$

Example 9.17

(a) Speed with half of mass gone? Let initial mass be m_{i}

$$
\begin{aligned}
& v_{f}=v_{i}+v_{e} \ln \left(\frac{m_{i}}{m_{f}}\right) \\
& v_{f}=\left(3.0 \times 10^{3}\right)+\left(5.0 \times 10^{3}\right) \ln \left(\frac{m_{i}}{(1 / 2) m_{i}}\right) \\
& v_{f}=\left(3.0 \times 10^{3}\right)+\left(5.0 \times 10^{3}\right) \ln (2) \\
& v_{f}=\underline{6.5 \times 10^{3} \mathrm{~m} / \mathrm{s}}
\end{aligned}
$$

(b) Thrust if $\left|\frac{d m}{d t}\right|=50 \mathrm{~kg} / \mathrm{s}$?

$$
F_{\text {Thrust }}=\left|v_{e} \frac{\mathrm{dm}}{\mathrm{dt}}\right|
$$

Example 9.17

(a) Speed with half of mass gone? Let initial mass be m_{i}

$$
\begin{aligned}
& v_{f}=v_{i}+v_{e} \ln \left(\frac{m_{i}}{m_{f}}\right) \\
& v_{f}=\left(3.0 \times 10^{3}\right)+\left(5.0 \times 10^{3}\right) \ln \left(\frac{m_{i}}{(1 / 2) m_{i}}\right) \\
& v_{f}=\left(3.0 \times 10^{3}\right)+\left(5.0 \times 10^{3}\right) \ln (2) \\
& v_{f}=\underline{6.5 \times 10^{3} \mathrm{~m} / \mathrm{s}}
\end{aligned}
$$

(b) Thrust if $\left|\frac{d m}{d t}\right|=50 \mathrm{~kg} / \mathrm{s}$?

$$
\begin{aligned}
F_{\text {Thrust }} & =\left|v_{e} \frac{\mathrm{dm}}{\mathrm{dt}}\right| \\
F_{\text {Thrust }} & =\left(5.0 \times 10^{3}\right)(50) \\
F_{\text {Thrust }} & =\underline{2.5 \times 10^{5} \mathrm{~N}}
\end{aligned}
$$

Isolated Systems and Linear Momentum

If we have a system that interacts internally, but does not experience external forces, momentum is conserved.

Isolated Systems and Linear Momentum

If we have a system that interacts internally, but does not experience external forces, momentum is conserved.

Example 9.2

When discussing energy, we ignored the kinetic energy of the Earth when considering the energy of a system consisting of the Earth and a dropped ball. $\left(\Delta K_{\text {ball }}+\Delta U_{g}=0\right.$.) Verify this is a reasonable thing to do.

Isolated Systems and Linear Momentum

Example 9.2

When discussing energy, we ignored the kinetic energy of the Earth when considering the energy of a system consisting of the Earth and a dropped ball. $\left(\Delta K_{\text {ball }}+\Delta U_{g}=0\right.$.) Verify this is a reasonable thing to do.

Isolated Systems and Linear Momentum

Example 9.2

When discussing energy, we ignored the kinetic energy of the Earth when considering the energy of a system consisting of the Earth and a dropped ball. $\left(\Delta K_{\text {ball }}+\Delta U_{g}=0\right.$.) Verify this is a reasonable thing to do.

Need to argue that $\Delta K_{\text {Earth }} \ll \Delta K_{\text {ball }}$.

Isolated Systems and Linear Momentum

Example 9.2

When discussing energy, we ignored the kinetic energy of the Earth when considering the energy of a system consisting of the Earth and a dropped ball. $\left(\Delta K_{\text {ball }}+\Delta U_{g}=0\right.$.) Verify this is a reasonable thing to do.

Need to argue that $\Delta K_{\text {Earth }} \ll \Delta K_{\text {ball }}$.
Momentum is conserved when we drop a ball, if we include the Earth in our system: $\Delta \overrightarrow{\mathbf{p}}_{b}+\Delta \overrightarrow{\mathbf{p}}_{E}=0$.

$$
\Delta \overrightarrow{\mathbf{p}}_{b}=-\Delta \overrightarrow{\mathbf{p}}_{E}
$$

Isolated Systems and Linear Momentum

Example 9.2

When discussing energy, we ignored the kinetic energy of the Earth when considering the energy of a system consisting of the Earth and a dropped ball. $\left(\Delta K_{\text {ball }}+\Delta U_{g}=0\right.$.) Verify this is a reasonable thing to do.

Need to argue that $\Delta K_{\text {Earth }} \ll \Delta K_{\text {ball }}$.
Momentum is conserved when we drop a ball, if we include the Earth in our system: $\Delta \overrightarrow{\mathbf{p}}_{b}+\Delta \overrightarrow{\mathbf{p}}_{E}=0$.

$$
\begin{aligned}
\Delta \overrightarrow{\mathbf{p}}_{b} & =-\Delta \overrightarrow{\mathbf{p}}_{E} \\
m_{b}\left(\overrightarrow{\mathbf{v}}_{b, f}-0\right) & =-m_{E}\left(\overrightarrow{\mathbf{v}}_{E, f}-0\right) \\
m_{b} v_{b, f} & =m_{E} v_{E, f} \\
\frac{v_{E, f}}{v_{b, f}} & =\frac{m_{b}}{m_{E}}
\end{aligned}
$$

Isolated Systems and Linear Momentum

Need to argue that $\Delta K_{\text {Earth }} \ll \Delta K_{\text {ball }}$.

Isolated Systems and Linear Momentum

Need to argue that $\Delta K_{\text {Earth }} \ll \Delta K_{\text {ball }}$.
This is equivalent to saying $\frac{\Delta K_{\text {Earth }}}{\Delta K_{\text {ball }}} \ll 1$.

Isolated Systems and Linear Momentum

Need to argue that $\Delta K_{\text {Earth }} \ll \Delta K_{\text {ball }}$.
This is equivalent to saying $\frac{\Delta K_{\text {Earth }}}{\Delta K_{\text {ball }}} \ll 1$.

$$
\begin{aligned}
\frac{\Delta K_{\text {Earth }}}{\Delta K_{\text {ball }}} & =\frac{\frac{1}{2} m_{E} v_{E, f}^{2}}{\frac{1}{2} m_{b} v_{b, f}^{2}} \\
& =\frac{m_{E}}{m_{b}}\left(\frac{v_{E, f}}{v_{b, f}}\right)^{2} \\
& =\frac{m_{E}}{m_{b}}\left(\frac{m_{b}}{m_{E}}\right)^{2} \\
& =\frac{m_{b}}{m_{E}}
\end{aligned}
$$

Isolated Systems and Linear Momentum

Need to argue that $\Delta K_{\text {Earth }} \ll \Delta K_{\text {ball }}$.
This is equivalent to saying $\frac{\Delta K_{\text {Earth }}}{\Delta K_{\text {ball }}} \ll 1$.

$$
\begin{aligned}
\frac{\Delta K_{\text {Earth }}}{\Delta K_{\text {ball }}} & =\frac{\frac{1}{2} m_{E} v_{E, f}^{2}}{\frac{1}{2} m_{b} v_{b, f}^{2}} \\
& =\frac{m_{E}}{m_{b}}\left(\frac{v_{E, f}}{v_{b, f}}\right)^{2} \\
& =\frac{m_{E}}{m_{b}}\left(\frac{m_{b}}{m_{E}}\right)^{2} \\
& =\frac{m_{b}}{m_{E}} \\
& =\frac{1 \mathrm{~kg}}{10^{25} \mathrm{~kg}} \ll 1
\end{aligned}
$$

Summary

- conservation of momentum and Newton's third law
- the rocket equation
- using the rocket equation
(Uncollected) Homework Serway \& Jewett,
- Read along in Chapter 9.
- Ch 9, onward from page 283. Probs: 1, 3, 5, 7, 61, 63

