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Overview

• collisions

• elastic vs. inelastic collisions



Collisions

A major application of momentum conservation is studying
collisions.

This is not just useful for mechanics but also for statistical
mechanics, subatomic physics, etc.

For our purposes, there are two main kinds of collision:

• elastic

• inelastic



Collisions

If two objects collide and there are no external forces, then the
only forces each object experiences are internal forces.

Internal forces obey Newton’s third law ⇒ Momentum is
conserved.

This is true for both elastic and inelastic collisions. (So long as
there is no external net force.)
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Collisions

Collisions can occur in macroscopic systems through contact.
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9.4 Collisions in One Dimension
In this section, we use the isolated system (momentum) model to describe what 
happens when two particles collide. The term collision represents an event during 
which two particles come close to each other and interact by means of forces. The 
interaction forces are assumed to be much greater than any external forces present, 
so we can use the impulse approximation.
 A collision may involve physical contact between two macroscopic objects as 
described in Figure 9.5a, but the notion of what is meant by a collision must be 
generalized because “physical contact” on a submicroscopic scale is ill-defined and 
hence meaningless. To understand this concept, consider a collision on an atomic 
scale (Fig. 9.5b) such as the collision of a proton with an alpha particle (the nucleus 
of a helium atom). Because the particles are both positively charged, they repel 
each other due to the strong electrostatic force between them at close separations 
and never come into “physical contact.”
 When two particles of masses m1 and m2 collide as shown in Figure 9.5, the 
impulsive forces may vary in time in complicated ways, such as that shown in Figure 
9.3. Regardless of the complexity of the time behavior of the impulsive force, how-
ever, this force is internal to the system of two particles. Therefore, the two particles 
form an isolated system and the momentum of the system must be conserved in any 
collision.

Figure 9.5 (a) The collision 
between two objects as the result of 
direct contact. (b) The “collision” 
between two charged particles.
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▸ 9.3 c o n t i n u e d

air resistance). Furthermore, the gravitational force and the normal force exerted by the road on the car are perpen-
dicular to the motion and therefore do not affect the horizontal momentum. Therefore, we categorize the problem as 
one in which we can apply the impulse approximation in the horizontal direction. We also see that the car’s momentum 
changes due to an impulse from the environment. Therefore, we can apply the nonisolated system (momentum) model.

Analyze

Use Equation 9.13 to find the impulse 
on the car:

I
S

5 DpS 5 pSf 2 pSi 5 mvSf 2 mvSi 5 m 1 vSf 2 vSi 2
5 11 500 kg 2 32.60 î m/s 2 1215.0 î m/s 2 4 5 2.64 3 104

 î kg # m/s

Use Equation 9.11 to evaluate the aver-
age net force exerted on the car:

1 a F
S 2 avg 5

 I
S

Dt
5

2.64 3 104
 î kg # m/s

0.150 s
5 1.76 3 105

 î N

Finalize  The net force found above is a combination of the normal force on the car from the wall and any friction 
force between the tires and the ground as the front of the car crumples. If the brakes are not operating while the crash 
occurs and the crumpling metal does not interfere with the free rotation of the tires, this friction force could be rela-
tively small due to the freely rotating wheels. Notice that the signs of the velocities in this example indicate the reversal 
of directions. What would the mathematics be describing if both the initial and final velocities had the same sign?

What if the car did not rebound from the wall? Suppose the final velocity of the car is zero and the time 
interval of the collision remains at 0.150 s. Would that represent a larger or a smaller net force on the car?

Answer In the original situation in which the car rebounds, the net force on the car does two things during the time 
interval: (1) it stops the car, and (2) it causes the car to move away from the wall at 2.60 m/s after the collision. If the car 
does not rebound, the net force is only doing the first of these steps—stopping the car—which requires a smaller force.
 Mathematically, in the case of the car that does not rebound, the impulse is

  I
S

5 DpS 5 pSf 2 pSi 5 0 2 11 500 kg 2 1215.0 î m/s 2 5 2.25 3 104
 î kg # m/s

The average net force exerted on the car is1 a F
S 2 avg 5

I
S

Dt
5

2.25 3 104
 î kg # m/s

0.150 s
5 1.50 3 105

 î N

which is indeed smaller than the previously calculated value, as was argued conceptually.

WHAT IF ?

And collisions can occur through purely repulsive forces, even if
two particles never make contact.
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 î N

which is indeed smaller than the previously calculated value, as was argued conceptually.

WHAT IF ?



Collisions

Collisions can occur in macroscopic systems through contact.

256 Chapter 9 Linear Momentum and Collisions

9.4 Collisions in One Dimension
In this section, we use the isolated system (momentum) model to describe what 
happens when two particles collide. The term collision represents an event during 
which two particles come close to each other and interact by means of forces. The 
interaction forces are assumed to be much greater than any external forces present, 
so we can use the impulse approximation.
 A collision may involve physical contact between two macroscopic objects as 
described in Figure 9.5a, but the notion of what is meant by a collision must be 
generalized because “physical contact” on a submicroscopic scale is ill-defined and 
hence meaningless. To understand this concept, consider a collision on an atomic 
scale (Fig. 9.5b) such as the collision of a proton with an alpha particle (the nucleus 
of a helium atom). Because the particles are both positively charged, they repel 
each other due to the strong electrostatic force between them at close separations 
and never come into “physical contact.”
 When two particles of masses m1 and m2 collide as shown in Figure 9.5, the 
impulsive forces may vary in time in complicated ways, such as that shown in Figure 
9.3. Regardless of the complexity of the time behavior of the impulsive force, how-
ever, this force is internal to the system of two particles. Therefore, the two particles 
form an isolated system and the momentum of the system must be conserved in any 
collision.

Figure 9.5 (a) The collision 
between two objects as the result of 
direct contact. (b) The “collision” 
between two charged particles.

+ +

He

m2
m1

4

p!

a

b

F21
S

F12
S

 

▸ 9.3 c o n t i n u e d

air resistance). Furthermore, the gravitational force and the normal force exerted by the road on the car are perpen-
dicular to the motion and therefore do not affect the horizontal momentum. Therefore, we categorize the problem as 
one in which we can apply the impulse approximation in the horizontal direction. We also see that the car’s momentum 
changes due to an impulse from the environment. Therefore, we can apply the nonisolated system (momentum) model.

Analyze

Use Equation 9.13 to find the impulse 
on the car:

I
S

5 DpS 5 pSf 2 pSi 5 mvSf 2 mvSi 5 m 1 vSf 2 vSi 2
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 î kg # m/s

0.150 s
5 1.76 3 105

 î N
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Collisions

The internal force on each particle can vary over a collision.

In particular, this is clearly the case for repulsive force collisions.

Let the charge on a proton be q. The the force between a proton
and an alpha particle (Helium nucleus) will vary with the
separation distance r :

F =
k(q)(2q)

r2

The force increases as the two particles approach one another,
then decreases as they move apart again.
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Elastic Collisions
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Because all velocities in Figure 9.7 are either to the left or the right, they can be 
represented by the corresponding speeds along with algebraic signs indicating 
direction. We shall indicate v as positive if a particle moves to the right and nega-
tive if it moves to the left.
 In a typical problem involving elastic collisions, there are two unknown quanti-
ties, and Equations 9.16 and 9.17 can be solved simultaneously to find them. An 
alternative approach, however—one that involves a little mathematical manipula-
tion of Equation 9.17—often simplifies this process. To see how, let us cancel the 
factor 1

2 in Equation 9.17 and rewrite it by gathering terms with subscript 1 on the 
left and 2 on the right:

 m1(v1i
2 2 v1f

2) 5 m2(v2f
2 2 v2i

2) 

Factoring both sides of this equation gives

 m1(v1i 2 v1f) (v1i 1 v1f) 5 m2(v2f 2 v2i)(v2f 1 v2i) (9.18)

 Next, let us separate the terms containing m1 and m2 in Equation 9.16 in a simi-
lar way to obtain

 m1(v1i 2 v1f) 5 m2(v2f 2 v2i) (9.19)

To obtain our final result, we divide Equation 9.18 by Equation 9.19 and obtain

 v1i 1 v1f 5 v2f 1 v2i 

Now rearrange terms once again so as to have initial quantities on the left and final 
quantities on the right:
 v1i 2 v2i 5 2(v1f

 2 v2f) (9.20)

This equation, in combination with Equation 9.16, can be used to solve problems 
dealing with elastic collisions. This pair of equations (Eqs. 9.16 and 9.20) is easier 
to handle than the pair of Equations 9.16 and 9.17 because there are no quadratic 
terms like there are in Equation 9.17. According to Equation 9.20, the relative veloc-
ity of the two particles before the collision, v1i 2 v2i, equals the negative of their 
relative velocity after the collision, 2(v1f 2 v2f).
 Suppose the masses and initial velocities of both particles are known. Equations 
9.16 and 9.20 can be solved for the final velocities in terms of the initial velocities 
because there are two equations and two unknowns:

 v1f 5 am1 2 m2

m1 1 m2
bv1i 1 a 2m2

m1 1 m2
bv2i (9.21)

 v2f 5 a 2m1

m1 1 m2
bv1i 1 am2 2 m1

m1 1 m2
bv2i (9.22)

It is important to use the appropriate signs for v1i and v2i in Equations 9.21 and 9.22.
 Let us consider some special cases. If m1 5 m2, Equations 9.21 and 9.22 show that 
v1f 5 v2i and v2f 5 v1i , which means that the particles exchange velocities if they 
have equal masses. That is approximately what one observes in head-on billiard ball 
collisions: the cue ball stops and the struck ball moves away from the collision with 
the same velocity the cue ball had.
 If particle 2 is initially at rest, then v2i 5 0, and Equations 9.21 and 9.22 become

 v1f 5 am1 2 m2

m1 1 m2
bv1i (9.23)

 v2f 5 a 2m1

m1 1 m2
bv1i (9.24)

If m1 is much greater than m2 and v2i 5 0, we see from Equations 9.23 and 9.24 that 
v1f < v1i and v2f < 2v1i. That is, when a very heavy particle collides head-on with a 

Elastic collision: particle 2 X
initially at rest

1i 2i

1f 2f

m1 m2

Before the collision, the 
particles move separately.

After the collision, the 
particles continue to move 
separately with new velocities.

a

b

vS vS

vS vS

Figure 9.7 Schematic represen-
tation of an elastic head-on colli-
sion between two particles.

Pitfall Prevention 9.3
Not a General Equation Equation 
9.20 can only be used in a very spe-
cific situation, a one- dimensional, 
elastic collision between two 
objects. The general  concept is 
conservation of momentum (and 
conservation of kinetic energy if 
the collision is elastic) for an iso-
lated system.
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For two particles involved in an elastic collision, we can write two
independent equations:

#»p i =
#»p f ⇒ m1

#»v 1i +m2
#»v 2i = m1

#»v 1f +m2
#»v 2f

Ki = Kf ⇒ 1

2
m1(v1i )

2 +
1

2
m2(v2i )

2 =
1

2
m1(v1f )

2 +
1

2
m2(v2f )

2

(Assume the masses of the two particles remain unchanged.)



Elastic Collisions

For two particles involved in an elastic collision, we can write two
equations:

m1v1i +m2v2i = m1v1f +m2v2f

1

2
m1(v1i )

2 +
1

2
m2(v2i )

2 =
1

2
m1(v1f )

2 +
1

2
m2(v2f )

2

A convenient trick is to remove the quadratic terms. This equation
can be derived using the two equations above:

(v1i + v1f ) = (v2f + v2i )

This only applies to 1-dimensional collisions!

(The v ’s are assumed to lie along a single direction and can be positive

or negative)



Elastic Collisions

For two particles involved in an elastic collision, we can write two
equations:

m1v1i +m2v2i = m1v1f +m2v2f

1

2
m1(v1i )

2 +
1

2
m2(v2i )

2 =
1

2
m1(v1f )

2 +
1

2
m2(v2f )

2

A convenient trick is to remove the quadratic terms. This equation
can be derived using the two equations above:

(v1i + v1f ) = (v2f + v2i )

This only applies to 1-dimensional collisions!

(The v ’s are assumed to lie along a single direction and can be positive

or negative)



Example - Elastic Particle Collision

Page 285, #27

 Problems 285

 30. As shown in Figure P9.30, a 
bullet of mass m and speed v 
passes completely through a 
pendulum bob of mass M. The 
bullet emerges with a speed 
of v/2. The pendulum bob is 
suspended by a stiff rod (not a 
string) of length , and negli-
gible mass. What is the mini-
mum value of v such that the pendulum bob will barely 
swing through a complete vertical circle?

 31. A 12.0-g wad of sticky clay is hurled horizontally at a 
100-g wooden block initially at rest on a horizontal sur-
face. The clay sticks to the block. After impact, the block 
slides 7.50 m before coming to rest. If the coefficient of 
friction between the block and the surface is 0.650, what 
was the speed of the clay immediately before impact?

 32. A wad of sticky clay of mass m is hurled horizontally at a 
wooden block of mass M initially at rest on a horizontal 
surface. The clay sticks to the block. After impact, the 
block slides a distance d before coming to rest. If the 
coefficient of friction between the block and the sur-
face is m, what was the speed of the clay immediately 
before impact?

 33. Two blocks are free to slide along the frictionless, 
wooden track shown in Figure P9.33. The block of 
mass m1 5 5.00 kg is released from the position shown, 
at height h 5 5.00 m above the flat part of the track. 
Protruding from its front end is the north pole of a 
strong magnet, which repels the north pole of an iden-
tical magnet embedded in the back end of the block 
of mass m2 5 10.0 kg, initially at rest. The two blocks 
never touch. Calculate the maximum height to which 
m1 rises after the elastic collision.

Figure P9.33

m1

m2

h

 34. (a) Three carts of masses m1 5 4.00 kg, m2 5 10.0 kg, 
and m3 5 3.00 kg move on a frictionless, horizontal 
track with speeds of v1 5 5.00 m/s to the right, v2 5 
3.00 m/s to the right, and v3 5 4.00 m/s to the left as 
shown in Figure P9.34. Velcro couplers make the carts 
stick together after colliding. Find the final velocity of 
the train of three carts. (b) What If? Does your answer 
in part (a) require that all the carts collide and stick 
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sion? (b) What is the change in mechanical energy of 
the car–truck system in the collision? (c) Account for 
this change in mechanical energy.

 23. A 10.0-g bullet is fired into a stationary block of wood 
having mass m 5 5.00 kg. The bullet imbeds into the 
block. The speed of the bullet-plus-wood combination 
immediately after the collision is 0.600 m/s. What was 
the original speed of the bullet?

 24. A car of mass m moving at a speed v1 collides and cou-
ples with the back of a truck of mass 2m moving ini-
tially in the same direction as the car at a lower speed 
v2. (a) What is the speed vf of the two vehicles imme-
diately after the collision? (b) What is the change in 
kinetic energy of the car–truck system in the collision?

 25. A railroad car of mass 2.50 3 104 kg is moving with a 
speed of 4.00 m/s. It collides and couples with three 
other coupled railroad cars, each of the same mass as 
the single car and moving in the same direction with 
an initial speed of 2.00 m/s. (a) What is the speed 
of the four cars after the collision? (b) How much 
mechanical energy is lost in the collision?

 26. Four railroad cars, each of mass 2.50 3 104 kg, are 
coupled together and coasting along horizontal tracks 
at speed vi toward the south. A very strong but fool-
ish movie actor, riding on the second car, uncouples 
the front car and gives it a big push, increasing its 
speed to 4.00 m/s southward. The remaining three 
cars continue moving south, now at 2.00 m/s. (a) Find 
the initial speed of the four cars. (b) By how much 
did the potential energy within the body of the actor 
change? (c) State the relationship between the process 
described here and the process in Problem 25.

 27. A neutron in a nuclear reactor makes an elastic, head-
on collision with the nucleus of a carbon atom initially 
at rest. (a) What fraction of the neutron’s kinetic energy 
is transferred to the carbon nucleus? (b) The initial 
kinetic energy of the neutron is 1.60 3 10213 J. Find its 
final kinetic energy and the kinetic energy of the car-
bon nucleus after the collision. (The mass of the carbon 
nucleus is nearly 12.0 times the mass of the neutron.)

 28. A 7.00-g bullet, when fired from a gun into a 1.00-kg 
block of wood held in a vise, penetrates the block to a 
depth of 8.00 cm. This block of wood is next placed on 
a frictionless horizontal surface, and a second 7.00-g 
bullet is fired from the gun into the block. To what 
depth will the bullet penetrate the block in this case?

 29. A tennis ball of mass 57.0 g is held 
just above a basketball of mass 590 g. 
With their centers vertically aligned, 
both balls are released from rest at 
the same time, to fall through a dis-
tance of 1.20 m, as shown in Figure 
P9.29. (a)  Find the magnitude of the 
downward velocity with which the 
basketball reaches the ground. (b) Assume that an elas-
tic collision with the ground instantaneously reverses 
the velocity of the basketball while the tennis ball is still 
moving down. Next, the two balls meet in an elastic col-
lision. To what height does the tennis ball rebound?

W
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M

Figure P9.29
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m
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Figure P9.30

v1 v2 v3

m2m1 m3

Figure P9.34
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(a) Fraction of neutron’s kinetic energy transferred to carbon
nucleus?

−∆Kn
Kn,i

∆ptot = 0 ; ∆Ktot = 0

−
∆Kn

Kn,i
= 0.284

(b) Final KE of neutron and carbon, given Kn,i = 1.60× 10−13 J.

Kn,f = 1.15× 10−13 J

Kc,f = 4.54× 10−14 J
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Question

Quick Quiz 9.6 A table-tennis ball is thrown at a stationary
bowling ball. The table-tennis ball makes a one-dimensional elastic
collision and bounces back along the same line. Compared with
the bowling ball after the collision, the table-tennis ball has which
of the following?

(A) a larger magnitude of momentum and more kinetic energy

(B) a smaller magnitude of momentum and more kinetic energy

(C) a smaller magnitude of momentum and less kinetic energy

(D) the same magnitude of momentum and the same kinetic
energy

1Serway & Jewett, page 259.
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Types of Collision

Elastic collisions are collisions in which kinetic energy is conserved.

• Ki = Kf

• truly elastic collisions do not occur at macroscopic scales

• many collisions are close to elastic, so we can model them as
elastic

Inelastic collisions do not conserve kinetic energy.

• energy is lost as sound, heat, or in deformations

• all macroscopic collisions are somewhat inelastic

• when the colliding objects stick together afterwards the
collision is perfectly inelastic
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Inelastic Collisions

For general inelastic collisions, some kinetic energy is lost.

We have only the conservation of momentum to work from:

#»p i =
#»p f ⇒ m1

#»v 1i +m2
#»v 2i = m1

#»v 1f +m2
#»v 2f

This means we can only solve for 1 unknown.
(Or 2 unknowns if we have a 2-D collision, 2 component
equations.)

However, there is a special case where we have more information:
perfectly inelastic collisions.
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 9.4 Collisions in One Dimension 257

 In contrast, the total kinetic energy of the system of particles may or may not be con-
served, depending on the type of collision. In fact, collisions are categorized as being 
either elastic or inelastic depending on whether or not kinetic energy is conserved.
 An elastic collision between two objects is one in which the total kinetic energy 
(as well as total momentum) of the system is the same before and after the collision. 
Collisions between certain objects in the macroscopic world, such as billiard balls, 
are only approximately elastic because some deformation and loss of kinetic energy 
take place. For example, you can hear a billiard ball collision, so you know that 
some of the energy is being transferred away from the system by sound. An elastic 
collision must be perfectly silent! Truly elastic collisions occur between atomic and 
subatomic particles. These collisions are described by the isolated system model for 
both energy and momentum. Furthermore, there must be no transformation of 
kinetic energy into other types of energy within the system.
 An inelastic collision is one in which the total kinetic energy of the system is not 
the same before and after the collision (even though the momentum of the system 
is conserved). Inelastic collisions are of two types. When the objects stick together 
after they collide, as happens when a meteorite collides with the Earth, the collision 
is called perfectly inelastic. When the colliding objects do not stick together but 
some kinetic energy is transformed or transferred away, as in the case of a rubber 
ball colliding with a hard surface, the collision is called inelastic (with no modify-
ing adverb). When the rubber ball collides with the hard surface, some of the ball’s 
kinetic energy is transformed when the ball is deformed while it is in contact with 
the surface. Inelastic collisions are described by the momentum version of the iso-
lated system model. The system could be isolated for energy, with kinetic energy 
transformed to potential or internal energy. If the system is nonisolated, there could 
be energy leaving the system by some means. In this latter case, there could also 
be some transformation of energy within the system. In either of these cases, the 
kinetic energy of the system changes.
 In the remainder of this section, we investigate the mathematical details for col-
lisions in one dimension and consider the two extreme cases, perfectly inelastic 
and elastic collisions.

Perfectly Inelastic Collisions
Consider two particles of masses m1 and m2 moving with initial velocities vS1i and vS2i 
along the same straight line as shown in Figure 9.6. The two particles collide head-
on, stick together, and then move with some common velocity vSf  after the collision. 
Because the momentum of an isolated system is conserved in any collision, we can 
say that the total momentum before the collision equals the total momentum of the 
composite system after the collision:

 DpS 5 0    S    pSi 5 pSf     S    m1 vS1i 1 m2 vS2i 5 1m1 1 m2 2 vSf  (9.14)
Solving for the final velocity gives

 vSf 5
m1 vS1i 1 m2 vS2i

m1 1 m2
 (9.15)

Elastic Collisions
Consider two particles of masses m1 and m2 moving with initial velocities vS1i and vS2i 
along the same straight line as shown in Figure 9.7 on page 258. The two particles 
collide head-on and then leave the collision site with different velocities, vS1f  and 
vS2f . In an elastic collision, both the momentum and kinetic energy of the system 
are conserved. Therefore, considering velocities along the horizontal direction in 
Figure 9.7, we have

 pi 5 pf    S    m1v1i 1 m2v2i 5 m1v1f 1 m2v2f (9.16)

 Ki 5 Kf    S    12m1v1i 2 1 1
2m2v2i 2 5 1

2m1v1f 2 1 1
2m2v2f 2 (9.17)

Pitfall Prevention 9.2
Inelastic Collisions Generally, 
inelastic collisions are hard to 
analyze without additional infor-
mation. Lack of this information 
appears in the mathematical 
representation as having more 
unknowns than equations.

Figure 9.6 Schematic repre-
sentation of a perfectly inelastic 
head-on collision between two 
particles.

m1 m2

m1 m2

vf
S

v1i
S v2i

S

Before the collision, the 
particles move separately.

After the collision, the 
particles move together.
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b
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Now the two particles stick together after colliding ⇒ same final
velocity!

#»p i =
#»p f ⇒ m1

#»v 1i +m2
#»v 2i = (m1 +m2)

#»v f



Perfectly Inelastic Collisions

In this case it is straightforward to find an expression for the final
velocity:

m1
#»v 1i +m2

#»v 2i = (m1 +m2)
#»v f

So,

#»v f =
m1

#»v 1i +m2
#»v 2i

m1 +m2



Question

Quick Quiz 9.5 In a perfectly inelastic one-dimensional collision
between two moving objects, what condition alone is necessary so
that the final kinetic energy of the system is zero after the
collision?

(A) The objects must have initial momenta with the same
magnitude but opposite directions.

(B) The objects must have the same mass.

(C) The objects must have the same initial velocity.

(D) The objects must have the same initial speed, with velocity
vectors in opposite directions.

1Serway & Jewett, page 259.
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Perfectly Inelastic Collisions

Perfectly inelastic collisions are the special case of inelastic
collisions where the two colliding objects stick together.

In this case the maximum amount of kinetic energy is lost. (The
loss must be consistent with the conservation of momentum.

Let’s consider why.
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Perfectly Inelastic Collisions
Consider the same collision, viewed from different inertial frames.

Suppose Alice sees:
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In her frame, block 2 is at rest, and block 1 moves with velocity
v1,i . After the collision, both blocks move with velocity vf .

There is still some KE after the collision, but there must be at
least some, since the momentum after cannot be zero.
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Perfectly Inelastic Collisions

Now consider what another observer, Bob, who is in the
center-of-momentum frame, would see in the same collision:
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In his frame, both blocks are in motion, and p1,i = −p2,i . After
the collision, p1,f + p2,f = 0.

The final KE in this case is 0. (p1,f = p2,f = 0)
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Perfectly Inelastic Collisions

Observers in all inertial frames will see momentum conserved in
any collision (with no external forces).

For two colliding objects it is always possible to pick a frame where
the total momentum is zero.

If the objects stick together, the final kinetic energy in this frame is
zero.

No observer in another frame can assign less final kinetic energy
than K = 1

2mv2rel to the objects, where vrel is the relative speed of
the other frame to the center-of-momentum frame.
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Perfectly Inelastic Collisions

Observers in different inertial frames will see different kinetic
energies of the system.

However, all inertial observers will see the same change in kinetic
energy.

Since the kinetic energy cannot be negative, we there is a limit on
how much can be lost:

The loss cannot be more than the initial KE in the
center-of-momentum frame.
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 Problems 285

 30. As shown in Figure P9.30, a 
bullet of mass m and speed v 
passes completely through a 
pendulum bob of mass M. The 
bullet emerges with a speed 
of v/2. The pendulum bob is 
suspended by a stiff rod (not a 
string) of length , and negli-
gible mass. What is the mini-
mum value of v such that the pendulum bob will barely 
swing through a complete vertical circle?

 31. A 12.0-g wad of sticky clay is hurled horizontally at a 
100-g wooden block initially at rest on a horizontal sur-
face. The clay sticks to the block. After impact, the block 
slides 7.50 m before coming to rest. If the coefficient of 
friction between the block and the surface is 0.650, what 
was the speed of the clay immediately before impact?

 32. A wad of sticky clay of mass m is hurled horizontally at a 
wooden block of mass M initially at rest on a horizontal 
surface. The clay sticks to the block. After impact, the 
block slides a distance d before coming to rest. If the 
coefficient of friction between the block and the sur-
face is m, what was the speed of the clay immediately 
before impact?

 33. Two blocks are free to slide along the frictionless, 
wooden track shown in Figure P9.33. The block of 
mass m1 5 5.00 kg is released from the position shown, 
at height h 5 5.00 m above the flat part of the track. 
Protruding from its front end is the north pole of a 
strong magnet, which repels the north pole of an iden-
tical magnet embedded in the back end of the block 
of mass m2 5 10.0 kg, initially at rest. The two blocks 
never touch. Calculate the maximum height to which 
m1 rises after the elastic collision.

Figure P9.33

m1

m2

h

 34. (a) Three carts of masses m1 5 4.00 kg, m2 5 10.0 kg, 
and m3 5 3.00 kg move on a frictionless, horizontal 
track with speeds of v1 5 5.00 m/s to the right, v2 5 
3.00 m/s to the right, and v3 5 4.00 m/s to the left as 
shown in Figure P9.34. Velcro couplers make the carts 
stick together after colliding. Find the final velocity of 
the train of three carts. (b) What If? Does your answer 
in part (a) require that all the carts collide and stick 
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sion? (b) What is the change in mechanical energy of 
the car–truck system in the collision? (c) Account for 
this change in mechanical energy.

 23. A 10.0-g bullet is fired into a stationary block of wood 
having mass m 5 5.00 kg. The bullet imbeds into the 
block. The speed of the bullet-plus-wood combination 
immediately after the collision is 0.600 m/s. What was 
the original speed of the bullet?

 24. A car of mass m moving at a speed v1 collides and cou-
ples with the back of a truck of mass 2m moving ini-
tially in the same direction as the car at a lower speed 
v2. (a) What is the speed vf of the two vehicles imme-
diately after the collision? (b) What is the change in 
kinetic energy of the car–truck system in the collision?

 25. A railroad car of mass 2.50 3 104 kg is moving with a 
speed of 4.00 m/s. It collides and couples with three 
other coupled railroad cars, each of the same mass as 
the single car and moving in the same direction with 
an initial speed of 2.00 m/s. (a) What is the speed 
of the four cars after the collision? (b) How much 
mechanical energy is lost in the collision?

 26. Four railroad cars, each of mass 2.50 3 104 kg, are 
coupled together and coasting along horizontal tracks 
at speed vi toward the south. A very strong but fool-
ish movie actor, riding on the second car, uncouples 
the front car and gives it a big push, increasing its 
speed to 4.00 m/s southward. The remaining three 
cars continue moving south, now at 2.00 m/s. (a) Find 
the initial speed of the four cars. (b) By how much 
did the potential energy within the body of the actor 
change? (c) State the relationship between the process 
described here and the process in Problem 25.

 27. A neutron in a nuclear reactor makes an elastic, head-
on collision with the nucleus of a carbon atom initially 
at rest. (a) What fraction of the neutron’s kinetic energy 
is transferred to the carbon nucleus? (b) The initial 
kinetic energy of the neutron is 1.60 3 10213 J. Find its 
final kinetic energy and the kinetic energy of the car-
bon nucleus after the collision. (The mass of the carbon 
nucleus is nearly 12.0 times the mass of the neutron.)

 28. A 7.00-g bullet, when fired from a gun into a 1.00-kg 
block of wood held in a vise, penetrates the block to a 
depth of 8.00 cm. This block of wood is next placed on 
a frictionless horizontal surface, and a second 7.00-g 
bullet is fired from the gun into the block. To what 
depth will the bullet penetrate the block in this case?

 29. A tennis ball of mass 57.0 g is held 
just above a basketball of mass 590 g. 
With their centers vertically aligned, 
both balls are released from rest at 
the same time, to fall through a dis-
tance of 1.20 m, as shown in Figure 
P9.29. (a)  Find the magnitude of the 
downward velocity with which the 
basketball reaches the ground. (b) Assume that an elas-
tic collision with the ground instantaneously reverses 
the velocity of the basketball while the tennis ball is still 
moving down. Next, the two balls meet in an elastic col-
lision. To what height does the tennis ball rebound?
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Example

(a) Speed vf ?

vf =
m1v1i +m2v2i

m1 +m2

vf =
mv1 + 2mv2
m + 2m

vf =
v1 + 2v2
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Example

(b) Change in kinetic energy?

∆K = Kf − Ki

∆K =
1

2
3mv2f −

(
1

2
mv21 +

1

2
2mv22

)

∆K =
1

2
3m

(
v1 + 2v2

3

)2

−

(
1

2
mv21 +

1

2
2mv22

)
∆K =

m

6

(
(v21 + 4v22 + 4v1v2) − 3

(
v21 + 2v22

))
∆K =

m

6

(
4v1v2 − 2v22 − 2v21

)
∆K =

m

3

(
2v1v2 − v22 − v21

)
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Summary

• elastic collision example

• inelastic collisions

Test Mon.

(Uncollected) Homework Serway & Jewett,

• Ch 9, onward from page 285. Probs: 23, 25, 27, 29, 31


