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Perfectly Inelastic Collisions

Perfectly inelastic collisions are the special case of inelastic
collisions where the two colliding objects stick together.

In this case the maximum amount of kinetic energy is lost. (The
loss must be consistent with the conservation of momentum.

Let’s consider why.
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Perfectly Inelastic Collisions
Consider the same collision, viewed from different inertial frames.

Suppose Alice sees:
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In her frame, block 2 is at rest, and block 1 moves with velocity
v1,i . After the collision, both blocks move with velocity vf .

There is still some KE after the collision, but there must be at
least some, since the momentum after cannot be zero.
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Perfectly Inelastic Collisions

Now consider what another observer, Bob, who is in the
center-of-momentum frame, would see in the same collision:
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In his frame, both blocks are in motion, and p1,i = −p2,i . After
the collision, p1,f + p2,f = 0.

The final KE in this case is 0. (p1,f = p2,f = 0)



Perfectly Inelastic Collisions

Now consider what another observer, Bob, who is in the
center-of-momentum frame, would see in the same collision:

u1,i

1,ip 2,ip

u2,i

B B

1m 2m

1m 2m

In his frame, both blocks are in motion, and p1,i = −p2,i . After
the collision, p1,f + p2,f = 0.

The final KE in this case is 0. (p1,f = p2,f = 0)



Perfectly Inelastic Collisions

Observers in all inertial frames will see momentum conserved in
any collision (with no external forces).

For two colliding objects it is always possible to pick a frame where
the total momentum is zero.

If the objects stick together, the final kinetic energy in this frame is
zero.

No observer in another frame can assign less final kinetic energy
than K = 1

2mv2rel to the objects, where vrel is the relative speed of
the other frame to the center-of-momentum frame.
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Perfectly Inelastic Collisions

Observers in different inertial frames will see different kinetic
energies of the system.

However, all inertial observers will see the same change in
kinetic energy.

The most KE that can be “lost” is the amount lost in a perfectly
inelastic collision.
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 Problems 285

 30. As shown in Figure P9.30, a 
bullet of mass m and speed v 
passes completely through a 
pendulum bob of mass M. The 
bullet emerges with a speed 
of v/2. The pendulum bob is 
suspended by a stiff rod (not a 
string) of length , and negli-
gible mass. What is the mini-
mum value of v such that the pendulum bob will barely 
swing through a complete vertical circle?

 31. A 12.0-g wad of sticky clay is hurled horizontally at a 
100-g wooden block initially at rest on a horizontal sur-
face. The clay sticks to the block. After impact, the block 
slides 7.50 m before coming to rest. If the coefficient of 
friction between the block and the surface is 0.650, what 
was the speed of the clay immediately before impact?

 32. A wad of sticky clay of mass m is hurled horizontally at a 
wooden block of mass M initially at rest on a horizontal 
surface. The clay sticks to the block. After impact, the 
block slides a distance d before coming to rest. If the 
coefficient of friction between the block and the sur-
face is m, what was the speed of the clay immediately 
before impact?

 33. Two blocks are free to slide along the frictionless, 
wooden track shown in Figure P9.33. The block of 
mass m1 5 5.00 kg is released from the position shown, 
at height h 5 5.00 m above the flat part of the track. 
Protruding from its front end is the north pole of a 
strong magnet, which repels the north pole of an iden-
tical magnet embedded in the back end of the block 
of mass m2 5 10.0 kg, initially at rest. The two blocks 
never touch. Calculate the maximum height to which 
m1 rises after the elastic collision.

Figure P9.33

m1

m2

h

 34. (a) Three carts of masses m1 5 4.00 kg, m2 5 10.0 kg, 
and m3 5 3.00 kg move on a frictionless, horizontal 
track with speeds of v1 5 5.00 m/s to the right, v2 5 
3.00 m/s to the right, and v3 5 4.00 m/s to the left as 
shown in Figure P9.34. Velcro couplers make the carts 
stick together after colliding. Find the final velocity of 
the train of three carts. (b) What If? Does your answer 
in part (a) require that all the carts collide and stick 

S

M
AMT

S

AMT
W

Q/C

sion? (b) What is the change in mechanical energy of 
the car–truck system in the collision? (c) Account for 
this change in mechanical energy.

 23. A 10.0-g bullet is fired into a stationary block of wood 
having mass m 5 5.00 kg. The bullet imbeds into the 
block. The speed of the bullet-plus-wood combination 
immediately after the collision is 0.600 m/s. What was 
the original speed of the bullet?

 24. A car of mass m moving at a speed v1 collides and cou-
ples with the back of a truck of mass 2m moving ini-
tially in the same direction as the car at a lower speed 
v2. (a) What is the speed vf of the two vehicles imme-
diately after the collision? (b) What is the change in 
kinetic energy of the car–truck system in the collision?

 25. A railroad car of mass 2.50 3 104 kg is moving with a 
speed of 4.00 m/s. It collides and couples with three 
other coupled railroad cars, each of the same mass as 
the single car and moving in the same direction with 
an initial speed of 2.00 m/s. (a) What is the speed 
of the four cars after the collision? (b) How much 
mechanical energy is lost in the collision?

 26. Four railroad cars, each of mass 2.50 3 104 kg, are 
coupled together and coasting along horizontal tracks 
at speed vi toward the south. A very strong but fool-
ish movie actor, riding on the second car, uncouples 
the front car and gives it a big push, increasing its 
speed to 4.00 m/s southward. The remaining three 
cars continue moving south, now at 2.00 m/s. (a) Find 
the initial speed of the four cars. (b) By how much 
did the potential energy within the body of the actor 
change? (c) State the relationship between the process 
described here and the process in Problem 25.

 27. A neutron in a nuclear reactor makes an elastic, head-
on collision with the nucleus of a carbon atom initially 
at rest. (a) What fraction of the neutron’s kinetic energy 
is transferred to the carbon nucleus? (b) The initial 
kinetic energy of the neutron is 1.60 3 10213 J. Find its 
final kinetic energy and the kinetic energy of the car-
bon nucleus after the collision. (The mass of the carbon 
nucleus is nearly 12.0 times the mass of the neutron.)

 28. A 7.00-g bullet, when fired from a gun into a 1.00-kg 
block of wood held in a vise, penetrates the block to a 
depth of 8.00 cm. This block of wood is next placed on 
a frictionless horizontal surface, and a second 7.00-g 
bullet is fired from the gun into the block. To what 
depth will the bullet penetrate the block in this case?

 29. A tennis ball of mass 57.0 g is held 
just above a basketball of mass 590 g. 
With their centers vertically aligned, 
both balls are released from rest at 
the same time, to fall through a dis-
tance of 1.20 m, as shown in Figure 
P9.29. (a)  Find the magnitude of the 
downward velocity with which the 
basketball reaches the ground. (b) Assume that an elas-
tic collision with the ground instantaneously reverses 
the velocity of the basketball while the tennis ball is still 
moving down. Next, the two balls meet in an elastic col-
lision. To what height does the tennis ball rebound?

W

S

M

Figure P9.29
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Figure P9.34



Example

(a) Speed vf ?

System: car and truck

pi = pf

vf =
m1v1i +m2v2i

m1 +m2

vf =
mv1 + 2mv2
m + 2m

vf =
v1 + 2v2
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Example

(b) Change in kinetic energy?

∆K = Kf − Ki
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Collisions and Energy

The Ballistic Pendulum (Example 9.6)

262 Chapter 9 Linear Momentum and Collisions

m2m1
1A B

m1 ! m2

h
vS vS

a

Figure 9.9  (Example 9.6) (a) Diagram of a ballistic pendulum. Notice that vS1A is the velocity of the projectile imme-
diately before the collision and vSB is the velocity of the projectile–block system immediately after the perfectly inelas-
tic collision. (b) Multiflash photograph of a ballistic pendulum used in the laboratory.
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Finalize   We had to solve this problem in two steps. Each step involved a different system and a different analysis model: 
isolated system (momentum) for the first step and isolated system (energy) for the second. Because the collision was 
assumed to be perfectly inelastic, some mechanical energy was transformed to internal energy during the collision. 
Therefore, it would have been incorrect to apply the isolated system (energy) model to the entire process by equating 
the initial kinetic energy of the incoming projectile with the final gravitational potential energy of the projectile–
block–Earth combination.

 

▸ 9.6 c o n t i n u e d

Noting that v2A 5 0, solve Equation 9.15 for vB: (1)   vB 5
m1v1A

m1 1 m2

Analyze   Write an expression for the total kinetic energy of 
the system immediately after the collision:

(2)   KB 5 1
2 1m1 1 m2 2vB

2

Substitute the value of vB from Equation (1) into Equation (2): KB 5
m1

2v1A
2

2 1m1 1 m2 2
Apply the isolated system model to the system: DK 1 DU 5 0    S   (KC 2 KB) 1 (UC 2 UB) 5 0

Solve for v1A: v1A 5 am1 1 m2

m1
b"2gh

Categorize   For the process during which the projectile–block combination swings upward to height h (ending at a 
configuration we’ll call C), we focus on a different system, that of the projectile, the block, and the Earth. We categorize 
this part of the problem as one involving an isolated system for energy with no nonconservative forces acting.

This kinetic energy of the system immediately after the collision is less than the initial kinetic energy of the projectile 
as is expected in an inelastic collision.
 We define the gravitational potential energy of the system for configuration B to be zero. Therefore, UB 5 0, whereas 
UC 5 (m1 1 m2)gh.

Substitute the energies: a0 2
m1

2v1A
2

2 1m1 1 m2 2 b 1 3 1m1 1 m2 2gh 2 0 4 5 0

Example 9.7   A Two-Body Collision with a Spring 

A block of mass m1 5 1.60 kg initially moving to the right with a speed of 4.00 m/s on a frictionless, horizontal track 
collides with a light spring attached to a second block of mass m2 5 2.10 kg initially moving to the left with a speed of 
2.50 m/s as shown in Figure 9.10a. The spring constant is 600 N/m.

AM

The ballistic pendulum is an apparatus used to measure the speed
of a fast-moving projectile such as a bullet. A projectile of mass
m1 is fired into a large block of wood of mass m2 suspended from
some light wires. The projectile embeds in the block, and the
entire system swings through a height h. How can we determine
the speed of the projectile from a measurement of h?

1Serway & Jewett, page 262.



The Ballistic Pendulum

We know m1, m2, and h. We want to know the speed of the
bullet, v1.

Step 1: how does the speed of the block vb depend on the bullet
speed? Conservation of momentum, perfectly inelastic collision:

(m1 +m2)vb = m1v1 +m2(0)

vb =
m1v1

m1 +m2
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The Ballistic Pendulum
Step 2: What happens after the bullet hits the block? How does
vb relate to h?

Conservation of energy:

∆K + ∆Ug = 0

(0 −
1

2
(m1 +m2)v

2
b ) + ((m1 +m2)gh − 0) = 0

1

2
(m1 +m2)v

2
b = (m1 +m2)gh

Replace vb = m1v1
m1+m2

:

1

2
(m1 +m2)

(
m1v1

m1 +m2

)2

= (m1 +m2)gh(
m2

1v
2
1

m1 +m2

)
= 2(m1 +m2)gh

v1 =

(
m1 +m2

m1

)√
2gh
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Collisions in 2 Dimensions

The conservation of momentum equation is a vector equation.

It will apply for any number of dimensions that are relevant in a
question.

#»p i =
#»p f ⇒ m1

#»v 1i +m2
#»v 2i = m1

#»v 1f +m2
#»v 2f

In particular, we can write equations for each component of the
momentum. In 2-d, with x and y components:

x : m1v1ix +m2v2ix = m1v1fx +m2v2fx

y : m1v1iy +m2v2iy = m1v1fy +m2v2fy

If it is an elastic collision:

Ki = Kf ⇒ 1

2
m1(v1i )

2 +
1

2
m2(v2i )

2 =
1

2
m1(v1f )

2 +
1

2
m2(v2f )

2
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Collisions in 2 Dimensions
As an example, consider the case of a glancing collision.
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Finalize  The negative value for v2f means that block 2 is still moving to the left at the instant we are considering.

(C) Determine the distance the spring is compressed at that instant.

Conceptualize  Once again, focus on the configuration of the system shown in Figure 9.10b.

Categorize  For the system of the spring and two blocks, no friction or other nonconservative forces act within the sys-
tem. Therefore, we categorize the system as an isolated system in terms of energy with no nonconservative forces acting. 
The system also remains an isolated system in terms of momentum.

Analyze   We choose the initial configuration of the system to be that existing immediately before block 1 strikes the 
spring and the final configuration to be that when block 1 is moving to the right at 3.00 m/s.

S O L U T I O N

Write the appropriate reduction of  
Equation 8.2:

DK 1 DU 5 0

Evaluate the energies, recognizing that two 
objects in the system have kinetic energy 
and that the potential energy is elastic:

3 11
2m1v1f

2 1 1
2m2v2f

2 2 2 11
2m1v1i

2 1 1
2m2v2i

2 2 4 1 11
2kx2 2 0 2 5 0

Solve for x 2: x2 5 1
k 3m1 1v1i

2 2 v1f
2 2 1 m2 1v2i

2 2 v2f
2 2 4

Substitute  
numerical values:

x2 5 a 1
600 N/m

b5 11.60 kg 2 3 14.00 m/s 22 2 13.00 m/s 22 4 1 12.10 kg 2 3 12.50 m/s 22 2 11.74 m/s 22 4 6
S   x 5   0.173 m

Finalize This answer is not the maximum compression of the spring because the two blocks are still moving toward 
each other at the instant shown in Figure 9.10b. Can you determine the maximum compression of the spring?

9.5 Collisions in Two Dimensions
In Section 9.2, we showed that the momentum of a system of two particles is con-
served when the system is isolated. For any collision of two particles, this result 
implies that the momentum in each of the directions x, y, and z is conserved. An 
important subset of collisions takes place in a plane. The game of billiards is a famil-
iar example involving multiple collisions of objects moving on a two-dimensional 
surface. For such two-dimensional collisions, we obtain two component equations 
for conservation of momentum:

m1v1ix 1 m2v2ix 5 m1v1fx 1 m2v2fx

m1v1iy 1 m2v2iy 5 m1v1fy 1 m2v2fy

where the three subscripts on the velocity components in these equations repre-
sent, respectively, the identification of the object (1, 2), initial and final values (i, f ), 
and the velocity component (x, y).
 Let us consider a specific two-dimensional problem in which particle 1 of mass m1 
collides with particle 2 of mass m2 initially at rest as in Figure 9.11. After the collision 
(Fig. 9.11b), particle 1 moves at an angle u with respect to the horizontal and particle 2 
moves at an angle f with respect to the horizontal. This event is called a glancing colli-
sion. Applying the law of conservation of momentum in component form and noting 
that the initial y component of the momentum of the two-particle system is zero gives

 Dpx 5 0    S    pix 5 pfx    S    m1v1i 5 m1v1f cos u 1 m2v2f cos f (9.25)

 Dpy 5 0    S    piy 5 pfy    S           0 5 m1v1f sin u 2 m2v2f sin f (9.26)

 

▸ 9.7 c o n t i n u e d

m1

m2

Before the collision

After the collision

v2f  cos

v1f  cos

v1f  sin

2f  sin

θ
φ

φ

φ

θ

θ

v

a

b

v1i
S

v1f
S

v2f
S

Figure 9.11 An elastic, glancing 
collision between two particles.
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iar example involving multiple collisions of objects moving on a two-dimensional 
surface. For such two-dimensional collisions, we obtain two component equations 
for conservation of momentum:

m1v1ix 1 m2v2ix 5 m1v1fx 1 m2v2fx

m1v1iy 1 m2v2iy 5 m1v1fy 1 m2v2fy

where the three subscripts on the velocity components in these equations repre-
sent, respectively, the identification of the object (1, 2), initial and final values (i, f ), 
and the velocity component (x, y).
 Let us consider a specific two-dimensional problem in which particle 1 of mass m1 
collides with particle 2 of mass m2 initially at rest as in Figure 9.11. After the collision 
(Fig. 9.11b), particle 1 moves at an angle u with respect to the horizontal and particle 2 
moves at an angle f with respect to the horizontal. This event is called a glancing colli-
sion. Applying the law of conservation of momentum in component form and noting 
that the initial y component of the momentum of the two-particle system is zero gives

 Dpx 5 0    S    pix 5 pfx    S    m1v1i 5 m1v1f cos u 1 m2v2f cos f (9.25)

 Dpy 5 0    S    piy 5 pfy    S           0 5 m1v1f sin u 2 m2v2f sin f (9.26)
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Figure 9.11 An elastic, glancing 
collision between two particles.

The velocity of particle 1 is in the x-direction.

x-components:

m1v1i = m1v1f cos θ+m2v2f cosφ

y -components:

0 = m1v1f sin θ−m2v2f sinφ



Collisions in 2 Dimensions
As an example, consider the case of a glancing collision.
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Finalize  The negative value for v2f means that block 2 is still moving to the left at the instant we are considering.

(C) Determine the distance the spring is compressed at that instant.

Conceptualize  Once again, focus on the configuration of the system shown in Figure 9.10b.

Categorize  For the system of the spring and two blocks, no friction or other nonconservative forces act within the sys-
tem. Therefore, we categorize the system as an isolated system in terms of energy with no nonconservative forces acting. 
The system also remains an isolated system in terms of momentum.

Analyze   We choose the initial configuration of the system to be that existing immediately before block 1 strikes the 
spring and the final configuration to be that when block 1 is moving to the right at 3.00 m/s.

S O L U T I O N

Write the appropriate reduction of  
Equation 8.2:

DK 1 DU 5 0

Evaluate the energies, recognizing that two 
objects in the system have kinetic energy 
and that the potential energy is elastic:

3 11
2m1v1f

2 1 1
2m2v2f

2 2 2 11
2m1v1i

2 1 1
2m2v2i

2 2 4 1 11
2kx2 2 0 2 5 0

Solve for x 2: x2 5 1
k 3m1 1v1i

2 2 v1f
2 2 1 m2 1v2i

2 2 v2f
2 2 4

Substitute  
numerical values:

x2 5 a 1
600 N/m

b5 11.60 kg 2 3 14.00 m/s 22 2 13.00 m/s 22 4 1 12.10 kg 2 3 12.50 m/s 22 2 11.74 m/s 22 4 6
S   x 5   0.173 m

Finalize This answer is not the maximum compression of the spring because the two blocks are still moving toward 
each other at the instant shown in Figure 9.10b. Can you determine the maximum compression of the spring?
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implies that the momentum in each of the directions x, y, and z is conserved. An 
important subset of collisions takes place in a plane. The game of billiards is a famil-
iar example involving multiple collisions of objects moving on a two-dimensional 
surface. For such two-dimensional collisions, we obtain two component equations 
for conservation of momentum:
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where the three subscripts on the velocity components in these equations repre-
sent, respectively, the identification of the object (1, 2), initial and final values (i, f ), 
and the velocity component (x, y).
 Let us consider a specific two-dimensional problem in which particle 1 of mass m1 
collides with particle 2 of mass m2 initially at rest as in Figure 9.11. After the collision 
(Fig. 9.11b), particle 1 moves at an angle u with respect to the horizontal and particle 2 
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sion. Applying the law of conservation of momentum in component form and noting 
that the initial y component of the momentum of the two-particle system is zero gives
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Figure 9.11 An elastic, glancing 
collision between two particles.
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Finalize  The negative value for v2f means that block 2 is still moving to the left at the instant we are considering.

(C) Determine the distance the spring is compressed at that instant.

Conceptualize  Once again, focus on the configuration of the system shown in Figure 9.10b.

Categorize  For the system of the spring and two blocks, no friction or other nonconservative forces act within the sys-
tem. Therefore, we categorize the system as an isolated system in terms of energy with no nonconservative forces acting. 
The system also remains an isolated system in terms of momentum.

Analyze   We choose the initial configuration of the system to be that existing immediately before block 1 strikes the 
spring and the final configuration to be that when block 1 is moving to the right at 3.00 m/s.

S O L U T I O N

Write the appropriate reduction of  
Equation 8.2:

DK 1 DU 5 0

Evaluate the energies, recognizing that two 
objects in the system have kinetic energy 
and that the potential energy is elastic:
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Solve for x 2: x2 5 1
k 3m1 1v1i

2 2 v1f
2 2 1 m2 1v2i

2 2 v2f
2 2 4

Substitute  
numerical values:

x2 5 a 1
600 N/m

b5 11.60 kg 2 3 14.00 m/s 22 2 13.00 m/s 22 4 1 12.10 kg 2 3 12.50 m/s 22 2 11.74 m/s 22 4 6
S   x 5   0.173 m

Finalize This answer is not the maximum compression of the spring because the two blocks are still moving toward 
each other at the instant shown in Figure 9.10b. Can you determine the maximum compression of the spring?

9.5 Collisions in Two Dimensions
In Section 9.2, we showed that the momentum of a system of two particles is con-
served when the system is isolated. For any collision of two particles, this result 
implies that the momentum in each of the directions x, y, and z is conserved. An 
important subset of collisions takes place in a plane. The game of billiards is a famil-
iar example involving multiple collisions of objects moving on a two-dimensional 
surface. For such two-dimensional collisions, we obtain two component equations 
for conservation of momentum:

m1v1ix 1 m2v2ix 5 m1v1fx 1 m2v2fx

m1v1iy 1 m2v2iy 5 m1v1fy 1 m2v2fy

where the three subscripts on the velocity components in these equations repre-
sent, respectively, the identification of the object (1, 2), initial and final values (i, f ), 
and the velocity component (x, y).
 Let us consider a specific two-dimensional problem in which particle 1 of mass m1 
collides with particle 2 of mass m2 initially at rest as in Figure 9.11. After the collision 
(Fig. 9.11b), particle 1 moves at an angle u with respect to the horizontal and particle 2 
moves at an angle f with respect to the horizontal. This event is called a glancing colli-
sion. Applying the law of conservation of momentum in component form and noting 
that the initial y component of the momentum of the two-particle system is zero gives

 Dpx 5 0    S    pix 5 pfx    S    m1v1i 5 m1v1f cos u 1 m2v2f cos f (9.25)

 Dpy 5 0    S    piy 5 pfy    S           0 5 m1v1f sin u 2 m2v2f sin f (9.26)
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Figure 9.11 An elastic, glancing 
collision between two particles.

The velocity of particle 1 is in the x-direction.

x-components:

m1v1i = m1v1f cos θ+m2v2f cosφ

y -components:

0 = m1v1f sin θ−m2v2f sinφ



Example 9.8 - Car collision

A 1500 kg car traveling east with a speed of 25.0 m/s collides at
an intersection with a 2500 kg truck traveling north at a speed of
20.0 m/s. Find the direction and magnitude of the velocity of the
wreckage after the collision, assuming the vehicles stick together
after the collision.
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Conceptualize  Figure 9.12 should help you conceptualize the situation before 
and after the collision. Let us choose east to be along the positive x direction and 
north to be along the positive y direction.

Categorize  Because we consider moments immediately before and immediately 
after the collision as defining our time interval, we ignore the small effect that 
friction would have on the wheels of the vehicles and model the two vehicles as an 
isolated system in terms of momentum. We also ignore the vehicles’ sizes and model 
them as particles. The collision is perfectly inelastic because the car and the truck 
stick together after the collision.

Analyze   Before the collision, the only object having momentum in the x direction 
is the car. Therefore, the magnitude of the total initial momentum of the system 
(car plus truck) in the x direction is that of only the car. Similarly, the total initial 
momentum of the system in the y direction is that of the truck. After the collision, let 
us assume the wreckage moves at an angle u with respect to the x axis with speed vf .

S O L U T I O N

25.0i m/sˆ

20.0j m/sˆ

y

xu

vf
S

Figure 9.12  (Example 9.8) An 
eastbound car colliding with a north-
bound truck.

Apply the isolated system model for momen-
tum in the x direction:

Dpx 5 0    S   o pxi 5 o pxf    S   (1)   m1v1i 5 (m1 1 m2)vf  cos u

Apply the isolated system model for momen-
tum in the y direction:

Dpy 5 0    S   o pyi 5 o pyf    S   (2)   m2v2i 5 (m1 1 m2)vf  sin u

Divide Equation (2) by Equation (1):
m2v2i

m1v1i
5

sin u
cos u

5 tan u

Solve for u and substitute numerical values: u 5 tan21am2v2i

m1v1i
b 5 tan21 c 12 500 kg 2 120.0 m/s 211 500 kg 2 125.0 m/s 2 d 5 53.18

Use Equation (2) to find the value of vf  and 
substitute numerical values:

vf 5
m2v2i1m1 1 m2 2  sin u

5
12 500 kg 2 120.0 m/s 211 500 kg 1 2 500 kg 2  sin 53.18

5 15.6 m/s

Finalize Notice that the angle u is qualitatively in agreement with Figure 9.12. Also notice that the final speed of the 
combination is less than the initial speeds of the two cars. This result is consistent with the kinetic energy of the system 
being reduced in an inelastic collision. It might help if you draw the momentum vectors of each vehicle before the col-
lision and the two vehicles together after the collision.

 

▸ 9.8 c o n t i n u e d

Example 9.9   Proton–Proton Collision 

A proton collides elastically with another proton that is initially at rest. The incoming proton has an initial speed of  
3.50 3 105 m/s and makes a glancing collision with the second proton as in Figure 9.11. (At close separations, the pro-
tons exert a repulsive electrostatic force on each other.) After the collision, one proton moves off at an angle of 37.08 to 
the original direction of motion and the second deflects at an angle of f to the same axis. Find the final speeds of the 
two protons and the angle f.

Conceptualize  This collision is like that shown in Figure 9.11, which will help you conceptualize the behavior of the 
system. We define the x axis to be along the direction of the velocity vector of the initially moving proton.

Categorize The pair of protons form an isolated system. Both momentum and kinetic energy of the system are con-
served in this glancing elastic collision.

AM

S O L U T I O N

1Serway & Jewett, page 265.



Example 9.8 - Car collision
This is an inelastic collision.

x-components:

m1v1i = (m1 +m2)vf cos θ (1)

y -components:

m2v2i = (m1 +m2)vf sin θ (2)

Dividing (2) by (1):
m2v2i
m1v1i

= tan θ

θ = tan−1

(
m2v2i
m1v1i

)
= 53.1◦

and
vf =

m2v2i
(m1 +m2) sin(53.1)

= 15.6 m/s



Example 9.8 - Car collision
This is an inelastic collision.

x-components:

m1v1i = (m1 +m2)vf cos θ (1)

y -components:

m2v2i = (m1 +m2)vf sin θ (2)

Dividing (2) by (1):
m2v2i
m1v1i

= tan θ

θ = tan−1

(
m2v2i
m1v1i

)
= 53.1◦

and
vf =

m2v2i
(m1 +m2) sin(53.1)

= 15.6 m/s



Example 9.14 - Exploding Rocket

A rocket is fired vertically upward. At the instant it reaches an
altitude of 1000 m and a speed of vi = 300 m/s, it explodes into
three fragments having equal mass.

One fragment moves upward with a speed of v1 = 450 m/s
following the explosion. The second fragment has a speed of
v2 = 240 m/s and is moving east right after the explosion.

What is the velocity of the third fragment immediately after the
explosion?

(What is the sign of the change in kinetic energy of the system of
the rocket parts?)



Example 9.14 - Exploding Rocket

#»p i =
#»p f ⇒ M #»v i =

M

3
( #»v 1 +

#»v 2 +
#»v 3)

Let ĵ point in the the upward vertical direction, and î point east.

#»v 3 = 3 #»v i −
#»v 1 −

#»v 2

= 3× 300 ĵ− 450 ĵ− 240 î

= (−240 î+ 450 ĵ) m/s

Or, 510 m/s at an angle of 62◦ above the horizontal to the west.

(∆K = Kf − Ki =
1
2M(4502 + 2402 + 5102) − 1

2(3M)(3002) =
+1.25× 105M, a positive number)
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Let ĵ point in the the upward vertical direction, and î point east.

#»v 3 = 3 #»v i −
#»v 1 −

#»v 2

= 3× 300 ĵ− 450 ĵ− 240 î

= (−240 î+ 450 ĵ) m/s

Or, 510 m/s at an angle of 62◦ above the horizontal to the west.

(∆K = Kf − Ki =
1
2M(4502 + 2402 + 5102) − 1

2(3M)(3002) =
+1.25× 105M, a positive number)



Summary

• ballistic pendulum

• collisions in 2 dimensions

Quiz Monday.

3rd Collected Homework will be posted today, 1st
question could use momentum / collisions.

(Uncollected) Homework Serway & Jewett,

• Look at example 9.9 on page 266.

• Ch 9, onward from page 275. Probs: 35, 37, 41, 43, 67, 71, 81


