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Last time

• center of mass

• finding the center of mass

• center of mass for continuous mass distributions



Overview

• center of mass examples

• center of mass integral

• collective motion of systems of particles



Center of Mass of Continuous Objects

Suppose this 2-D object, plate P, has uniform mass-per-unit-area.

How can we find its center of mass without integrating?
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Assume the plate's
mass is concentrated
as a particle at the
plate's center of mass.

Here too, assume the
mass is concentrated
as a particle at the
center of mass.

Here too.

Here are those
three particles.

Fig. 9-3 (a) Plate P is a metal plate of
radius 2 R,with a circular hole of radius R.
The center of mass of P is at point comP.
(b) Disk S. (c) Disk S has been put back
into place to form a composite plate C.
The center of mass comS of disk S and the
center of mass comC of plate C are shown.
(d) The center of mass comS!P of the com-
bination of S and P coincides with comC,
which is at x " 0.
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Center of Mass of Continuous Objects

Let the mass-per-unit-area be σ.

Mass of little disk S , MS = πR2σ.

Mass of composite C , MC = π(2R)2σ.

Mass of plate P,
MP = MC −MS = 3πR2σ.

MC xCM,C = MP xCM,P +MS xCM,S

xCM,P =
MC xCM,C −MS xCM,S

MP

xCM,P =
π(2R)2σ (0) − πR2σ (−R)

3πR2σ

xCM,P =
R

3
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Continuous mass distribution

#»r CM =
1

M

∫
#»r dm

 9.6 The Center of Mass 269

Example 9.10   The Center of Mass of Three Particles

A system consists of three particles located as shown in Figure 9.18. Find the cen-
ter of mass of the system. The masses of the particles are m1 5 m2 5 1.0 kg and 
m3 5 2.0 kg.

Conceptualize  Figure 9.18 shows the three 
masses. Your intuition should tell you that the 
center of mass is located somewhere in the 
region between the blue particle and the pair 
of tan particles as shown in the figure.

Categorize  We categorize this example as a 
substitution problem because we will be using the equations for the center of mass developed in this section.

S O L U T I O N

We can express the vector position of the center of mass of an extended object in 
the form

 rSCM 5
1
M

 3 rS dm (9.34)

which is equivalent to the three expressions given by Equations 9.32 and 9.33.
 The center of mass of any symmetric object of uniform density lies on an axis of 
symmetry and on any plane of symmetry. For example, the center of mass of a uni-
form rod lies in the rod, midway between its ends. The center of mass of a sphere or 
a cube lies at its geometric center.
 Because an extended object is a continuous distribution of mass, each small mass 
element is acted upon by the gravitational force. The net effect of all these forces is 
equivalent to the effect of a single force M gS acting through a special point, called 
the center of gravity. If gS is constant over the mass distribution, the center of grav-
ity coincides with the center of mass. If an extended object is pivoted at its center of 
gravity, it balances in any orientation.
 The center of gravity of an irregularly shaped object such as a wrench can be 
determined by suspending the object first from one point and then from another. 
In Figure 9.16, a wrench is hung from point A and a vertical line AB (which can be 
established with a plumb bob) is drawn when the wrench has stopped swinging. 
The wrench is then hung from point C, and a second vertical line CD is drawn. The 
center of gravity is halfway through the thickness of the wrench, under the intersec-
tion of these two lines. In general, if the wrench is hung freely from any point, the 
vertical line through this point must pass through the center of gravity.

Q uick Quiz 9.7  A baseball bat of uniform density is cut at the location of its cen-
ter of mass as shown in Figure 9.17. Which piece has the smaller mass? (a) the 
piece on the right (b) the piece on the left (c) both pieces have the same mass 
(d) impossible to determine

Figure 9.17  (Quick 
Quiz 9.7) A baseball bat 
cut at the location of its 
center of mass.
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Figure 9.18  (Example 9.10) Two 
particles are located on the x axis, 
and a single particle is located on 
the y axis as shown. The vector indi-
cates the location of the system’s 
center of mass.
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An extended object can be 
considered to be a distribution 
of small elements of mass !mi .

Figure 9.15  The center of mass 
is located at the vector position 
r
S

CM, which has coordinates xCM, 
yCM, and zCM.
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The wrench is hung 
freely first from point A 
and then from point C.

The intersection of 
the two lines AB 
and CD locates the 
center of gravity.
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Figure 9.16  An experimental 
technique for determining the 
center of gravity of a wrench.



Continuous mass distribution: Another Example
Center of mass of a cylinder of uniform density, ρ.



Continuous mass distribution: Another Example

Let’s choose our axes so that z points along the length of the
cylinder, and the origin is right in the center of the cylinder.

Probably, you can easily guess where the CM will be.

At the origin!
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Continuous mass distribution: Another Example

How could we prove it?

Along the z-direction this cylinder is very similar to the thin rod we
just considered.

Observe that dm = (πR2)ρ dz:

zCM =
1

M

∫
z(πR2ρ dz)

=
(πR2)ρ

πR2hρ

∫h/2
−h/2

z dz

= 0
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Continuous mass distribution: Another Example
Along the x-direction this cylinder we are looking down on a circle.
Let x = R cos θ, y = R sin θ

Observe that dm = (2yh)ρ dx:

(Looking at just the positive x part of the cylinder, viewed top
down.)

1Or, leave the integral in terms of x and use the substitution u = x2.



Continuous mass distribution: Another Example

Along the x-direction this cylinder we are looking down on a circle.
Let x = R cos θ, y = R sin θ

Observe that dm = (2yh)ρ dx:

xCM =
1

M

∫
x(2yh)ρ dx

=
hρ

πR2h

∫0
π

R2(2 sin θ cos θ)(−R sin θ dθ)

=
ρ

πR2

[
−

2

3
R3 sin3 θ

]0
π

= 0

1Or, leave the integral in terms of x and use the substitution u = x2.



Continuous mass distribution: Another Example

By symmetry the evaluation for yCM must go exactly the same way
as for xCM, therefore,

yCM = 0 .

This is what we expected all along, but this same technique can be
used in cases where we cannot guess the answer.



Systems of Particles

Previously in the course, we had the CM point standing in for an
extended object to model the object as point-like.

Now we justify why that works.

(Here we are just confirming things we were already assuming.)



Motion of the Center of Mass

#»r CM =
1

M

∑
i

mi
#»r i

where #»r i = xî i+ yi ĵ+ zi
#»

k is the displacement of particle i from
the origin.
Differentiating gives:

d #»r CM

dt
=

1

M

∑
i

mi
d #»r i

dt

#»v CM =
1

M

∑
i

mi
#»v i

And differentiating one more time:

#»a CM =
1

M

∑
i

mi
#»a i



Newton’s 2nd Law, revisited

#»a CM =
1

M

∑
i

mi
#»a i

Newton’s 2nd law for a particle i tells us
∑

j

#»

F j ,i = mi
#»a i , where∑

j

#»

F j ,i is the sum of all forces on particle i .
Then,

#»a CM =
1

M

∑
i ,j

#»

F j ,i

and
∑

i ,j

#»

F j ,i is the sum over all forces on all particles. It’s the net
force!
(Note that internal forces cancel out and we can ignore them.)

Therefore,
#»

Fnet = M #»a CM
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Newton’s 2nd Law, revisited

#»

Fnet = M #»a CM

Newton’s 2nd law holds for the acceleration of the center of mass.
This is good because we’ve already been assuming it when we
treated blocks as point masses.

Notice that when we said:
#»

Fnet =
∑

i ,j

#»

F j ,i , we did not care which
particle / part of the system each external force acted on. It
doesn’t matter! So, we can treat all external forces as acting at
the center of mass of the system.



Center of Mass Motion and Total Momentum
Looking at the velocity equation:

#»v CM =
1

M

∑
i

mi
#»v i

multiply both sides by M:

M #»v CM =
∑
i

#»p i =
#»p net

The net momentum of an entire system of many particles can be
found by multiplying the total mass and the velocity of the center
of mass.

M #»v CM = #»p net

Implication: the center of mass ( #»v CM = 0) frame is the same
as the center of momentum ( #»p net = 0) frame.
Also, for an isolated system, #»v cm does not change in a collision!
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Impulse on a System of Particles

Lastly, we still have that the impulse is the total change in
momentum of the entire system collectively.

#»

I =

∫
#»

Fnet,ext dt

=

∫
M

d #»v CM

dt
dt

= M

∫ vf
vi

d #»v CM

= M ∆ #»v CM

= ∆ #»p tot
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Summary

• center of mass for continuous mass distributions

• systems of many particles / collective motion

Quiz Friday.

(Uncollected) Homework Serway & Jewett,

• Look at example 9.12 and make sure you understand it.

• Ch 9, onward from page 288. Probs: 47

• Read Chapter 9, if you haven’t already.

• the Extra HW Problem (next slide)1

1Ans: x = −0.27R, if x runs thru C ,C ′.



Extra HW Problem

A uniform circular plate of radius 2R has a circular hole of radius
R cut out of it. The center C ′ of the smaller circle is a distance
0.80R from the center C of the larger circle, as shown. What is
the position of the center of mass of the plate?


