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Deformable Systems

Some systems will change the distribution of their mass during
their motion.
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Deformable Systems

In a system that is deformed, the positions of the masses of
particles may change relative to the center of mass, but we can
still study the system by considering what happens to the center of
mass.
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moving it through a distance x1 as shown in Figure 9.22b. During this time inter-
val, the right block moves through a distance x2. At the end of this time interval, 
the force F is removed.

(A)  Find the resulting speed vSCM of the center of mass of the system.

Conceptualize Imagine what happens as you push on the left block. It begins to 
move to the right in Figure 9.22, and the spring begins to compress. As a result, the 
spring pushes to the right on the right block, which begins to move to the right. At 
any given time, the blocks are generally moving with different velocities. As the cen-
ter of mass of the system moves to the right with a constant speed after the force is 
removed, the two blocks oscillate back and forth with respect to the center of mass.

Categorize  We apply three analysis models in this problem: the deformable sys-
tem of two blocks and a spring is modeled as a nonisolated system in terms of energy 
because work is being done on it by the applied force. It is also modeled as a noniso-
lated system in terms of momentum because of the force acting on the system during 
a time interval. Because the applied force on the system is constant, the acceleration of its center of mass is constant 
and the center of mass is modeled as a particle under constant acceleration.

Analyze  Using the nonisolated system (momentum) model, we apply the impulse–momentum theorem to the system 
of two blocks, recognizing that the force F is constant during the time interval Dt while the force is applied.

S O L U T I O N

Write Equation 9.40 for the system: Dpx 5 Ix  S   1 2 m 2 1vCM 2 0 2 5  F Dt

(1)   2 mvCM 5  F Dt

During the time interval Dt, the center of mass of the sys-
tem moves a distance 12 1x1 1 x2 2 . Use this fact to express 
the time interval in terms of vCM,avg:

Dt 5
1
2 1x1 1 x2 2

vCM,avg

Because the center of mass is modeled as a particle 
under constant acceleration, the average velocity of the 
center of mass is the average of the initial velocity, which 
is zero, and the final velocity vCM:

Dt 5
1
2 1x1 1 x2 2

1
2 1 0 1 vCM 2 5

1x1 1 x2 2
vCM

Substitute this expression into Equation (1): 2 mvCM 5 F  
1x1 1 x2 2

vCM

Solve for vCM: vCM 5  ÅF  
1x1 1 x2 2

2 m

(B) Find the total energy of the system associated with vibration relative to its center of mass after the force F is 
removed.

Analyze  The vibrational energy is all the energy of the system other than the kinetic energy associated with transla-
tional motion of the center of mass. To find the vibrational energy, we apply the conservation of energy equation. The 
kinetic energy of the system can be expressed as K 5 KCM 1 K vib, where K vib is the kinetic energy of the blocks relative 
to the center of mass due to their vibration. The potential energy of the system is Uvib, which is the potential energy 
stored in the spring when the separation of the blocks is some value other than L.

S O L U T I O N

From the nonisolated system (energy) model, express 
Equation 8.2 for this system:

(2)   DKCM 1 DK vib 1 DUvib 5 W

▸ 9.15 c o n t i n u e d
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Figure 9.22 (Example 9.15)  
(a) Two blocks of equal mass are 
connected by a spring. (b) The left 
block is pushed with a constant 
force of magnitude F and moves a 
distance x1 during some time inter-
val. During this same time interval, 
the right block moves through a 
distance x2.



Deformable Systems Problem, pg 288, #59
Below is an overhead view of the initial configuration of two pucks
of mass m on frictionless ice. The pucks are tied together with a
string of length `, and negligible mass. At time t = 0, a constant
force of magnitude F begins to pull to the right on the center
point of the string. At time t, the moving pucks strike each other
and stick together. At this time, the force has moved through a
distance d , and the pucks have attained a speed v . (a) What is v
in terms of F , d , `, and m? (b) How much of the energy
transferred into the system by work done by the force has been
transformed to internal energy?
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pad on the Earth, taking the vehicle’s initial mass as 
3.00 3 106 kg.

 63. A rocket for use in deep space is to be capable of 
boosting a total load (payload plus rocket frame and 
engine) of 3.00 metric tons to a speed of 10 000 m/s. 
(a) It has an engine and fuel designed to produce an 
exhaust speed of 2 000 m/s. How much fuel plus oxi-
dizer is required? (b) If a different fuel and engine 
design could give an exhaust speed of 5 000 m/s, what 
amount of fuel and oxidizer would be required for the 
same task? (c) Noting that the exhaust speed in part 
(b) is 2.50 times higher than that in part (a), explain 
why the required fuel mass is not simply smaller by a 
factor of 2.50.

 64. A rocket has total mass Mi 5 360 kg, including Mf 5  
330  kg of fuel and oxidizer. In interstellar space, 
it starts from rest at the position x 5 0, turns on its 
engine at time t 5 0, and puts out exhaust with rel-
ative speed ve 5 1 500 m/s at the constant rate k 5  
2.50 kg/s. The fuel will last for a burn time of Tb 5 
Mf /k 5 330 kg/(2.5 kg/s) 5 132 s. (a) Show that dur-
ing the burn the velocity of the rocket as a function of 
time is given by

v 1 t 2 5 2ve lna1 2
kt
Mi

b
  (b) Make a graph of the velocity of the rocket as a func-

tion of time for times running from 0 to 132 s. (c) Show 
that the acceleration of the rocket is

a 1 t 2 5
kve

Mi 2 kt

  (d) Graph the acceleration as a function of time.  
(e) Show that the position of the rocket is

x 1 t 2 5 ve aMi

k
2 tb ln a1 2

kt
Mi

b 1 vet

  (f) Graph the position during the burn as a function of 
time.

Additional Problems
 65. A ball of mass m is thrown straight up into the air with 

an initial speed vi. Find the momentum of the ball (a) at  
its maximum height and (b) halfway to its maximum 
height.

 66. An amateur skater of mass M is trapped in the middle 
of an ice rink and is unable to return to the side where 
there is no ice. Every motion she makes causes her to 
slip on the ice and remain in the same spot. She decides 
to try to return to safety by throwing her gloves of mass 
m in the direction opposite the safe side. (a) She throws 
the gloves as hard as she can, and they leave her hand 
with a  horizontal velocity vSgloves. Explain whether or 
not she moves. If she does move, calculate her velocity 
vSgirl relative to the Earth after she throws the gloves. 
(b) Discuss her motion from the point of view of the 
forces acting on her.

 67. A 3.00-kg steel ball strikes a wall with a speed of 10.0 m/s 
at an angle of u  5 60.08 with the surface. It bounces 
off with the same speed and angle (Fig. P9.67). If the 

Q/C

S

S
Q/C

M

unaffected by air resistance and his center of mass rises 
by a maximum of 15.0 cm. Model the floor as com-
pletely solid and motionless. (a) Does the floor impart 
impulse to the person? (b) Does the floor do work on 
the person? (c) With what momentum does the person 
leave the floor? (d) Does it make sense to say that this 
momentum came from the floor? Explain. (e) With 
what kinetic energy does the person leave the floor?  
(f) Does it make sense to say that this energy came 
from the floor? Explain.

 59. Figure P9.59a shows an overhead view of the initial 
configuration of two pucks of mass m on frictionless 
ice. The pucks are tied together with a string of length 
, and negligible mass. At time t 5 0, a constant force of 
magnitude F begins to pull to the right on the center 
point of the string. At time t, the moving pucks strike 
each other and stick together. At this time, the force 
has moved through a distance d, and the pucks have 
attained a speed v (Fig. P9.59b). (a) What is v in terms 
of F, d, ,, and m? (b) How much of the energy trans-
ferred into the system by work done by the force has 
been transformed to internal energy?

,

m
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v

d
F F

dCM

t ! 0 t ! t

a b

Figure P9.59

Section 9.9 Rocket Propulsion
 60. A model rocket engine has an average thrust of 5.26 N. 

It has an initial mass of 25.5 g, which includes fuel mass 
of 12.7 g. The duration of its burn is 1.90 s. (a) What is 
the average exhaust speed of the engine? (b) This 
engine is placed in a rocket body of mass 53.5 g. What 
is the final velocity of the rocket if it were to be fired 
from rest in outer space by an astronaut on a space-
walk? Assume the fuel burns at a constant rate.

 61. A garden hose is held as 
shown in Figure P9.61. 
The hose is originally 
full of motionless water. 
What additional force 
is necessary to hold the 
nozzle stationary after 
the water flow is turned 
on if the discharge rate 
is 0.600 kg/s with a 
speed of 25.0 m/s?

 62. Review. The first stage of a Saturn V space vehicle con-
sumed fuel and oxidizer at the rate of 1.50 3 104 kg/s 
with an exhaust speed of 2.60 3 103 m/s. (a) Calculate 
the thrust produced by this engine. (b) Find the accel-
eration the vehicle had just as it lifted off the launch 

S

Figure P9.61



Deformable Systems

(a) Speed of pucks, v , after collision?

F = M aCM

F is constant ⇒ aCM is constant.

aCM =
F

2m

v2f = v2i + 2aCM∆xCM

v2f = 0 + 2

(
F

2m

)(
d −

`

2

)
vf =

√
2Fd − F `

2m



Deformable Systems

(a) Speed of pucks, v , after collision?

F = M aCM

F is constant ⇒ aCM is constant.

aCM =
F

2m

v2f = v2i + 2aCM∆xCM

v2f = 0 + 2

(
F

2m

)(
d −

`

2

)
vf =

√
2Fd − F `

2m



Deformable Systems

(a) Speed of pucks, v , after collision?

F = M aCM

F is constant ⇒ aCM is constant.

aCM =
F

2m

v2f = v2i + 2aCM∆xCM

v2f = 0 + 2

(
F

2m

)(
d −

`

2

)
vf =

√
2Fd − F `

2m



Deformable Systems

(b) Increase in internal energy?

system: pucks + pucks’ and ice’s internal degrees of freedom

W = ∆K + ∆Eint

∆Eint = W − Kf

= Fd −
1

2
(2m)v2

= Fd −
1

2
(2m)

2Fd − F `

2m

= Fd − Fd + F
`

2

=
1

2
F `
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Rotation of Rigid Objects

Now we understand that while we can treat a collection of particles
as a single point particle at the center of mass, we do not have to
do that.

This will allow us to describe another important kind of motion:
rotation.

Begin with rotational kinematics.
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Rotation of Rigid Objects

To begin, consider a rotating disc.
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defining kinematic variables: position, velocity, and acceleration. We do the same 
here for rotational motion.
 Figure 10.1 illustrates an overhead view of a rotating compact disc, or CD. The 
disc rotates about a fixed axis perpendicular to the plane of the figure and passing 
through the center of the disc at O. A small element of the disc modeled as a par-
ticle at P is at a fixed distance r from the origin and rotates about it in a circle of 
radius r. (In fact, every element of the disc undergoes circular motion about O.) It is 
convenient to represent the position of P with its polar coordinates (r, u), where r is 
the distance from the origin to P and u is measured counterclockwise from some refer-
ence line fixed in space as shown in Figure 10.1a. In this representation, the angle u  
changes in time while r remains constant. As the particle moves along the cir-
cle from the reference line, which is at angle u 5 0, it moves through an arc of 
length s as in Figure 10.1b. The arc length s is related to the angle u through the 
relationship

 s 5 r u (10.1a)

 u 5
s
r  (10.1b)

Because u is the ratio of an arc length and the radius of the circle, it is a pure num-
ber. Usually, however, we give u the artificial unit radian (rad), where one radian is 
the angle subtended by an arc length equal to the radius of the arc. Because the cir-
cumference of a circle is 2pr, it follows from Equation 10.1b that 3608 corresponds 
to an angle of (2pr/r) rad 5 2p rad. Hence, 1 rad 5 3608/2p < 57.38. To convert an 
angle in degrees to an angle in radians, we use that p rad 5 1808, so

u 1rad 2 5
p

1808
 u 1deg 2

For example, 608 equals p/3 rad and 458 equals p/4 rad.
 Because the disc in Figure 10.1 is a rigid object, as the particle moves through an 
angle u from the reference line, every other particle on the object rotates through 
the same angle u. Therefore, we can associate the angle u with the entire rigid 
object as well as with an individual particle, which allows us to define the angular 
position of a rigid object in its rotational motion. We choose a reference line on 
the object, such as a line connecting O and a chosen particle on the object. The 
angular position of the rigid object is the angle u between this reference line on 
the object and the fixed reference line in space, which is often chosen as the x axis. 
Such identification is similar to the way we define the position of an object in trans-
lational motion as the distance x between the object and the reference position, 
which is the origin, x 5 0. Therefore, the angle u plays the same role in rotational 
motion that the position x does in translational motion.
 As the particle in question on our rigid object travels from position ! to posi-
tion " in a time interval Dt as in Figure 10.2, the reference line fixed to the object 
sweeps out an angle Du 5 uf 2 ui. This quantity Du is defined as the angular dis-
placement of the rigid object:

Du ; uf 2 ui 

The rate at which this angular displacement occurs can vary. If the rigid object 
spins rapidly, this displacement can occur in a short time interval. If it rotates 
slowly, this displacement occurs in a longer time interval. These different rotation 
rates can be quantified by defining the average angular speed vavg (Greek letter 
omega) as the ratio of the angular displacement of a rigid object to the time inter-
val Dt during which the displacement occurs:

 vavg ;
uf 2 ui

tf 2 ti
5

Du

Dt
 (10.2)Average angular speed X

Reference
line

O P
r

O

P

Reference
line

r s
u

To define angular position 
for the disc, a fixed reference 
line is chosen. A particle at P 
is located at a distance r from 
the rotation axis through O.

As the disc rotates, a particle at 
P moves through an arc length 
s on a circular path of radius r. 
The angular position of P is u.

a

b

Figure 10.1  A compact disc 
rotating about a fixed axis 
through O perpendicular to the 
plane of the figure.

Pitfall Prevention 10.1
Remember the Radian In rota-
tional equations, you must use 
angles expressed in radians.  
Don’t fall into the trap of using 
angles measured in degrees in 
rotational equations.

x

y

", t f

!, ti
r

i

O

fu

u

Figure 10.2  A particle on a rotat-
ing rigid object moves from ! to 
" along the arc of a circle. In the 
time interval Dt 5 tf 2 ti , the radial 
line of length r moves through an 
angular displacement Du 5 uf 2 ui.
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s = rθ ; θ =
s

r

r is constant in time for a rigid object.

Units for θ: radians. Often written as “rad”. But notice, that a
dimensional analysis gives [m]

[m] = 1, unitless! The radian is an
artificial unit. In fact, angles given in radians are dimensionless.



Rotation of Rigid Objects

To begin, consider a rotating disc.

294 Chapter 10 Rotation of a Rigid Object About a Fixed Axis
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defining kinematic variables: position, velocity, and acceleration. We do the same 
here for rotational motion.
 Figure 10.1 illustrates an overhead view of a rotating compact disc, or CD. The 
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lational motion as the distance x between the object and the reference position, 
which is the origin, x 5 0. Therefore, the angle u plays the same role in rotational 
motion that the position x does in translational motion.
 As the particle in question on our rigid object travels from position ! to posi-
tion " in a time interval Dt as in Figure 10.2, the reference line fixed to the object 
sweeps out an angle Du 5 uf 2 ui. This quantity Du is defined as the angular dis-
placement of the rigid object:

Du ; uf 2 ui 

The rate at which this angular displacement occurs can vary. If the rigid object 
spins rapidly, this displacement can occur in a short time interval. If it rotates 
slowly, this displacement occurs in a longer time interval. These different rotation 
rates can be quantified by defining the average angular speed vavg (Greek letter 
omega) as the ratio of the angular displacement of a rigid object to the time inter-
val Dt during which the displacement occurs:
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Pitfall Prevention 10.1
Remember the Radian In rota-
tional equations, you must use 
angles expressed in radians.  
Don’t fall into the trap of using 
angles measured in degrees in 
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ing rigid object moves from ! to 
" along the arc of a circle. In the 
time interval Dt 5 tf 2 ti , the radial 
line of length r moves through an 
angular displacement Du 5 uf 2 ui.

s = rθ ; θ =
s

r

r is constant in time for a rigid object.

Units for θ: radians. Often written as “rad”. But notice, that a
dimensional analysis gives [m]

[m] = 1, unitless! The radian is an
artificial unit. In fact, angles given in radians are dimensionless.
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defining kinematic variables: position, velocity, and acceleration. We do the same 
here for rotational motion.
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the distance from the origin to P and u is measured counterclockwise from some refer-
ence line fixed in space as shown in Figure 10.1a. In this representation, the angle u  
changes in time while r remains constant. As the particle moves along the cir-
cle from the reference line, which is at angle u 5 0, it moves through an arc of 
length s as in Figure 10.1b. The arc length s is related to the angle u through the 
relationship

 s 5 r u (10.1a)

 u 5
s
r  (10.1b)

Because u is the ratio of an arc length and the radius of the circle, it is a pure num-
ber. Usually, however, we give u the artificial unit radian (rad), where one radian is 
the angle subtended by an arc length equal to the radius of the arc. Because the cir-
cumference of a circle is 2pr, it follows from Equation 10.1b that 3608 corresponds 
to an angle of (2pr/r) rad 5 2p rad. Hence, 1 rad 5 3608/2p < 57.38. To convert an 
angle in degrees to an angle in radians, we use that p rad 5 1808, so

u 1rad 2 5
p

1808
 u 1deg 2

For example, 608 equals p/3 rad and 458 equals p/4 rad.
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∆θ = θf − θi



Angular Speed

Rate at which the angle advances is a speed: the angular speed, ω.

Average angular speed:

ωavg =
θf − θi
tf − ti

=
∆θ

∆t

Instantaneous angular speed:

ω =
dθ

dt



Angular Acceleration

Rate at which the angular speed changes: the angular acceleration,
α.

Average angular acceleration:

αavg =
ωf −ωi

tf − ti
=
∆ω

∆t

Instantaneous angular acceleration:

α =
dω

dt



Rotation of Rigid Objects and Vector Quantities

We can also define these quantities as vectors! (Provided we fix
the axis of rotation.)

This might seem a bit strange because the direction of the motion
any point (other than the axis) on a rotating disc is always
changing.

However, the angle can be positive or negative depending on
whether it is clockwise or counterclockwise from the reference
point.



Rotation of Rigid Objects and Vector Quantities

We can also define these quantities as vectors! (Provided we fix
the axis of rotation.)

This might seem a bit strange because the direction of the motion
any point (other than the axis) on a rotating disc is always
changing.

However, the angle can be positive or negative depending on
whether it is clockwise or counterclockwise from the reference
point.



Rotation of Rigid Objects and Vector Quantities
By convention, we define the counterclockwise direction to be
positive. The vector itself is drawn along the axis of rotation.296 Chapter 10 Rotation of a Rigid Object About a Fixed Axis

direction of vS for the particle is out of the plane of the diagram when the rotation 
is counterclockwise and into the plane of the diagram when the rotation is clock-
wise. To illustrate this convention, it is convenient to use the right-hand rule demon-
strated in Figure 10.3. When the four fingers of the right hand are wrapped in the 
direction of rotation, the extended right thumb points in the direction of vS . The 
direction of aS follows from its definition aS ; dvS  /dt. It is in the same direction as 
vS if the angular speed is increasing in time, and it is antiparallel to vS if the angular 
speed is decreasing in time.

10.2  Analysis Model: Rigid Object Under  
Constant Angular Acceleration

In our study of translational motion, after introducing the kinematic variables, we 
considered the special case of a particle under constant acceleration. We follow the 
same procedure here for a rigid object under constant angular acceleration. 
 Imagine a rigid object such as the CD in Figure 10.1 rotates about a fixed axis 
and has a constant angular acceleration. In parallel with our analysis model of the 
particle under constant acceleration, we generate a new analysis model for rota-
tional motion called the rigid object under constant angular acceleration. We 
develop kinematic relationships for this model in this section. Writing Equation 
10.5 in the form dv 5 a dt and integrating from ti 5 0 to tf 5 t gives

 vf 5 vi 1 at (for constant a) (10.6)

where vi is the angular speed of the rigid object at time t 5 0. Equation 10.6 allows 
us to find the angular speed vf of the object at any later time t. Substituting Equa-
tion 10.6 into Equation 10.3 and integrating once more, we obtain

 uf 5 ui 1 vit 1 1
2at 2 1 for constant a 2  (10.7)

where ui is the angular position of the rigid object at time t 5 0. Equation 10.7 
allows us to find the angular position uf of the object at any later time t. Eliminating 
t from Equations 10.6 and 10.7 gives

 vf
2 5 vi

2 1 2a(uf 2 ui) (for constant a) (10.8)

This equation allows us to find the angular speed vf of the rigid object for any value of  
its angular position uf . If we eliminate a between Equations 10.6 and 10.7, we obtain

 uf 5 ui 1 1
2 1vi 1 vf 2 t 1 for constant a 2  (10.9)

 Notice that these kinematic expressions for the rigid object under constant angu-
lar acceleration are of the same mathematical form as those for a particle under 
constant acceleration (Chapter 2). They can be generated from the equations for 
translational motion by making the substitutions x S u, v S v, and a S a. Table 
10.1 compares the kinematic equations for the rigid object under constant angular 
acceleration and particle under constant acceleration models.

Q uick Quiz 10.2  Consider again the pairs of angular positions for the rigid 
object in Quick Quiz 10.1. If the object starts from rest at the initial angular 
position, moves counterclockwise with constant angular acceleration, and 
arrives at the final angular position with the same angular speed in all three 
cases, for which choice is the angular acceleration the highest?

Rotational kinematic X 
equations

 

 v
S

v
S

Figure 10.3  The right-hand rule 
for determining the direction of the 
angular velocity vector.

Pitfall Prevention 10.3
Just Like Translation? Equations 
10.6 to 10.9 and Table 10.1 might 
suggest that rotational kinematics 
is just like translational kinemat-
ics. That is almost true, with two 
key differences. (1) In rotational 
kinematics, you must specify a 
rotation axis (per Pitfall Pre-
vention 10.2). (2) In rotational 
motion, the object keeps return-
ing to its original orientation; 
therefore, you may be asked for 
the number of revolutions made 
by a rigid object. This concept has 
no analog in translational motion.

Table 10.1 Kinematic Equations for Rotational and Translational Motion
Rigid Object Under Constant Angular Acceleration Particle Under Constant Acceleration
 vf 5 vi 1 at (10.6) vf 5 vi 1 at (2.13)
 uf 5 ui 1 vit 1 12at2 (10.7) xf 5 xi 1 vit 1 12at2 (2.16)
 vf

2 5 vi
2 1 2a(uf 2 ui) (10.8) vf

2 5 vi
2 1 2a(xf 2 xi) (2.17)

 uf 5 ui 1 12(vi 1 vf)t (10.9) xf 5 xi 1 12(vi 1 vf)t (2.15)
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Then we can write:

#»

θθθ =
s

r
n̂ ; #»ωωω =

d
#»

θθθ

dt
; #»α =

d #»ωωω

dt

where #̂»n is a unit vector perpendicular to the plane of rotation.
(Assuming we fix the axis of rotation.)



Comparison of Linear and Rotational quantities

Linear Quantities Rotational Quantities

#»x
#»

θ

#»v = d #»x
dt

#»ω = d
#»

θ
dt

#»a = d #»v
dt

#»α = d # »ω
dt



Rotational Kinematics

If α is constant, we have basically the same kinematics equations
as before, but the relations are between the new quantities.

#»ωf = #»ωi +
#»αt

#»

θ f =
#»

θ i +
#»ωi t +

1

2
#»αt2

ω2
f = ω2

i + 2 #»α · #   »

∆θ

#»ωavg =
1

2
( #»ωi +

#»ωf )

#»

θ f =
#»

θ i +
1

2
( #»ωi +

#»ωf )t



Kinematics Comparison

Linear Quantities Rotational Quantities

#»v f = #»vi +
#»a t #»ωf = #»ωi +

#»αt

#»x f = #»xi +
#»vit +

1
2

#»a t2
#»

θ f =
#»

θ i +
#»ωi t +

1
2

#»αt2

v2f = v2i + 2 #»a ·∆x ω2
f = ω2

i + 2α ·∆θ

#»v avg = 1
2(

#»vi +
#»vf)

#»ωavg =
1
2(

#»ωi +
#»ωf )

#»xf =
#»xi +

1
2(

#»vi +
#»vf)t

#»

θ f =
#»

θ i +
1
2(

#»ωi +
#»ωf )t

(The rotational equations can all be proved in an an analogous way
to the linear ones.)



Using Rotational Kinematics Equations: Example 1
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mine the angular position, angular speed, and angu-
lar acceleration of the door (a) at t 5 0 and (b) at t 5 
3.00 s.

 4. A bar on a hinge starts from rest and rotates with an 
angular acceleration a 5 10 1 6t, where a is in rad/s2  
and t is in seconds. Determine the angle in radians 
through which the bar turns in the first 4.00 s.

Section 10.2 Analysis Model: Rigid Object  
Under Constant Angular Acceleration
 5. A wheel starts from rest and rotates with constant 

angular acceleration to reach an angular speed of  
12.0 rad/s in 3.00 s. Find (a) the magnitude of the angu-

W

Section 10.1 Angular Position, Velocity, and Acceleration
 1. (a) Find the angular speed of the Earth’s rotation about 

its axis. (b) How does this rotation affect the shape of 
the Earth?

 2. A potter’s wheel moves uniformly from rest to an angu-
lar speed of 1.00 rev/s in 30.0 s. (a) Find its average 
angular acceleration in radians per second per second. 
(b) Would doubling the angular acceleration during 
the given period have doubled the final angular speed?

 3. During a certain time interval, the angular position 
of a swinging door is described by u 5 5.00 1 10.0t 1 
2.00t 2, where u is in radians and t is in seconds. Deter-

Q/C
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far side and pulled forward horizontally, the tricycle 
would start to roll forward. (a) Instead, assume a string 
is attached to the lower pedal on the near side and 
pulled forward horizontally as shown by A. Will the tri-
cycle start to roll? If so, which way? Answer the same 
questions if (b) the string is pulled forward and upward 
as shown by B, (c) if the string is pulled straight down 
as shown by C, and (d) if the string is pulled forward 
and downward as shown by D. (e) What If? Suppose 
the string is instead attached to the rim of the front 
wheel and pulled upward and backward as shown by E. 
Which way does the tricycle roll? (f) Explain a pattern 
of reasoning, based on the figure, that makes it easy to 
answer questions such as these. What physical quantity 
must you evaluate?

B

A

D
C

E

Figure CQ10.15

 16. A person balances a meterstick in a horizontal posi-
tion on the extended index fingers of her right and 
left hands. She slowly brings the two fingers together. 
The stick remains balanced, and the two fingers always 
meet at the 50-cm mark regardless of their original 
positions. (Try it!) Explain why that occurs.

 11. If you see an object rotating, is there necessarily a net 
torque acting on it?

 12. If a small sphere of mass M were placed at the end 
of the rod in Figure 10.21, would the result for v be 
greater than, less than, or equal to the value obtained 
in Example 10.11?

 13. Three objects of uniform density—a solid sphere, 
a solid cylinder, and a hollow  cylinder—are placed 
at the top of an incline (Fig. CQ10.13). They are all 
released from rest at the same elevation and roll with-
out slipping. (a) Which object reaches the bottom first?  
(b) Which reaches it last? Note: The result is indepen-
dent of the masses and the radii of the objects. (Try 
this activity at home!)

Figure CQ10.13

 14. Which of the entries in Table 10.2 applies to finding 
the moment of inertia (a) of a long, straight sewer pipe 
rotating about its axis of symmetry? (b) Of an embroi-
dery hoop rotating about an axis through its center 
and perpendicular to its plane? (c) Of a uniform door 
turning on its hinges? (d) Of a coin turning about an 
axis through its center and perpendicular to its faces?

 15. Figure CQ10.15 shows a side view of a child’s tricycle 
with rubber tires on a horizontal concrete sidewalk. 
If a string were attached to the upper pedal on the 
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 Problems 325

lar acceleration of the wheel and (b) the angle in radi-
ans through which it rotates in this time interval.

 6. A centrifuge in a medical laboratory rotates at an angu-
lar speed of 3 600 rev/min. When switched off, it rotates 
through 50.0 revolutions before coming to rest. Find 
the constant angular acceleration of the centrifuge.

 7. An electric motor rotating a workshop grinding wheel 
at 1.00 3 102 rev/min is switched off. Assume the wheel 
has a constant negative angular acceleration of magni-
tude 2.00 rad/s2. (a) How long does it take the grinding 
wheel to stop? (b) Through how many radians has the 
wheel turned during the time interval found in part (a)?

 8. A machine part rotates at an angular speed of 
0.060  rad/s; its speed is then increased to 2.2 rad/s 
at an angular acceleration of 0.70 rad/s2. (a) Find the 
angle through which the part rotates before reaching 
this final speed. (b) If both the initial and final angu-
lar speeds are doubled and the angular acceleration 
remains the same, by what factor is the angular dis-
placement changed? Why?

 9. A dentist’s drill starts from rest. After 3.20 s of con-
stant angular acceleration, it turns at a rate of 2.51 3 
104 rev/min. (a) Find the drill’s angular acceleration.  
(b) Determine the angle (in radians) through which 
the drill rotates during this period.

 10. Why is the following situation impossible? Starting from 
rest, a disk rotates around a fixed axis through an 
angle of 50.0   rad in a time interval of 10.0 s. The 
angular acceleration of the disk is constant during the 
entire motion, and its final angular speed is 8.00 rad/s.

 11. A rotating wheel requires 3.00 s to rotate through  
37.0 revolutions. Its angular speed at the end of the 
3.00-s interval is 98.0 rad/s. What is the constant angu-
lar acceleration of the wheel?

 12. The tub of a washer goes into its spin cycle, starting 
from rest and gaining angular speed steadily for 8.00 s,  
at which time it is turning at 5.00 rev/s. At this point, 
the person doing the laundry opens the lid, and a 
safety switch turns off the washer. The tub smoothly 
slows to rest in 12.0 s. Through how many revolutions 
does the tub turn while it is in motion?

 13. A spinning wheel is slowed down by a brake, giving it 
a constant angular acceleration of 25.60 rad/s2. Dur-
ing a 4.20-s time interval, the wheel rotates through  
62.4 rad. What is the angular speed of the wheel at the 
end of the 4.20-s interval?

 14. Review. Consider a tall building located on the Earth’s 
equator. As the Earth rotates, a person on the top floor of 
the building moves faster than someone on the ground 
with respect to an inertial reference frame because the 
person on the ground is closer to the Earth’s axis. Con-
sequently, if an object is dropped from the top floor to 
the ground a distance h below, it lands east of the point 
vertically below where it was dropped. (a) How far to the 
east will the object land? Express your answer in terms 
of h, g, and the angular speed v of the Earth. Ignore air 
resistance and assume the free-fall acceleration is con-
stant over this range of heights. (b) Evaluate the east-
ward displacement for h 5 50.0 m. (c) In your judgment, 

M
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were we justified in ignoring this aspect of the Coriolis 
effect in our previous study of free fall? (d) Suppose the 
angular speed of the Earth were to decrease due to tidal 
friction with constant angular acceleration. Would the 
eastward displacement of the dropped object increase 
or decrease compared with that in part (b)?

Section 10.3 Angular and Translational Quantities
 15. A racing car travels on a circular track of radius 250 m.  

Assuming the car moves with a constant speed of  
45.0 m/s, find (a) its angular speed and (b) the magni-
tude and direction of its acceleration.

 16. Make an order-of-magnitude estimate of the number 
of revolutions through which a typical automobile tire 
turns in one year. State the quantities you measure or 
estimate and their values.

 17. A discus thrower (Fig. P4.33, page 104) accelerates a 
discus from rest to a speed of 25.0 m/s by whirling it 
through 1.25 rev. Assume the discus moves on the arc 
of a circle 1.00 m in radius. (a) Calculate the final angu-
lar speed of the discus. (b) Determine the magnitude 
of the angular acceleration of the discus, assuming it 
to be constant. (c) Calculate the time interval required 
for the discus to accelerate from rest to 25.0 m/s.

 18. Figure P10.18 shows the drive train of a bicycle that 
has wheels 67.3 cm in diameter and pedal cranks  
17.5 cm long. The cyclist pedals at a steady cadence of  
76.0 rev/min. The chain engages with a front sprocket 
15.2 cm in diameter and a rear sprocket 7.00 cm in 
diameter. Calculate (a) the speed of a link of the chain 
relative to the bicycle frame, (b) the angular speed of 
the bicycle wheels, and (c) the speed of the bicycle rela-
tive to the road. (d) What pieces of data, if any, are not 
necessary for the calculations?

Chain

Front sprocket
Pedal crank

Rear
sprocket

Figure P10.18

 19. A wheel 2.00 m in diameter lies in a vertical plane and 
rotates about its central axis with a constant angular 
acceleration of 4.00 rad/s2. The wheel starts at rest at  
t 5 0, and the radius vector of a certain point P on the 
rim makes an angle of 57.38 with the horizontal at this 
time. At t 5 2.00 s, find (a) the angular speed of the 
wheel and, for point P, (b) the tangential speed, (c) the 
total acceleration, and (d) the angular position.

 20. A car accelerates uniformly from rest and reaches a 
speed of 22.0 m/s in 9.00 s. Assuming the diameter of 
a tire is 58.0 cm, (a) find the number of revolutions the 
tire makes during this motion, assuming that no slip-
ping occurs. (b) What is the final angular speed of a 
tire in revolutions per second?
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Example 1

Known: ωi , ωf , t

(a) Angular accel., α?

ωf = ωi + αt

α =
ωf −ωi

t

α =
12.0 rad/s − 0

3.00 s

α = 4.00 rad s−2



Example 1

Known: ωi , ωf , t

(a) Angular accel., α?

ωf = ωi + αt

α =
ωf −ωi

t

α =
12.0 rad/s − 0

3.00 s

α = 4.00 rad s−2



Example 1

Known: ωi , ωf , t

(a) Angular accel., α?

ωf = ωi + αt

α =
ωf −ωi

t

α =
12.0 rad/s − 0

3.00 s

α = 4.00 rad s−2



Example 1

Known: ωi , ωf , t, α

(b) Angle in radians, ∆θ?

Either use

∆θ = ωi t +
1

2
αt2 = 0 +

1

2
(4)(3)2 = 18 radians

or use

∆θ =
1

2
(ωi +ωf )t

∆θ =
1

2
(0 + 12.0)(3.00)

= 18.0 radians



Example 1

Known: ωi , ωf , t, α

(b) Angle in radians, ∆θ?

Either use

∆θ = ωi t +
1

2
αt2 = 0 +

1

2
(4)(3)2 = 18 radians

or use

∆θ =
1

2
(ωi +ωf )t

∆θ =
1

2
(0 + 12.0)(3.00)

= 18.0 radians
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lar acceleration of the wheel and (b) the angle in radi-
ans through which it rotates in this time interval.

 6. A centrifuge in a medical laboratory rotates at an angu-
lar speed of 3 600 rev/min. When switched off, it rotates 
through 50.0 revolutions before coming to rest. Find 
the constant angular acceleration of the centrifuge.

 7. An electric motor rotating a workshop grinding wheel 
at 1.00 3 102 rev/min is switched off. Assume the wheel 
has a constant negative angular acceleration of magni-
tude 2.00 rad/s2. (a) How long does it take the grinding 
wheel to stop? (b) Through how many radians has the 
wheel turned during the time interval found in part (a)?

 8. A machine part rotates at an angular speed of 
0.060  rad/s; its speed is then increased to 2.2 rad/s 
at an angular acceleration of 0.70 rad/s2. (a) Find the 
angle through which the part rotates before reaching 
this final speed. (b) If both the initial and final angu-
lar speeds are doubled and the angular acceleration 
remains the same, by what factor is the angular dis-
placement changed? Why?

 9. A dentist’s drill starts from rest. After 3.20 s of con-
stant angular acceleration, it turns at a rate of 2.51 3 
104 rev/min. (a) Find the drill’s angular acceleration.  
(b) Determine the angle (in radians) through which 
the drill rotates during this period.

 10. Why is the following situation impossible? Starting from 
rest, a disk rotates around a fixed axis through an 
angle of 50.0   rad in a time interval of 10.0 s. The 
angular acceleration of the disk is constant during the 
entire motion, and its final angular speed is 8.00 rad/s.

 11. A rotating wheel requires 3.00 s to rotate through  
37.0 revolutions. Its angular speed at the end of the 
3.00-s interval is 98.0 rad/s. What is the constant angu-
lar acceleration of the wheel?

 12. The tub of a washer goes into its spin cycle, starting 
from rest and gaining angular speed steadily for 8.00 s,  
at which time it is turning at 5.00 rev/s. At this point, 
the person doing the laundry opens the lid, and a 
safety switch turns off the washer. The tub smoothly 
slows to rest in 12.0 s. Through how many revolutions 
does the tub turn while it is in motion?

 13. A spinning wheel is slowed down by a brake, giving it 
a constant angular acceleration of 25.60 rad/s2. Dur-
ing a 4.20-s time interval, the wheel rotates through  
62.4 rad. What is the angular speed of the wheel at the 
end of the 4.20-s interval?

 14. Review. Consider a tall building located on the Earth’s 
equator. As the Earth rotates, a person on the top floor of 
the building moves faster than someone on the ground 
with respect to an inertial reference frame because the 
person on the ground is closer to the Earth’s axis. Con-
sequently, if an object is dropped from the top floor to 
the ground a distance h below, it lands east of the point 
vertically below where it was dropped. (a) How far to the 
east will the object land? Express your answer in terms 
of h, g, and the angular speed v of the Earth. Ignore air 
resistance and assume the free-fall acceleration is con-
stant over this range of heights. (b) Evaluate the east-
ward displacement for h 5 50.0 m. (c) In your judgment, 
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were we justified in ignoring this aspect of the Coriolis 
effect in our previous study of free fall? (d) Suppose the 
angular speed of the Earth were to decrease due to tidal 
friction with constant angular acceleration. Would the 
eastward displacement of the dropped object increase 
or decrease compared with that in part (b)?

Section 10.3 Angular and Translational Quantities
 15. A racing car travels on a circular track of radius 250 m.  

Assuming the car moves with a constant speed of  
45.0 m/s, find (a) its angular speed and (b) the magni-
tude and direction of its acceleration.

 16. Make an order-of-magnitude estimate of the number 
of revolutions through which a typical automobile tire 
turns in one year. State the quantities you measure or 
estimate and their values.

 17. A discus thrower (Fig. P4.33, page 104) accelerates a 
discus from rest to a speed of 25.0 m/s by whirling it 
through 1.25 rev. Assume the discus moves on the arc 
of a circle 1.00 m in radius. (a) Calculate the final angu-
lar speed of the discus. (b) Determine the magnitude 
of the angular acceleration of the discus, assuming it 
to be constant. (c) Calculate the time interval required 
for the discus to accelerate from rest to 25.0 m/s.

 18. Figure P10.18 shows the drive train of a bicycle that 
has wheels 67.3 cm in diameter and pedal cranks  
17.5 cm long. The cyclist pedals at a steady cadence of  
76.0 rev/min. The chain engages with a front sprocket 
15.2 cm in diameter and a rear sprocket 7.00 cm in 
diameter. Calculate (a) the speed of a link of the chain 
relative to the bicycle frame, (b) the angular speed of 
the bicycle wheels, and (c) the speed of the bicycle rela-
tive to the road. (d) What pieces of data, if any, are not 
necessary for the calculations?

Chain

Front sprocket
Pedal crank

Rear
sprocket

Figure P10.18

 19. A wheel 2.00 m in diameter lies in a vertical plane and 
rotates about its central axis with a constant angular 
acceleration of 4.00 rad/s2. The wheel starts at rest at  
t 5 0, and the radius vector of a certain point P on the 
rim makes an angle of 57.38 with the horizontal at this 
time. At t 5 2.00 s, find (a) the angular speed of the 
wheel and, for point P, (b) the tangential speed, (c) the 
total acceleration, and (d) the angular position.

 20. A car accelerates uniformly from rest and reaches a 
speed of 22.0 m/s in 9.00 s. Assuming the diameter of 
a tire is 58.0 cm, (a) find the number of revolutions the 
tire makes during this motion, assuming that no slip-
ping occurs. (b) What is the final angular speed of a 
tire in revolutions per second?
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Example 2

Known: ωi , ωf , α

(a) ∆θ?

ω2
f = ω2

i + 2α∆θ

∆θ =
ω2

f −ω
2
i

2α

=
(2.2)2 − (0.060)2

2× 0.70

= 3.5 rad



Example 2

Known: ωi , ωf , α

(a) ∆θ?

ω2
f = ω2

i + 2α∆θ

∆θ =
ω2

f −ω
2
i

2α

=
(2.2)2 − (0.060)2

2× 0.70

= 3.5 rad



Example 2

Known: ωi , ωf , α

(a) ∆θ?

ω2
f = ω2

i + 2α∆θ

∆θ =
ω2

f −ω
2
i

2α

=
(2.2)2 − (0.060)2

2× 0.70

= 3.5 rad



Example 2

(b) If both ωi and ωf are doubled, α kept constant, what happens
to ∆θ?

∆θ ′ =
(2×ωf )

2 − (2×ωi )
2

2α

= 4
ω2

f −ω
2
i

2α

= 4∆θ



Relating Rotational Quantities to Translation of
Points

Consider a point on the rotating object. How does its speed relate
to the angular speed?

298 Chapter 10 Rotation of a Rigid Object About a Fixed Axis

10.3 Angular and Translational Quantities
In this section, we derive some useful relationships between the angular speed and 
acceleration of a rotating rigid object and the translational speed and acceleration 
of a point in the object. To do so, we must keep in mind that when a rigid object 
rotates about a fixed axis as in Figure 10.4, every particle of the object moves in a 
circle whose center is on the axis of rotation.
 Because point P in Figure 10.4 moves in a circle, the translational velocity vector vS 
is always tangent to the circular path and hence is called tangential velocity. The mag-
nitude of the tangential velocity of the point P is by definition the tangential speed 
v 5 ds/dt, where s is the distance traveled by this point measured along the circular 
path. Recalling that s 5 r u (Eq. 10.1a) and noting that r is constant, we obtain

v 5
ds
dt

5 r 
du

dt

Because d u/dt 5 v (see Eq. 10.3), it follows that

 v 5 rv (10.10)

As we saw in Equation 4.17, the tangential speed of a point on a rotating rigid 
object equals the perpendicular distance of that point from the axis of rotation 
multiplied by the angular speed. Therefore, although every point on the rigid 
object has the same angular speed, not every point has the same tangential speed 
because r is not the same for all points on the object. Equation 10.10 shows that 
the tangential speed of a point on the rotating object increases as one moves 
outward from the center of rotation, as we would intuitively expect. For example, 
the outer end of a swinging golf club moves much faster than a point near the 
handle.
 We can relate the angular acceleration of the rotating rigid object to the tangen-
tial acceleration of the point P by taking the time derivative of v :

at 5
dv
dt

5 r 
dv

dt
 

 at 5 ra (10.11)

That is, the tangential component of the translational acceleration of a point on 
a rotating rigid object equals the point’s perpendicular distance from the axis of 
rotation multiplied by the angular acceleration.
 In Section 4.4, we found that a point moving in a circular path undergoes a 
radial acceleration ar directed toward the center of rotation and whose magnitude 
is that of the centripetal acceleration v 2/r (Fig. 10.5). Because v 5 rv for a point 

Relation between tangential X 
velocity and angular velocity

Relation between tangential X 
acceleration and angular 

acceleration

Figure 10.4 As a rigid object 
rotates about the fixed axis (the  
z axis) through O, the point P 
has a tangential velocity vS that is 
always tangent to the circular path 
of radius r.

y

P

x
O

r s
u

vS

 

▸ 10.1 c o n t i n u e d

Answer  Notice that these questions are translational analogs to parts (A) and (C) of the original problem. The mathemat-
ical solution follows exactly the same form. For the displacement, from the particle under constant acceleration model,

Dx 5 xf 2 xi 5 vit 1 1
2at 2  

5 12.00 m/s 2 12.00 s 2 1 1
2 13.50 m/s2 2 12.00 s 22 5 11.0 m

and for the velocity,

vf 5 vi 1 at 5 2.00 m/s 1 (3.50 m/s2)(2.00 s) 5 9.00 m/s

There is no translational analog to part (B) because translational motion under constant acceleration is not repetitive.

We know s = rθ, so since the object’s speed is its speed along the
path s,

v =
ds

dt
= r

dθ

dt



Relating Rotational Quantities to Translation of
Points

Since ω = dθ
dt , that gives us and expression for (tangential) speed

v = rω

And differentiating both sides with respect to t again:

at = rα

Notice that the above equation gives the rate of change of speed,
which is the tangential acceleration.



Relating Rotational Quantities to Translation of
Points

Since ω = dθ
dt , that gives us and expression for (tangential) speed

v = rω

And differentiating both sides with respect to t again:

at = rα

Notice that the above equation gives the rate of change of speed,
which is the tangential acceleration.



Centripetal Acceleration

Remember:

at =
dv

dt

where v is the speed, not velocity.

So,
at = rα

But of course, in order for a mass at that point, radius r , to
continue moving in a circle, there must be a centripetal component
of acceleration also.

ac =
v2

r
= ω2r

For a rigid object, the force that supplies this acceleration will be
some internal forces between the mass at the rotating point and
the other masses in the object. Those are the forces that hold the
object together.



Centripetal Acceleration

Remember:

at =
dv

dt

where v is the speed, not velocity.

So,
at = rα

But of course, in order for a mass at that point, radius r , to
continue moving in a circle, there must be a centripetal component
of acceleration also.

ac =
v2

r
= ω2r

For a rigid object, the force that supplies this acceleration will be
some internal forces between the mass at the rotating point and
the other masses in the object. Those are the forces that hold the
object together.



Summary

• deformations

• rotation

• rotational kinematics

Quiz Friday (tomorrow).

(Uncollected) Homework Serway & Jewett,

• Look at example 9.15 on page 275.

• Ch 9, onward from page 288. Probs: 51, 55, 57, 92

• Ch 10, Probs: 7, 11, 15, 17, 19, 21, 25 (will not be on quiz)


