Kinematics
 Kinematic Equations

Lana Sheridan

De Anza College

Jan 9, 2020

Last time

- kinematic quantities
- graphs of kinematic quantities

Overview

- relating graphs
- derivation of kinematics equations

Acceleration vs. Time Graphs

Question

What does the area under an acceleration-time graph represent?

Constant Acceleration Graphs

Matching Velocity to Acceleration Graphs

a

d

b

e

C

f

The Kinematics Equations

The kinematic equations describe motion in terms of position, velocity, acceleration, and time. There are 5 that apply specifically to the case of constant acceleration.

To solve kinematics problems: identify what equations apply, then do some algebra to find the quantity you need.

The Kinematics Equations

For zero acceleration:

$$
\overrightarrow{\Delta r}=\overrightarrow{\mathbf{v}} t
$$

Always:

$$
\overrightarrow{\Delta r}=\overrightarrow{\mathbf{v}}_{\mathrm{avg}} t
$$

For constant acceleration:

$$
\begin{array}{r}
\overrightarrow{\mathbf{v}}_{\mathbf{f}}={\overrightarrow{v_{i}}}+\overrightarrow{\mathbf{a}} t \\
\overrightarrow{\Delta r}=\overrightarrow{\mathbf{v}}_{\mathbf{i}} t+\frac{1}{2} \overrightarrow{\mathrm{a}} t^{2} \\
\overrightarrow{\Delta r}=\overrightarrow{\mathbf{v}}_{\mathbf{f}} t-\frac{1}{2} \overrightarrow{\mathrm{a}} t^{2} \\
\overrightarrow{\Delta r}=\frac{\overrightarrow{\mathbf{v}}_{\mathbf{i}}+\overrightarrow{\mathbf{v}}_{\mathrm{f}}}{2} t \\
v_{f, x}^{2}=v_{i, x}^{2}+2 a_{x} \Delta x
\end{array}
$$

The Kinematics Equations

For constant velocity ($\overrightarrow{\mathbf{a}}=0$):

$$
\overrightarrow{\Delta r}=\overrightarrow{\mathbf{v}} t
$$

The Kinematics Equations

For constant velocity ($\overrightarrow{\mathbf{a}}=0$):

$$
\begin{equation*}
\overrightarrow{\Delta r}=\overrightarrow{\mathbf{v}} t \tag{1}
\end{equation*}
$$

In general, when velocity is not constant, this is always true:

$$
\overrightarrow{\Delta \boldsymbol{r}}=\overrightarrow{\mathbf{v}}_{\text {avg }} t
$$

The Kinematics Equations

Always true:

$$
\begin{equation*}
\overrightarrow{\Delta r}=\overrightarrow{\mathbf{v}}_{\mathrm{avg}} t \tag{2}
\end{equation*}
$$

This is just a rearrangement of the definition of average velocity:
average velocity, $\vec{v}_{\text {avg }}$

$$
\overrightarrow{\mathrm{v}}_{\mathrm{avg}}=\frac{\overrightarrow{\Delta r}}{t}
$$

where $\overrightarrow{\Delta r}$ is the displacement that occurs in a time interval t.

The Kinematics Equations

If acceleration is constant ($\mathbf{a}=$ const $)$, the velocity-time graph is a straight line

The area under the graph is equal to $\overrightarrow{\Delta r}$, and using the area of a trapezoid:

$$
\begin{equation*}
\overrightarrow{\Delta r}=\left(\frac{\overrightarrow{\mathbf{v}}_{i}+\overrightarrow{\mathbf{v}}_{f}}{2}\right) t \tag{3}
\end{equation*}
$$

${ }^{1}$ Figure from James S. Walker "Physics".

The Kinematics Equations

For constant acceleration:

$$
\overrightarrow{\Delta \boldsymbol{r}}=\left(\frac{\overrightarrow{\mathbf{v}}_{i}+\overrightarrow{\mathbf{v}}_{f}}{2}\right) t
$$

From $\overrightarrow{\mathbf{v}}_{\text {avg }}=\frac{\overrightarrow{\Delta r}}{t}$, we also have:

$$
\overrightarrow{\mathbf{v}}_{\text {avg }}=\frac{\overrightarrow{\mathbf{v}}_{i}+\overrightarrow{\mathbf{v}}_{f}}{2}
$$

(constant acceleration)

The Kinematics Equations

From the definition of acceleration:

$$
\overrightarrow{\mathbf{a}}=\frac{\mathrm{d} \overrightarrow{\mathbf{v}}}{\mathrm{dt}}
$$

We can integrate this expression.

$$
\overrightarrow{\Delta \boldsymbol{v}}=\int_{0}^{t} \overrightarrow{\mathbf{a}} \mathrm{dt}^{\prime}
$$

The Kinematics Equations

From the definition of acceleration:

$$
\overrightarrow{\mathbf{a}}=\frac{\mathrm{d} \overrightarrow{\mathbf{v}}}{\mathrm{dt}}
$$

We can integrate this expression.

$$
\overrightarrow{\Delta \boldsymbol{v}}=\int_{0}^{t} \overrightarrow{\mathbf{a}} \mathrm{dt}^{\prime}
$$

For constant acceleration:

$$
\begin{equation*}
\overrightarrow{\mathbf{v}}(t)=\overrightarrow{\mathbf{v}}_{\mathbf{i}}+\overrightarrow{\mathbf{a}} t \tag{4}
\end{equation*}
$$

where $\overrightarrow{\mathbf{v}}_{\mathbf{i}}$ is the velocity at $t=0$ and $\overrightarrow{\mathbf{v}}(t)$ is the velocity at time t.

The Kinematics Equations

For constant acceleration:

$$
\overrightarrow{\mathbf{r}}(t)=\overrightarrow{\mathbf{r}}_{\mathbf{i}}+\overrightarrow{\mathbf{v}}_{\mathbf{i}} t+\frac{1}{2} \overrightarrow{\mathbf{a}} t^{2}
$$

Equivalently,

$$
\begin{equation*}
\overrightarrow{\Delta r}=\vec{v}_{\mathbf{i}} t+\frac{1}{2} \overrightarrow{\mathbf{a}} t^{2} \tag{5}
\end{equation*}
$$

How do we know this?

The Kinematics Equations

For constant acceleration:

$$
\overrightarrow{\mathbf{r}}(t)=\overrightarrow{\mathbf{r}}_{\mathbf{i}}+\overrightarrow{\mathbf{v}}_{\mathbf{i}} t+\frac{1}{2} \overrightarrow{\mathbf{a}} t^{2}
$$

Equivalently,

$$
\begin{equation*}
\overrightarrow{\Delta r}=\vec{v}_{\mathbf{i}} t+\frac{1}{2} \overrightarrow{\mathbf{a}} t^{2} \tag{5}
\end{equation*}
$$

How do we know this? Integrate!

$$
\overrightarrow{\Delta r}=\int_{0}^{t} \overrightarrow{\mathbf{v}} \mathrm{dt}^{\prime}
$$

The Kinematics Equations

Similarly:

$$
\overrightarrow{\mathbf{r}}(t)=\overrightarrow{\mathbf{r}}_{\mathbf{i}}+\overrightarrow{\mathbf{v}}_{\mathbf{f}} t-\frac{1}{2} \overrightarrow{\mathbf{a}} t^{2}
$$

Equivalently,

$$
\begin{equation*}
\overrightarrow{\Delta r}=\overrightarrow{\mathbf{v}_{\mathbf{f}}} t-\frac{1}{2} \overrightarrow{\mathbf{a}} t^{2} \tag{6}
\end{equation*}
$$

Show by substituting $\overrightarrow{\mathbf{v}_{\mathbf{i}}}=\overrightarrow{\mathbf{v}_{\mathbf{f}}}-\overrightarrow{\mathbf{a}} t$ into equation (5).

The Kinematics Equations

The last equation we will derive is a scaler equation.

The Kinematics Equations

The last equation we will derive is a scaler equation.

$$
\overrightarrow{\Delta r}=\left(\frac{\overrightarrow{\mathbf{v}_{\mathbf{i}}}+\overrightarrow{\mathbf{v}_{\mathbf{f}}}}{2}\right) t
$$

We could also write this as:

$$
(\Delta x) \hat{\mathbf{i}}=\left(\frac{v_{i, x}+v_{f, x}}{2} t\right) \hat{\mathbf{i}}
$$

where $\Delta x, v_{i, x}$, and $v_{f, x}$ could each be positive or negative.

The Kinematics Equations

The last equation we will derive is a scaler equation.

$$
\overrightarrow{\Delta r}=\left(\frac{\overrightarrow{\mathbf{v}_{\mathbf{i}}}+\overrightarrow{\mathbf{v}_{\mathbf{f}}}}{2}\right) t
$$

We could also write this as:

$$
(\Delta x) \boldsymbol{f}=\left(\frac{v_{i, x}+v_{f, x}}{2} t\right) \boldsymbol{f}
$$

where $\Delta x, v_{i, x}$, and $v_{f, x}$ could each be positive or negative. We do the same for equation (4):

$$
v_{f, x} \tilde{\boldsymbol{i}}=\left(v_{i, x}+a_{x} t\right) \boldsymbol{f}
$$

The Kinematics Equations

The last equation we will derive is a scaler equation.

$$
\overrightarrow{\Delta r}=\left(\frac{\overrightarrow{\mathbf{v}_{\mathbf{i}}}+\overrightarrow{\mathbf{v}_{\mathbf{f}}}}{2}\right) t
$$

We could also write this as:

$$
(\Delta x)=\left(\frac{v_{i, x}+v_{f, x}}{2} t\right)
$$

where $\Delta x, v_{i, x}$, and $v_{f, x}$ could each be positive or negative. We do the same for equation (4):

$$
v_{f, x}=\left(v_{i, x}+a_{x} t\right)
$$

Rearranging for t :

$$
t=\frac{v_{f, x}-v_{i, x}}{a_{x}}
$$

The Kinematics Equations

$$
t=\frac{v_{f, x}-v_{i, x}}{a} ; \quad \Delta x=\left(\frac{v_{i, x}+v_{f, x}}{2}\right) t
$$

Substituting for t in our Δx equation:

$$
\begin{aligned}
\Delta x & =\left(\frac{v_{i, x}+v_{f, x}}{2}\right)\left(\frac{v_{f, x}-v_{i, x}}{a_{x}}\right) \\
2 a_{x} \Delta x & =\left(v_{i, x}+v_{f, x}\right)\left(v_{f, x}-v_{i, x}\right)
\end{aligned}
$$

SO,

$$
v_{f, x}^{2}=v_{i, x}^{2}+2 a_{x} \Delta x
$$

The Kinematics Equations

For zero acceleration:

$$
\overrightarrow{\Delta r}=\overrightarrow{\mathbf{v}} t
$$

Always:

$$
\overrightarrow{\Delta r}=\overrightarrow{\mathbf{v}}_{\mathrm{avg}} t
$$

For constant acceleration:

$$
\begin{array}{r}
\overrightarrow{\mathbf{v}}_{\mathbf{f}}={\overrightarrow{v_{i}}}+\overrightarrow{\mathbf{a}} t \\
\overrightarrow{\Delta r}=\overrightarrow{\mathbf{v}}_{\mathbf{i}} t+\frac{1}{2} \overrightarrow{\mathrm{a}} t^{2} \\
\overrightarrow{\Delta r}=\overrightarrow{\mathbf{v}}_{\mathbf{f}} t-\frac{1}{2} \overrightarrow{\mathrm{a}} t^{2} \\
\overrightarrow{\Delta r}=\frac{\overrightarrow{\mathbf{v}}_{\mathbf{i}}+\overrightarrow{\mathbf{v}}_{\mathrm{f}}}{2} t \\
v_{f, x}^{2}=v_{i, x}^{2}+2 a_{x} \Delta x
\end{array}
$$

The Kinematics Equations Summary

For zero acceleration:

$$
\overrightarrow{\Delta r}=\overrightarrow{\mathbf{v}} t
$$

Always:

$$
\overrightarrow{\Delta r}=\overrightarrow{\mathbf{v}}_{\text {avg }} t
$$

For constant acceleration:

$$
\begin{gathered}
\overrightarrow{\mathbf{v}_{\mathbf{f}}}=\mathbf{v}_{\mathbf{i}}+\overrightarrow{\mathbf{a}} t \\
\overrightarrow{\Delta \boldsymbol{r}}=\overrightarrow{\mathbf{v}_{i}} t+\frac{1}{2} \overrightarrow{\mathbf{a}} t^{2} \\
\overrightarrow{\Delta \boldsymbol{r}}=\overrightarrow{\mathbf{v}_{\mathbf{f}}} t-\frac{1}{2} \overrightarrow{\mathbf{a}} t^{2} \\
\overrightarrow{\Delta \boldsymbol{r}}=\frac{\overrightarrow{\mathbf{v}_{i}}+\overrightarrow{\mathbf{v}_{\mathbf{f}}}}{2} t \\
v_{f, x}^{2}=v_{i, x}^{2}+2 a_{x} \Delta x
\end{gathered}
$$

Summary

- graphs
- the kinematic equations

Assignment (now posted on website) Due Jan 16.
Quiz Tomorrow at the start of class.
(Uncollected) Homework Serway \& Jewett,

- Ch 2, onward from page 49. Conceptual Q: 7; Problems: 25, 29, 33, 39, 83

