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Last time

• kinematic quantities

• graphs of kinematic quantities



Overview

• relating graphs

• derivation of kinematics equations



Acceleration vs. Time Graphs

 2.4 Acceleration 33

Conceptual Example 2.5    Graphical Relationships Between x, vx, and ax

The position of an object moving along the x axis varies with time as in Figure 2.8a. Graph the velocity versus time and 
the acceleration versus time for the object.

The velocity at any instant is the slope of the tangent 
to the x–t graph at that instant. Between t 5 0 and t 5 
t!, the slope of the x–t graph increases uniformly, so 
the velocity increases linearly as shown in Figure 2.8b. 
Between t! and t", the slope of the x–t graph is con-
stant, so the velocity remains constant. Between t" and 
t#, the slope of the x–t graph decreases, so the value of 
the velocity in the vx–t graph decreases. At t#, the slope 
of the x–t graph is zero, so the velocity is zero at that 
instant. Between t# and t$, the slope of the x–t graph 
and therefore the velocity are negative and decrease uni-
formly in this interval. In the interval t$ to t%, the slope 
of the x–t graph is still negative, and at t% it goes to zero. 
Finally, after t%, the slope of the x–t graph is zero, mean-
ing that the object is at rest for t . t%.
 The acceleration at any instant is the slope of the tan-
gent to the vx–t graph at that instant. The graph of accel-
eration versus time for this object is shown in Figure 2.8c. 
The acceleration is constant and positive between 0 and 
t!, where the slope of the vx–t graph is positive. It is zero 
between t! and t" and for t . t% because the slope of the 
vx–t graph is zero at these times. It is negative between 
t" and t$ because the slope of the vx–t graph is negative 
during this interval. Between t$ and t%, the acceleration 
is positive like it is between 0 and t!, but higher in value 
because the slope of the vx–t graph is steeper.
 Notice that the sudden changes in acceleration shown in Figure 2.8c are unphysical. Such instantaneous changes 
cannot occur in reality.
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Figure 2.8 (Conceptual Example 2.5) (a) Position–time graph 
for an object moving along the x axis. (b) The velocity–time graph 
for the object is obtained by measuring the slope of the position–
time graph at each instant. (c) The acceleration–time graph for 
the object is obtained by measuring the slope of the velocity–time 
graph at each instant.

Pitfall Prevention 2.4
Negative Acceleration Keep in 
mind that negative acceleration does 
not necessarily mean that an object is 
slowing down. If the acceleration is 
negative and the velocity is nega-
tive, the object is speeding up!

Pitfall Prevention 2.5
Deceleration The word deceleration 
has the common popular connota-
tion of slowing down. We will not 
use this word in this book because 
it confuses the definition we have 
given for negative acceleration.

down! It is very useful to equate the direction of the acceleration to the direction 
of a force because it is easier from our everyday experience to think about what 
effect a force will have on an object than to think only in terms of the direction of 
the acceleration.

Q uick Quiz 2.4 If a car is traveling eastward and slowing down, what is the direc-
tion of the force on the car that causes it to slow down? (a) eastward (b) west-
ward (c) neither eastward nor westward

 From now on, we shall use the term acceleration to mean instantaneous accelera-
tion. When we mean average acceleration, we shall always use the adjective average.
Because vx 5 dx/dt, the acceleration can also be written as

 ax 5
dvx

dt
5

d
dt
adx

dt
b 5

d2x
dt 2  (2.12)

That is, in one-dimensional motion, the acceleration equals the second derivative of 
x with respect to time.

 



Question

What does the area under an acceleration-time graph represent?



Constant Acceleration Graphs

36 Chapter 2 Motion in One Dimension

 In Figure 2.10c, we can tell that the car slows as it moves to the right because its 
displacement between adjacent images decreases with time. This case suggests the 
car moves to the right with a negative acceleration. The length of the velocity arrow 
decreases in time and eventually reaches zero. From this diagram, we see that the 
acceleration and velocity arrows are not in the same direction. The car is moving 
with a positive velocity, but with a negative acceleration. (This type of motion is exhib-
ited by a car that skids to a stop after its brakes are applied.) The velocity and accel-
eration are in opposite directions. In terms of our earlier force discussion, imagine 
a force pulling on the car opposite to the direction it is moving: it slows down.
 Each purple acceleration arrow in parts (b) and (c) of Figure 2.10 is the same 
length. Therefore, these diagrams represent motion of a particle under constant accel-
eration. This important analysis model will be discussed in the next section.

Q uick Quiz 2.5 Which one of the following statements is true? (a) If a car is trav-
eling eastward, its acceleration must be eastward. (b) If a car is slowing down, 
its acceleration must be negative. (c) A particle with constant acceleration can 
never stop and stay stopped.

2.6 Analysis Model: Particle  
Under Constant Acceleration

If the acceleration of a particle varies in time, its motion can be complex and difficult 
to analyze. A very common and simple type of one-dimensional motion, however, is 
that in which the acceleration is constant. In such a case, the average acceleration 
ax,avg over any time interval is numerically equal to the instantaneous acceleration ax 
at any instant within the interval, and the velocity changes at the same rate through-
out the motion. This situation occurs often enough that we identify it as an analysis 
model: the particle under constant acceleration. In the discussion that follows, we 
generate several equations that describe the motion of a particle for this model.
 If we replace ax,avg by ax in Equation 2.9 and take ti 5 0 and tf to be any later time 
t, we find that

ax 5
vxf 2 vxi

t 2 0

or

 vxf 5 vxi 1 axt (for constant ax) (2.13)

This powerful expression enables us to determine an object’s velocity at any time 
t if we know the object’s initial velocity vxi and its (constant) acceleration ax. A  
velocity–time graph for this constant-acceleration motion is shown in Figure 2.11b. 
The graph is a straight line, the slope of which is the acceleration ax; the (constant) 
slope is consistent with ax 5 dvx/dt being a constant. Notice that the slope is posi-
tive, which indicates a positive acceleration. If the acceleration were negative, the 
slope of the line in Figure 2.11b would be negative. When the acceleration is con-
stant, the graph of acceleration versus time (Fig. 2.11c) is a straight line having a 
slope of zero.
 Because velocity at constant acceleration varies linearly in time according to 
Equation 2.13, we can express the average velocity in any time interval as the arith-
metic mean of the initial velocity vxi and the final velocity vxf :

 vx,avg 5
vxi 1 vxf

2
  1 for constant ax 2  (2.14)
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Figure 2.11 A particle under 
constant acceleration ax moving 
along the x axis: (a) the position–
time graph, (b) the velocity–time 
graph, and (c) the acceleration–
time graph.
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Matching Velocity to Acceleration Graphs

38 Chapter 2 Motion in One Dimension

Q uick Quiz 2.6 In Figure 2.12, match each vx–t graph on the top with the ax–t 
graph on the bottom that best describes the motion.

Example 2.7   Carrier Landing 

A jet lands on an aircraft carrier at a speed of 140 mi/h (< 63 m/s).

(A) What is its acceleration (assumed constant) if it stops in 2.0 s due to an arresting cable that snags the jet and 
brings it to a stop?

You might have seen movies or television shows in which a jet lands on an aircraft carrier and is brought to rest sur-
prisingly fast by an arresting cable. A careful reading of the problem reveals that in addition to being given the initial 
speed of 63 m/s, we also know that the final speed is zero. Because the acceleration of the jet is assumed constant, we 
model it as a particle under constant acceleration. We define our x axis as the direction of motion of the jet. Notice that we 
have no information about the change in position of the jet while it is slowing down.

AM

S O L U T I O N

Analysis Model   Particle Under Constant Acceleration
Examples

along a straight freeway

resistance (Section 2.7)

acts (Chapter 5)

field (Chapter 23)

Imagine a moving object that can be modeled as a particle. If it 
begins from position xi and initial velocity vxi and moves in a straight 
line with a constant acceleration ax, its subsequent position and 
velocity are described by the following kinematic equations: 

 vxf 5 vxi 1 axt (2.13)

 vx,avg 5
vxi 1 vxf

2
  (2.14)

 xf 5 xi 1 1
2 1vxi 1 vxf 2 t (2.15)

 xf 5 xi 1 vxit 1 1
2axt 2 (2.16)

 vxf
2 5 vxi

21 2ax(xf 2 xi) (2.17)
v
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Figure 2.12 (Quick Quiz 2.6)  
Parts (a), (b), and (c) are vx–t graphs 
of objects in one-dimensional 
motion. The possible accelerations 
of each object as a function of time 
are shown in scrambled order in (d), 
(e), and (f).



The Kinematics Equations

The kinematic equations describe motion in terms of position,
velocity, acceleration, and time. There are 5 that apply specifically
to the case of constant acceleration.

To solve kinematics problems: identify what equations apply, then
do some algebra to find the quantity you need.



The Kinematics Equations
For zero acceleration:

#  »

∆r = #»v t

Always:

#  »

∆r = #»v avg t

For constant acceleration:

#»vf =
#»vi +

#»a t
#  »

∆r = #»vit +
1

2
#»a t2

#  »

∆r = #»vft −
1

2
#»a t2

#  »

∆r =
#»vi +

#»vf
2

t

v2f ,x = v2i ,x + 2 ax∆x



The Kinematics Equations

For constant velocity ( #»a = 0):

#  »

∆r = #»v t (1)

In general, when velocity is not constant, this is always true:

#  »

∆r = #»v avgt



The Kinematics Equations

For constant velocity ( #»a = 0):

#  »

∆r = #»v t (1)

In general, when velocity is not constant, this is always true:

#  »

∆r = #»v avgt



The Kinematics Equations

Always true:

#  »

∆r = #»v avgt (2)

This is just a rearrangement of the definition of average velocity:

average velocity, #»v avg

#»v avg =

#  »

∆r
t

where
#  »

∆r is the displacement that occurs in a time interval t.



The Kinematics Equations
If acceleration is constant ( #»a = const), the velocity-time graph is
a straight line

30 CHAPTER 2 ONE-DIMENSIONAL KINEMATICS

average acceleration, Equation 2–5, we have

where the initial and final times may be chosen arbitrarily. For example, let 
for the initial time, and let denote the velocity at time zero. For the final
time and velocity we drop the subscripts to simplify notation; thus we let 
and With these identifications we have

Therefore,

or

Constant-Acceleration Equation of Motion: Velocity as a Function of Time

2–7

Note that Equation 2–7 describes a straight line on a v-versus-t plot. The line
crosses the velocity axis at the value and has a slope a, in agreement with the
graphical interpretations discussed in the previous section. For example, in curve
I of Figure 2–9, the equation of motion is 
Also, note that has the units thus each term in
Equation 2–7 has the same dimensions (as it must to be a valid physical equation).

EXERCISE 2–2
A ball is thrown straight upward with an initial velocity of If the acceleration
of the ball is what is its velocity after

a. 0.50 s, and b. 1.0 s?

Solution

a. Substituting in Equation 2–7 yields

b. Similarly, using in Equation 2–7 gives

Next, how far does a particle move in a given time if its acceleration is con-
stant? To answer this question, recall the definition of average velocity:

Using the same identifications given previously for initial and final times, and let-
ting and we have

Thus,

or

2–8

Now, Equation 2–8 is fine as it is. In fact, it applies whether the acceleration is
constant or not. A more useful expression, for the case of constant acceleration, is
obtained by writing in terms of the initial and final velocities. This can be done
by referring to Figure 2–13 (a). Here the velocity changes linearly (since a is

vav

x = x0 + vavt

x - x0 = vav1t - 02 = vavt

vav =
x - x0

t - 0

xf = x,xi = x0

vav = ¢x
¢t =

xf - xi

tf - ti

v = 8.2 m/s + 1-9.81 m/s2211.0 s2 = -1.6 m/s

t = 1.0 s

v = 8.2 m/s + 1-9.81 m/s2210.50 s2 = 3.3 m/s

t = 0.50 s

-9.81 m/s2,
+8.2 m/s.

1m/s221s2 = m/s;1-0.5 m/s22t v = v0 + at = 11 m/s2 + 1-0.5 m/s22t.v0

v = v0 + at

v - v0 = a1t - 02 = at

aav =
v - v0

t - 0
= a

vf = v.
tf = t

vi = v0

ti = 0

aav =
vf - vi

tf - ti
= a

v

vav=   (v0 + v)

v

v0

O
t

t

t

1
2

v

vav

v

v0

O
t

(a)

(b)
▲ FIGURE 2–13 The average velocity
(a) When acceleration is constant, the
velocity varies linearly with time. As a
result, the average velocity, is simply
the average of the initial velocity, and
the final velocity, v. (b) The velocity
curve for nonconstant acceleration is
nonlinear. In this case, the average
velocity is no longer midway between
the initial and final velocities.

v0,
vav,
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The area under the graph is equal to
#  »

∆r , and using the area of a
trapezoid:

#  »

∆r =

(
#»vi +

#»vf
2

)
t (3)

1Figure from James S. Walker “Physics”.



The Kinematics Equations

For constant acceleration:

#  »

∆r =

(
#»vi +

#»vf
2

)
t

From #»v avg =
#  »

∆r
t , we also have:

#»v avg =
#»vi +

#»vf
2

(constant acceleration)



The Kinematics Equations

From the definition of acceleration:

#»a =
d #»v

dt

We can integrate this expression.

#   »

∆v =

∫ t
0

#»a dt ′

For constant acceleration:

#»v (t) = #»vi +
#»a t (4)

where #»vi is the velocity at t = 0 and #»v (t) is the velocity at time t.



The Kinematics Equations

From the definition of acceleration:

#»a =
d #»v

dt

We can integrate this expression.

#   »

∆v =

∫ t
0

#»a dt ′

For constant acceleration:

#»v (t) = #»vi +
#»a t (4)

where #»vi is the velocity at t = 0 and #»v (t) is the velocity at time t.



The Kinematics Equations

For constant acceleration:

#»r (t) = #»ri +
#»vit +

1

2
#»a t2

Equivalently,

#  »

∆r = #»vit +
1

2
#»a t2 (5)

How do we know this?



The Kinematics Equations

For constant acceleration:

#»r (t) = #»ri +
#»vit +

1

2
#»a t2

Equivalently,

#  »

∆r = #»vit +
1

2
#»a t2 (5)

How do we know this? Integrate!

#  »

∆r =

∫ t
0

#»v dt ′



The Kinematics Equations

Similarly:
#»r (t) = #»ri +

#»vft −
1

2
#»a t2

Equivalently,

#  »

∆r = #»vft −
1

2
#»a t2 (6)

Show by substituting #»vi =
#»vf −

#»a t into equation (5).



The Kinematics Equations

The last equation we will derive is a scaler equation.

#  »

∆r =

(
#»vi +

#»vf
2

)
t

We could also write this as:

(∆x) =

(
vi ,x + vf ,x

2
t

)
where ∆x , vi ,x , and vf ,x could each be positive or negative.
We do the same for equation (4):

vf ,x = (vi ,x + ax t)

Rearranging for t:

t =
vf ,x − vi ,x

ax
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The Kinematics Equations

t =
vf ,x − vi ,x

a
; ∆x =

(
vi ,x + vf ,x

2

)
t

Substituting for t in our ∆x equation:

∆x =

(
vi ,x + vf ,x

2

)(
vf ,x − vi ,x

ax

)
2ax∆x = (vi ,x + vf ,x)(vf ,x − vi ,x)

so,

v2f ,x = v2i ,x + 2 ax ∆x (7)
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The Kinematics Equations Summary
For zero acceleration:
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Summary

• graphs

• the kinematic equations

Assignment (now posted on website) Due Jan 16.

Quiz Tomorrow at the start of class.

(Uncollected) Homework Serway & Jewett,

• Ch 2, onward from page 49. Conceptual Q: 7; Problems: 25,
29, 33, 39, 83


