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Last time

• deforming systems

• rotation

• rotational kinematics



Overview

• relating rotational and translational quantities

• torque



Comparison of Linear and Rotational quantities

Linear Quantities Rotational Quantities
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Relating Rotational Quantities to Translation of
Points

Consider a point on the rotating object. How does its speed relate
to the angular speed?
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10.3 Angular and Translational Quantities
In this section, we derive some useful relationships between the angular speed and 
acceleration of a rotating rigid object and the translational speed and acceleration 
of a point in the object. To do so, we must keep in mind that when a rigid object 
rotates about a fixed axis as in Figure 10.4, every particle of the object moves in a 
circle whose center is on the axis of rotation.
 Because point P in Figure 10.4 moves in a circle, the translational velocity vector vS 
is always tangent to the circular path and hence is called tangential velocity. The mag-
nitude of the tangential velocity of the point P is by definition the tangential speed 
v 5 ds/dt, where s is the distance traveled by this point measured along the circular 
path. Recalling that s 5 r u (Eq. 10.1a) and noting that r is constant, we obtain

v 5
ds
dt

5 r 
du

dt

Because d u/dt 5 v (see Eq. 10.3), it follows that

 v 5 rv (10.10)

As we saw in Equation 4.17, the tangential speed of a point on a rotating rigid 
object equals the perpendicular distance of that point from the axis of rotation 
multiplied by the angular speed. Therefore, although every point on the rigid 
object has the same angular speed, not every point has the same tangential speed 
because r is not the same for all points on the object. Equation 10.10 shows that 
the tangential speed of a point on the rotating object increases as one moves 
outward from the center of rotation, as we would intuitively expect. For example, 
the outer end of a swinging golf club moves much faster than a point near the 
handle.
 We can relate the angular acceleration of the rotating rigid object to the tangen-
tial acceleration of the point P by taking the time derivative of v :

at 5
dv
dt

5 r 
dv

dt
 

 at 5 ra (10.11)

That is, the tangential component of the translational acceleration of a point on 
a rotating rigid object equals the point’s perpendicular distance from the axis of 
rotation multiplied by the angular acceleration.
 In Section 4.4, we found that a point moving in a circular path undergoes a 
radial acceleration ar directed toward the center of rotation and whose magnitude 
is that of the centripetal acceleration v 2/r (Fig. 10.5). Because v 5 rv for a point 

Relation between tangential X 
velocity and angular velocity

Relation between tangential X 
acceleration and angular 

acceleration

Figure 10.4 As a rigid object 
rotates about the fixed axis (the  
z axis) through O, the point P 
has a tangential velocity vS that is 
always tangent to the circular path 
of radius r.
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▸ 10.1 c o n t i n u e d

Answer  Notice that these questions are translational analogs to parts (A) and (C) of the original problem. The mathemat-
ical solution follows exactly the same form. For the displacement, from the particle under constant acceleration model,

Dx 5 xf 2 xi 5 vit 1 1
2at 2  

5 12.00 m/s 2 12.00 s 2 1 1
2 13.50 m/s2 2 12.00 s 22 5 11.0 m

and for the velocity,

vf 5 vi 1 at 5 2.00 m/s 1 (3.50 m/s2)(2.00 s) 5 9.00 m/s

There is no translational analog to part (B) because translational motion under constant acceleration is not repetitive.

We know s = rθ, so since the object’s speed is its speed along the
path s,

v =
ds

dt
= r

dθ

dt



Relating Rotational Quantities to Translation of
Points

Since ω = dθ
dt , that gives us and expression for (tangential) speed

v = rω

And differentiating both sides with respect to t again:

at = rα

Notice that the above equation gives the rate of change of speed,
which is the tangential acceleration.



Relating Rotational Quantities to Translation of
Points

Since ω = dθ
dt , that gives us and expression for (tangential) speed

v = rω

And differentiating both sides with respect to t again:

at = rα

Notice that the above equation gives the rate of change of speed,
which is the tangential acceleration.



Centripetal Acceleration

Remember:

at =
dv

dt

where v is the speed, not velocity.

So,
at = rα

But of course, in order for a mass at that point, radius r , to
continue moving in a circle, there must be a centripetal component
of acceleration also.

ac =
v2

r
= ω2r

For a rigid object, the force that supplies this acceleration will be
some internal forces between the mass at the rotating point and
the other masses in the object. Those are the forces that hold the
object together.
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Torque

Torque is a measure of force-causing-rotation.

It is not a force, but it is related. It depends on a force vector and
its point of application relative to an axis of rotation.

Torque is given by:

#»τ = #»r × #»

F

That is: the cross product between

• a vector #»r , the displacement of the point of application of the
force from the axis of rotation, and

• the force vector
#»

F

Units: N m Newton-meters. These are not Joules!
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Torque
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(C) What is the angular acceleration of the compact disc over the 4 473-s time interval?

Categorize  We again model the disc as a rigid object under constant angular acceleration. In this case, Equation 10.6 gives 
the value of the constant angular acceleration. Another approach is to use Equation 10.4 to find the average angular 
acceleration. In this case, we are not assuming the angular acceleration is constant. The answer is the same from both 
equations; only the interpretation of the result is different.

S O L U T I O N

Analyze  Use Equation 10.6 to find the angular 
acceleration: a 5

vf 2 vi

t
5

22 rad/s 2 57 rad/s
4 473 s

5 27.6 3 1023 rad/s2

Finalize  The disc experiences a very gradual decrease in its rotation rate, as expected from the long time interval 
required for the angular speed to change from the initial value to the final value. In reality, the angular acceleration of 
the disc is not constant. Problem 90 allows you to explore the actual time behavior of the angular acceleration.

Do the same for the outer track: vf 5
v
rf

5
1.3 m/s

5.8 3 1022 m
5 22 rad/s 5 2.1 3 102 rev/min

Use Equation 10.9 to find the angular displacement of 
the disc at t 5 4 473 s:

Du 5 uf 2 ui 5 1
2 1vi 1 vf 2 t 

5 1
2 157 rad/s 1 22 rad/s 2 14 473 s 2 5 1.8 3 105 rad

The CD player adjusts the angular speed v of the disc within this range so that information moves past the objective 
lens at a constant rate.

(B)  The maximum playing time of a standard music disc is 74 min and 33 s. How many revolutions does the disc 
make during that time?

Categorize  From part (A), the angular speed decreases as the disc plays. Let us assume it decreases steadily, with a 
constant. We can then apply the rigid object under constant angular acceleration model to the disc.

Analyze  If t 5 0 is the instant the disc begins rotating, with angular speed of 57 rad/s, the final value of the time t is 
(74 min)(60 s/min) 1 33 s 5 4 473 s. We are looking for the angular displacement Du during this time interval.

Convert this angular displacement to revolutions: Du 5 11.8 3 105 rad 2 a 1 rev
2p rad

b 5 2.8 3 104 rev

 

▸ 10.2 c o n t i n u e d

10.4 Torque
In our study of translational motion, after investigating the description of motion, 
we studied the cause of changes in motion: force. We follow the same plan here: 
What is the cause of changes in rotational motion? 
 Imagine trying to rotate a door by applying a force of magnitude F perpendic-
ular to the door surface near the hinges and then at various distances from the 
hinges. You will achieve a more rapid rate of rotation for the door by applying the 
force near the doorknob than by applying it near the hinges.
 When a force is exerted on a rigid object pivoted about an axis, the object tends 
to rotate about that axis. The tendency of a force to rotate an object about some 
axis is measured by a quantity called torque tS(Greek letter tau). Torque is a vector, 
but we will consider only its magnitude here; we will explore its vector nature in 
Chapter 11.
 Consider the wrench in Figure 10.7 that we wish to rotate around an axis that is 
perpendicular to the page and passes through the center of the bolt. The applied 

r

F sin f

 F cos f

d

O

Line of
action

f

The component F sin f 
tends to rotate the wrench 
about an axis through O.

f

F
S

rS

Figure 10.7  The force F
S

 has a 
greater rotating tendency about an 
axis through O as F increases and 
as the moment arm d increases.

S O L U T I O N

#»τ = #»r × #»

F = rF sinφ n̂

where φ is the angle between #»r and
#»

F , and n̂ is the unit vector
perpendicular to #»r and

#»

F , as determined by the right-hand rule.



Vectors Properties and Operations

Multiplication by a vector:

The Cross Product
Let

#»

A = Ax î+ Ay ĵ
#»

B = Bx î+ By ĵ,

#»

A × #»

B = (AxBy − AyBx)k̂

The output of this operation is a vector.

Equivalently,

#»

A × #»

B = AB sin θ n̂AB

where n̂AB is a unit vector perpendicular to
#»

A and
#»

B.
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 We now give a formal definition of the vector product. Given any two vectors 
A
S

 and B
S

, the vector product A
S

3 B
S

 is defined as a third vector C
S

, which has a  
magnitude of AB sin u, where u is the angle between A

S
 and B

S
. That is, if C

S
 is 

given by
 C

S
5 A

S
3 B

S
 (11.2)

its magnitude is
 C 5 AB sin u (11.3)

The quantity AB sin u is equal to the area of the parallelogram formed by A
S

 and 
B
S

 as shown in Figure 11.2. The direction of C
S

 is perpendicular to the plane formed 
by A

S
 and B

S
, and the best way to determine this direction is to use the right-hand 

rule illustrated in Figure 11.2. The four fingers of the right hand are pointed along 
A
S

 and then “wrapped” in the direction that would rotate A
S

 into B
S

 through the 
angle u. The direction of the upright thumb is the direction of A

S
3 B

S
5 C

S
. 

Because of the notation, A
S

3 B
S

 is often read “ A
S

 cross B
S

,” so the vector product is 
also called the cross product.
 Some properties of the vector product that follow from its definition are as 
follows:

 1. Unlike the scalar product, the vector product is not commutative. Instead, 
the order in which the two vectors are multiplied in a vector product is 
important:

 A
S

3 B
S

5 2 B
S

3 A
S

 (11.4)
  Therefore, if you change the order of the vectors in a vector product, you 

must change the sign. You can easily verify this relationship with the right-
hand rule.

 2. If A
S

 is parallel to B
S

 (u 5 0 or 1808), then A
S

3 B
S

5 0; therefore, it follows 
that A

S
3 A

S
5 0.

 3. If A
S

 is perpendicular to B
S

, then 0 AS 3 B
S 0 5 AB.

 4. The vector product obeys the distributive law:

 A
S

3 1 B
S

1 C
S 2 5 A

S
3 B

S
1 A

S
3 C

S
 (11.5)

 5. The derivative of the vector product with respect to some variable such as t is

 
d
dt

1 A
S

3 B
S 2 5

d A
S

dt
3 B

S
1 A

S
3

d B
S

dt
 (11.6)

  where it is important to preserve the multiplicative order of the terms on 
the right side in view of Equation 11.4.

 It is left as an exercise (Problem 4) to show from Equations 11.3 and 11.4 and 
from the definition of unit vectors that the cross products of the unit vectors  î,  ĵ, 
and k̂ obey the following rules:

  î 3  î 5  ĵ 3  ĵ 5 k̂ 3 k̂ 5 0 (11.7a)

  î 3  ĵ 5 2 ĵ 3  î 5 k̂ (11.7b)

  ĵ 3 k̂ 5 2k̂ 3  ĵ 5  î (11.7c)

 k̂ 3  î 5 2 î 3 k̂ 5  ĵ (11.7d)

Signs are interchangeable in cross products. For example, A
S

3 12B
S 2 5 2 A

S
3 B

S
 

and  î 3 12 ĵ 2 5 2 î 3  ĵ.
 The cross product of any two vectors A

S
 and B

S
 can be expressed in the follow-

ing determinant form:

 A
S

3 B
S

5 †  î  ĵ k̂
Ax Ay Az

Bx By Bz

† 5 `Ay Az

By Bz
`  î 1 `Az Ax

Bz Bx
`  ĵ 1 `Ax Ay

Bx By
` k̂

Properties of the X
vector product

Cross products of X
unit vectors

Pitfall Prevention 11.1
The Vector Product Is a Vector  
Remember that the result of tak-
ing a vector product between two 
vectors is a third vector. Equation 
11.3 gives only the magnitude of 
this vector.

Figure 11.1 The torque vector 
t
S lies in a direction perpendicular 
to the plane formed by the posi-
tion vector rS and the applied force 
vector F

S
. In the situation shown, 

rS and F
S

 lie in the xy plane, so the 
torque is along the z axis.

O
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x

y
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f
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rS 
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S
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S
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S

 

" # !
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S
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S

S S

S
The direction of C is perpendicular 
to the plane formed by A and B,
and its direction is determined by 
the right-hand rule.

Figure 11.2  The vector product 
A
S

3 B
S

 is a third vector C
S

 having 
a magnitude AB sin u equal to the 
area of the parallelogram shown.



Vectors Properties and Operations

(See page 336 in Serway and Jewett.)

The Cross Product - with k̂ components
In general:

#»

A = Ax î+ Ay ĵ+ Az k̂
#»

B = Bx î+ By ĵ+ Bz k̂,

#»

A × #»

B = (AyBz − AzBy )̂i+ (AzBx − AxBz )̂j+ (AxBy − AyBx)k̂

How do we usually implement this formula?
Via the determinant of a matrix:

#»

A × #»

B =

∣∣∣∣∣∣
î ĵ k̂
Ax Ay Az

Bx By Bz

∣∣∣∣∣∣



Vector Operations: Cross Product Practice

Try it yourself! Find
#»

A × #»

B when:

#»

A = 1̂i+ 2̂j+ 3k̂ ;
#»

B = −1̂i− 4̂j+ 5k̂

Now find
#»

B × #»

A...
First

#»

A × #»

B:
#»

A × #»

B = 22̂i− 8̂j− 2k̂

#»

B × #»

A = −22̂i+ 8̂j+ 2k̂
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Vectors Properties and Operations

(See page 336 in Serway and Jewett.)

The Cross Product - with k̂ components

#»

A × #»

B = AB sin θ n̂AB

Properties

• The cross product is not commutative:
#»

A × #»

B 6= #»

B × #»

A.
In fact, it is anticommutative because

#»

A × #»

B = −(
#»

B × #»

A).

• If
#»

A ‖ #»

B,
#»

A × #»

B = 0.

• If
#»

A ⊥ #»

B,
#»

A × #»

B = AB n̂AB.



Vectors Properties and Operations

(See page 336 in Serway and Jewett.)
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Torque
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(C) What is the angular acceleration of the compact disc over the 4 473-s time interval?

Categorize  We again model the disc as a rigid object under constant angular acceleration. In this case, Equation 10.6 gives 
the value of the constant angular acceleration. Another approach is to use Equation 10.4 to find the average angular 
acceleration. In this case, we are not assuming the angular acceleration is constant. The answer is the same from both 
equations; only the interpretation of the result is different.

S O L U T I O N

Analyze  Use Equation 10.6 to find the angular 
acceleration: a 5

vf 2 vi

t
5

22 rad/s 2 57 rad/s
4 473 s

5 27.6 3 1023 rad/s2

Finalize  The disc experiences a very gradual decrease in its rotation rate, as expected from the long time interval 
required for the angular speed to change from the initial value to the final value. In reality, the angular acceleration of 
the disc is not constant. Problem 90 allows you to explore the actual time behavior of the angular acceleration.

Do the same for the outer track: vf 5
v
rf

5
1.3 m/s

5.8 3 1022 m
5 22 rad/s 5 2.1 3 102 rev/min

Use Equation 10.9 to find the angular displacement of 
the disc at t 5 4 473 s:

Du 5 uf 2 ui 5 1
2 1vi 1 vf 2 t 

5 1
2 157 rad/s 1 22 rad/s 2 14 473 s 2 5 1.8 3 105 rad

The CD player adjusts the angular speed v of the disc within this range so that information moves past the objective 
lens at a constant rate.

(B)  The maximum playing time of a standard music disc is 74 min and 33 s. How many revolutions does the disc 
make during that time?

Categorize  From part (A), the angular speed decreases as the disc plays. Let us assume it decreases steadily, with a 
constant. We can then apply the rigid object under constant angular acceleration model to the disc.

Analyze  If t 5 0 is the instant the disc begins rotating, with angular speed of 57 rad/s, the final value of the time t is 
(74 min)(60 s/min) 1 33 s 5 4 473 s. We are looking for the angular displacement Du during this time interval.

Convert this angular displacement to revolutions: Du 5 11.8 3 105 rad 2 a 1 rev
2p rad

b 5 2.8 3 104 rev

 

▸ 10.2 c o n t i n u e d

10.4 Torque
In our study of translational motion, after investigating the description of motion, 
we studied the cause of changes in motion: force. We follow the same plan here: 
What is the cause of changes in rotational motion? 
 Imagine trying to rotate a door by applying a force of magnitude F perpendic-
ular to the door surface near the hinges and then at various distances from the 
hinges. You will achieve a more rapid rate of rotation for the door by applying the 
force near the doorknob than by applying it near the hinges.
 When a force is exerted on a rigid object pivoted about an axis, the object tends 
to rotate about that axis. The tendency of a force to rotate an object about some 
axis is measured by a quantity called torque tS(Greek letter tau). Torque is a vector, 
but we will consider only its magnitude here; we will explore its vector nature in 
Chapter 11.
 Consider the wrench in Figure 10.7 that we wish to rotate around an axis that is 
perpendicular to the page and passes through the center of the bolt. The applied 

r

F sin f

 F cos f

d

O

Line of
action

f

The component F sin f 
tends to rotate the wrench 
about an axis through O.

f

F
S

rS

Figure 10.7  The force F
S

 has a 
greater rotating tendency about an 
axis through O as F increases and 
as the moment arm d increases.

S O L U T I O N

#»τ = #»r × #»

F = rF sinφ n̂

where φ is the angle between #»r and
#»

F , and n̂ is the unit vector
perpendicular to #»r and

#»

F , as determined by the right-hand rule.



Torque

Diagram also illustrates two points of view about torque:
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S O L U T I O N

#»τ = r(F sinφ) n̂

or
#»τ = (r sinφ)F n̂

In the diagram, the distance d = r sinφ and is called the “moment
arm” or “lever arm” of the torque.



Torque
Torque:

268 Chapter 9 Linear Momentum and Collisions

is applied at the center of mass, the system moves in the direction of the force with-
out rotating (see Fig. 9.13c). The center of mass of an object can be located with 
this procedure.
 The center of mass of the pair of particles described in Figure 9.14 is located on 
the x axis and lies somewhere between the particles. Its x coordinate is given by

 xCM ;
m1x1 1 m2x2

m1 1 m2
 (9.28)

For example, if x1 5 0, x2 5 d, and m2 5 2m1, we find that xCM 5 2
3d. That is, the 

center of mass lies closer to the more massive particle. If the two masses are equal, 
the center of mass lies midway between the particles.
 We can extend this concept to a system of many particles with masses mi in three 
dimensions. The x coordinate of the center of mass of n particles is defined to be

 xCM ;
m1x1 1 m2x2 1 m3x3 1 c1 mnxn
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where xi is the x coordinate of the ith particle and the total mass is M ; oi mi where 
the sum runs over all n particles. The y and z coordinates of the center of mass are 
similarly defined by the equations
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 The center of mass can be located in three dimensions by its position vector rSCM. 
The components of this vector are xCM, yCM, and zCM, defined in Equations 9.29 and 
9.30. Therefore,
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where rSi is the position vector of the ith particle, defined by

rSi ; xi î 1 yi  ĵ 1 zi k̂

 Although locating the center of mass for an extended, continuous object is some-
what more cumbersome than locating the center of mass of a small number of par-
ticles, the basic ideas we have discussed still apply. Think of an extended object as a 
system containing a large number of small mass elements such as the cube in Figure 
9.15. Because the separation between elements is very small, the object can be con-
sidered to have a continuous mass distribution. By dividing the object into elements 
of mass Dmi with coordinates xi, yi, zi, we see that the x coordinate of the center of 
mass is approximately

xCM <
1
M

 a
i

xi Dmi

with similar expressions for yCM and zCM. If we let the number of elements n 
approach infinity, the size of each element approaches zero and xCM is given pre-
cisely. In this limit, we replace the sum by an integral and Dmi by the differential 
element dm:

 xCM 5 lim
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 3  x dm (9.32)

Likewise, for yCM and zCM we obtain

 yCM 5
1
M

 3  y dm and zCM 5
1
M

 3  z dm (9.33)
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Figure 9.13 A force is applied 
to a system of two particles of 
unequal mass connected by a 
light, rigid rod.

Figure 9.14 The center of mass 
of two particles of unequal mass 
on the x axis is located at xCM, a 
point between the particles, closer 
to the one having the larger mass.
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is applied at the center of mass, the system moves in the direction of the force with-
out rotating (see Fig. 9.13c). The center of mass of an object can be located with 
this procedure.
 The center of mass of the pair of particles described in Figure 9.14 is located on 
the x axis and lies somewhere between the particles. Its x coordinate is given by

 xCM ;
m1x1 1 m2x2

m1 1 m2
 (9.28)

For example, if x1 5 0, x2 5 d, and m2 5 2m1, we find that xCM 5 2
3d. That is, the 

center of mass lies closer to the more massive particle. If the two masses are equal, 
the center of mass lies midway between the particles.
 We can extend this concept to a system of many particles with masses mi in three 
dimensions. The x coordinate of the center of mass of n particles is defined to be

 xCM ;
m1x1 1 m2x2 1 m3x3 1 c1 mnxn

m1 1 m2 1 m3 1 c1 mn
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where xi is the x coordinate of the ith particle and the total mass is M ; oi mi where 
the sum runs over all n particles. The y and z coordinates of the center of mass are 
similarly defined by the equations
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 The center of mass can be located in three dimensions by its position vector rSCM. 
The components of this vector are xCM, yCM, and zCM, defined in Equations 9.29 and 
9.30. Therefore,
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1
M a

i
miyi  ĵ 1
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where rSi is the position vector of the ith particle, defined by

rSi ; xi î 1 yi  ĵ 1 zi k̂

 Although locating the center of mass for an extended, continuous object is some-
what more cumbersome than locating the center of mass of a small number of par-
ticles, the basic ideas we have discussed still apply. Think of an extended object as a 
system containing a large number of small mass elements such as the cube in Figure 
9.15. Because the separation between elements is very small, the object can be con-
sidered to have a continuous mass distribution. By dividing the object into elements 
of mass Dmi with coordinates xi, yi, zi, we see that the x coordinate of the center of 
mass is approximately
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1
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with similar expressions for yCM and zCM. If we let the number of elements n 
approach infinity, the size of each element approaches zero and xCM is given pre-
cisely. In this limit, we replace the sum by an integral and Dmi by the differential 
element dm:
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Likewise, for yCM and zCM we obtain
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is applied at the center of mass, the system moves in the direction of the force with-
out rotating (see Fig. 9.13c). The center of mass of an object can be located with 
this procedure.
 The center of mass of the pair of particles described in Figure 9.14 is located on 
the x axis and lies somewhere between the particles. Its x coordinate is given by

 xCM ;
m1x1 1 m2x2

m1 1 m2
 (9.28)

For example, if x1 5 0, x2 5 d, and m2 5 2m1, we find that xCM 5 2
3d. That is, the 

center of mass lies closer to the more massive particle. If the two masses are equal, 
the center of mass lies midway between the particles.
 We can extend this concept to a system of many particles with masses mi in three 
dimensions. The x coordinate of the center of mass of n particles is defined to be

 xCM ;
m1x1 1 m2x2 1 m3x3 1 c1 mnxn
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where xi is the x coordinate of the ith particle and the total mass is M ; oi mi where 
the sum runs over all n particles. The y and z coordinates of the center of mass are 
similarly defined by the equations
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 The center of mass can be located in three dimensions by its position vector rSCM. 
The components of this vector are xCM, yCM, and zCM, defined in Equations 9.29 and 
9.30. Therefore,
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where rSi is the position vector of the ith particle, defined by

rSi ; xi î 1 yi  ĵ 1 zi k̂

 Although locating the center of mass for an extended, continuous object is some-
what more cumbersome than locating the center of mass of a small number of par-
ticles, the basic ideas we have discussed still apply. Think of an extended object as a 
system containing a large number of small mass elements such as the cube in Figure 
9.15. Because the separation between elements is very small, the object can be con-
sidered to have a continuous mass distribution. By dividing the object into elements 
of mass Dmi with coordinates xi, yi, zi, we see that the x coordinate of the center of 
mass is approximately
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1
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xi Dmi

with similar expressions for yCM and zCM. If we let the number of elements n 
approach infinity, the size of each element approaches zero and xCM is given pre-
cisely. In this limit, we replace the sum by an integral and Dmi by the differential 
element dm:
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Likewise, for yCM and zCM we obtain
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Question

A torque is supplied by applying a force at point A. To produce the
same torque, the force applied at point B must be:

(A) greater

(B) less

(C) the same
1Image from Harbor Freight Tools, www.harborfreight.com
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same torque, the force applied at point B must be:
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Net Torque

Object that can rotate about an axis at O:

 10.4 Torque 301

Pitfall Prevention 10.4
Torque Depends on Your Choice  
of Axis There is no unique value 
of the torque on an object. Its 
value depends on your choice of 
rotation axis.

O

d2

d1

F2
S

F1
S

Figure 10.8 The force F
S

 1 tends 
to rotate the object counterclock-
wise about an axis through O, and 
F
S

 2 tends to rotate it clockwise.

force F
S

 acts at an angle f to the horizontal. We define the magnitude of the torque 
associated with the force F

S
 around the axis passing through O by the expression

 t ; rF sin f 5 Fd (10.14)

where r is the distance between the rotation axis and the point of application of F
S

, 
and d is the perpendicular distance from the rotation axis to the line of action of 
F
S

. (The line of action of a force is an imaginary line extending out both ends of the 
vector representing the force. The dashed line extending from the tail of F

S
 in Fig. 

10.7 is part of the line of action of F
S

.) From the right triangle in Figure 10.7 that 
has the wrench as its hypotenuse, we see that d 5 r sin f. The quantity d is called 
the moment arm (or lever arm) of F

S
.

 In Figure 10.7, the only component of F
S

 that tends to cause rotation of the 
wrench around an axis through O is F sin f, the component perpendicular to a 
line drawn from the rotation axis to the point of application of the force. The hori-
zontal component F cos f, because its line of action passes through O, has no ten-
dency to produce rotation about an axis passing through O. From the definition 
of torque, the rotating tendency increases as F increases and as d increases, which 
explains why it is easier to rotate a door if we push at the doorknob rather than at a 
point close to the hinges. We also want to apply our push as closely perpendicular 
to the door as we can so that f is close to 908. Pushing sideways on the doorknob 
(f 5 0) will not cause the door to rotate.
 If two or more forces act on a rigid object as in Figure 10.8, each tends to pro-
duce rotation about the axis through O. In this example, F

S
2 tends to rotate the 

object clockwise and F
S

1 tends to rotate it counterclockwise. We use the convention 
that the sign of the torque resulting from a force is positive if the turning tendency 
of the force is counterclockwise and negative if the turning tendency is clockwise. 
For Example, in Figure 10.8, the torque resulting from F

S
1, which has a moment arm 

d1, is positive and equal to 1F1d1; the torque from F
S

2 is negative and equal to 2F2d2. 
Hence, the net torque about an axis through O is

o t 5 t1 1 t2 5 F1d1 2 F2d2

 Torque should not be confused with force. Forces can cause a change in transla-
tional motion as described by Newton’s second law. Forces can also cause a change 
in rotational motion, but the effectiveness of the forces in causing this change 
depends on both the magnitudes of the forces and the moment arms of the forces, 
in the combination we call torque. Torque has units of force times length—newton 
meters (N ? m) in SI units—and should be reported in these units. Do not confuse 
torque and work, which have the same units but are very different concepts.

Q uick Quiz 10.4 (i) If you are trying to loosen a stubborn screw from a piece of 
wood with a screwdriver and fail, should you find a screwdriver for which the 
handle is (a) longer or (b) fatter? (ii) If you are trying to loosen a stubborn 
bolt from a piece of metal with a wrench and fail, should you find a wrench for 
which the handle is (a) longer or (b) fatter?

�W Moment arm

Example 10.3   The Net Torque on a Cylinder

A one-piece cylinder is shaped as shown in Figure 10.9, with a core section protrud-
ing from the larger drum. The cylinder is free to rotate about the central z axis 
shown in the drawing. A rope wrapped around the drum, which has radius R1, 
exerts a force T

S
1 to the right on the cylinder. A rope wrapped around the core, 

which has radius R2, exerts a force T
S

2 downward on the cylinder.

(A)  What is the net torque acting on the cylinder about the rotation axis (which is 
the z axis in Fig. 10.9)?

z

x

y

R 1

R 2

O
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S

T2
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Figure 10.9  (Example 10.3) A 
solid cylinder pivoted about the z axis 
through O. The moment arm of T

S
1 is 

R1, and the moment arm of T
S

2 is R2.continued

There are two forces acting, but the two torques produced, #»τ 1 and
#»τ 2 point in opposite directions.

#»τ 1 would produce a counterclockwise rotation
#»τ 2 would produce a clockwise rotation
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Pitfall Prevention 10.4
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of Axis There is no unique value 
of the torque on an object. Its 
value depends on your choice of 
rotation axis.
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to rotate the object counterclock-
wise about an axis through O, and 
F
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 2 tends to rotate it clockwise.

force F
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 acts at an angle f to the horizontal. We define the magnitude of the torque 
associated with the force F

S
 around the axis passing through O by the expression

 t ; rF sin f 5 Fd (10.14)

where r is the distance between the rotation axis and the point of application of F
S

, 
and d is the perpendicular distance from the rotation axis to the line of action of 
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. (The line of action of a force is an imaginary line extending out both ends of the 
vector representing the force. The dashed line extending from the tail of F
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 in Fig. 

10.7 is part of the line of action of F
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.) From the right triangle in Figure 10.7 that 
has the wrench as its hypotenuse, we see that d 5 r sin f. The quantity d is called 
the moment arm (or lever arm) of F
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.

 In Figure 10.7, the only component of F
S

 that tends to cause rotation of the 
wrench around an axis through O is F sin f, the component perpendicular to a 
line drawn from the rotation axis to the point of application of the force. The hori-
zontal component F cos f, because its line of action passes through O, has no ten-
dency to produce rotation about an axis passing through O. From the definition 
of torque, the rotating tendency increases as F increases and as d increases, which 
explains why it is easier to rotate a door if we push at the doorknob rather than at a 
point close to the hinges. We also want to apply our push as closely perpendicular 
to the door as we can so that f is close to 908. Pushing sideways on the doorknob 
(f 5 0) will not cause the door to rotate.
 If two or more forces act on a rigid object as in Figure 10.8, each tends to pro-
duce rotation about the axis through O. In this example, F

S
2 tends to rotate the 

object clockwise and F
S

1 tends to rotate it counterclockwise. We use the convention 
that the sign of the torque resulting from a force is positive if the turning tendency 
of the force is counterclockwise and negative if the turning tendency is clockwise. 
For Example, in Figure 10.8, the torque resulting from F

S
1, which has a moment arm 

d1, is positive and equal to 1F1d1; the torque from F
S

2 is negative and equal to 2F2d2. 
Hence, the net torque about an axis through O is

o t 5 t1 1 t2 5 F1d1 2 F2d2

 Torque should not be confused with force. Forces can cause a change in transla-
tional motion as described by Newton’s second law. Forces can also cause a change 
in rotational motion, but the effectiveness of the forces in causing this change 
depends on both the magnitudes of the forces and the moment arms of the forces, 
in the combination we call torque. Torque has units of force times length—newton 
meters (N ? m) in SI units—and should be reported in these units. Do not confuse 
torque and work, which have the same units but are very different concepts.

Q uick Quiz 10.4 (i) If you are trying to loosen a stubborn screw from a piece of 
wood with a screwdriver and fail, should you find a screwdriver for which the 
handle is (a) longer or (b) fatter? (ii) If you are trying to loosen a stubborn 
bolt from a piece of metal with a wrench and fail, should you find a wrench for 
which the handle is (a) longer or (b) fatter?
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Example 10.3   The Net Torque on a Cylinder

A one-piece cylinder is shaped as shown in Figure 10.9, with a core section protrud-
ing from the larger drum. The cylinder is free to rotate about the central z axis 
shown in the drawing. A rope wrapped around the drum, which has radius R1, 
exerts a force T

S
1 to the right on the cylinder. A rope wrapped around the core, 

which has radius R2, exerts a force T
S

2 downward on the cylinder.

(A)  What is the net torque acting on the cylinder about the rotation axis (which is 
the z axis in Fig. 10.9)?
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Figure 10.9  (Example 10.3) A 
solid cylinder pivoted about the z axis 
through O. The moment arm of T

S
1 is 

R1, and the moment arm of T
S

2 is R2.continued

The net torque is the sum of the torques acting on the object:

#»τ net =
∑
i

#»τ i

In this case, with n̂ pointing out of the slide:

#»τ net =
#»τ 1 +

#»τ 2 = (d1F1 − d2F2)n̂



Example 10.3 - Net Torque on a Cylinder
A one-piece cylinder is shaped as shown, with a core section
protruding from the larger drum. The cylinder is free to rotate
about the central z axis shown in the drawing. A rope wrapped
around the drum, which has radius R1, exerts a force T1 to the
right on the cylinder. A rope wrapped around the core, which has
radius R2, exerts a force T2 downward on the cylinder.

What is the net torque acting on the cylinder about the rotation
axis (which is the z axis)?
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to rotate the object counterclock-
wise about an axis through O, and 
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 2 tends to rotate it clockwise.

force F
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 acts at an angle f to the horizontal. We define the magnitude of the torque 
associated with the force F
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 around the axis passing through O by the expression
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where r is the distance between the rotation axis and the point of application of F
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and d is the perpendicular distance from the rotation axis to the line of action of 
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. (The line of action of a force is an imaginary line extending out both ends of the 
vector representing the force. The dashed line extending from the tail of F
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 in Fig. 
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the moment arm (or lever arm) of F
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 In Figure 10.7, the only component of F
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 that tends to cause rotation of the 
wrench around an axis through O is F sin f, the component perpendicular to a 
line drawn from the rotation axis to the point of application of the force. The hori-
zontal component F cos f, because its line of action passes through O, has no ten-
dency to produce rotation about an axis passing through O. From the definition 
of torque, the rotating tendency increases as F increases and as d increases, which 
explains why it is easier to rotate a door if we push at the doorknob rather than at a 
point close to the hinges. We also want to apply our push as closely perpendicular 
to the door as we can so that f is close to 908. Pushing sideways on the doorknob 
(f 5 0) will not cause the door to rotate.
 If two or more forces act on a rigid object as in Figure 10.8, each tends to pro-
duce rotation about the axis through O. In this example, F
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2 tends to rotate the 

object clockwise and F
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1 tends to rotate it counterclockwise. We use the convention 
that the sign of the torque resulting from a force is positive if the turning tendency 
of the force is counterclockwise and negative if the turning tendency is clockwise. 
For Example, in Figure 10.8, the torque resulting from F

S
1, which has a moment arm 

d1, is positive and equal to 1F1d1; the torque from F
S

2 is negative and equal to 2F2d2. 
Hence, the net torque about an axis through O is

o t 5 t1 1 t2 5 F1d1 2 F2d2

 Torque should not be confused with force. Forces can cause a change in transla-
tional motion as described by Newton’s second law. Forces can also cause a change 
in rotational motion, but the effectiveness of the forces in causing this change 
depends on both the magnitudes of the forces and the moment arms of the forces, 
in the combination we call torque. Torque has units of force times length—newton 
meters (N ? m) in SI units—and should be reported in these units. Do not confuse 
torque and work, which have the same units but are very different concepts.

Q uick Quiz 10.4 (i) If you are trying to loosen a stubborn screw from a piece of 
wood with a screwdriver and fail, should you find a screwdriver for which the 
handle is (a) longer or (b) fatter? (ii) If you are trying to loosen a stubborn 
bolt from a piece of metal with a wrench and fail, should you find a wrench for 
which the handle is (a) longer or (b) fatter?
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A one-piece cylinder is shaped as shown in Figure 10.9, with a core section protrud-
ing from the larger drum. The cylinder is free to rotate about the central z axis 
shown in the drawing. A rope wrapped around the drum, which has radius R1, 
exerts a force T
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1 to the right on the cylinder. A rope wrapped around the core, 

which has radius R2, exerts a force T
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2 downward on the cylinder.

(A)  What is the net torque acting on the cylinder about the rotation axis (which is 
the z axis in Fig. 10.9)?
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Example 10.3 - Net Torque on a Cylinder
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wise about an axis through O, and 
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 2 tends to rotate it clockwise.

force F
S

 acts at an angle f to the horizontal. We define the magnitude of the torque 
associated with the force F
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where r is the distance between the rotation axis and the point of application of F
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, 
and d is the perpendicular distance from the rotation axis to the line of action of 
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wrench around an axis through O is F sin f, the component perpendicular to a 
line drawn from the rotation axis to the point of application of the force. The hori-
zontal component F cos f, because its line of action passes through O, has no ten-
dency to produce rotation about an axis passing through O. From the definition 
of torque, the rotating tendency increases as F increases and as d increases, which 
explains why it is easier to rotate a door if we push at the doorknob rather than at a 
point close to the hinges. We also want to apply our push as closely perpendicular 
to the door as we can so that f is close to 908. Pushing sideways on the doorknob 
(f 5 0) will not cause the door to rotate.
 If two or more forces act on a rigid object as in Figure 10.8, each tends to pro-
duce rotation about the axis through O. In this example, F

S
2 tends to rotate the 

object clockwise and F
S

1 tends to rotate it counterclockwise. We use the convention 
that the sign of the torque resulting from a force is positive if the turning tendency 
of the force is counterclockwise and negative if the turning tendency is clockwise. 
For Example, in Figure 10.8, the torque resulting from F

S
1, which has a moment arm 

d1, is positive and equal to 1F1d1; the torque from F
S

2 is negative and equal to 2F2d2. 
Hence, the net torque about an axis through O is

o t 5 t1 1 t2 5 F1d1 2 F2d2

 Torque should not be confused with force. Forces can cause a change in transla-
tional motion as described by Newton’s second law. Forces can also cause a change 
in rotational motion, but the effectiveness of the forces in causing this change 
depends on both the magnitudes of the forces and the moment arms of the forces, 
in the combination we call torque. Torque has units of force times length—newton 
meters (N ? m) in SI units—and should be reported in these units. Do not confuse 
torque and work, which have the same units but are very different concepts.

Q uick Quiz 10.4 (i) If you are trying to loosen a stubborn screw from a piece of 
wood with a screwdriver and fail, should you find a screwdriver for which the 
handle is (a) longer or (b) fatter? (ii) If you are trying to loosen a stubborn 
bolt from a piece of metal with a wrench and fail, should you find a wrench for 
which the handle is (a) longer or (b) fatter?
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Example 10.3   The Net Torque on a Cylinder

A one-piece cylinder is shaped as shown in Figure 10.9, with a core section protrud-
ing from the larger drum. The cylinder is free to rotate about the central z axis 
shown in the drawing. A rope wrapped around the drum, which has radius R1, 
exerts a force T

S
1 to the right on the cylinder. A rope wrapped around the core, 

which has radius R2, exerts a force T
S

2 downward on the cylinder.

(A)  What is the net torque acting on the cylinder about the rotation axis (which is 
the z axis in Fig. 10.9)?
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Figure 10.9  (Example 10.3) A 
solid cylinder pivoted about the z axis 
through O. The moment arm of T

S
1 is 

R1, and the moment arm of T
S

2 is R2.continued
First: Find an expression for the net torque acting on the cylinder
about the rotation axis.

Second: Let T1 = 5.0 N, R1 = 1.0 m, T2 = 15 N, and
R2 = 0.50 m. What is the net torque? Which way is the rotation?

#»τ net = 2.5 Nm, counter-clockwise (or k̂)
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Torque Depends on Your Choice  
of Axis There is no unique value 
of the torque on an object. Its 
value depends on your choice of 
rotation axis.
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Figure 10.8 The force F
S

 1 tends 
to rotate the object counterclock-
wise about an axis through O, and 
F
S

 2 tends to rotate it clockwise.

force F
S
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S
 around the axis passing through O by the expression

 t ; rF sin f 5 Fd (10.14)
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S

, 
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F
S

. (The line of action of a force is an imaginary line extending out both ends of the 
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S
 in Fig. 

10.7 is part of the line of action of F
S
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S
.
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Summary

• rotation

• rotational kinematics

• torque

3rd Assignment will be posted later today, watch for an
email.

(Uncollected) Homework Serway & Jewett,

• Read ahead in Chapter 10.

• prev: Ch 10, onward from page 288. Probs: 3, 7, 11, 15, 17,
19, 21, 25

• new: Ch 10, Probs: 27 (net torque)


