Rotation
Torque
Moment of Inertia

Lana Sheridan

De Anza College

Mar 8, 2019
Last time

- rotational quantities
- rotational kinematics
- torque
Overview

- net torque
- Newton’s second law for rotation
- moment of inertia
- calculating moments of inertia
Let \vec{a}, \vec{b}, and \vec{c} be (non-null) vectors.

Could this possibly be a valid equation?

$$\vec{a} = \vec{b} \cdot \vec{c}$$

(A) yes

(B) no
Quick review of Vector Expressions

Let \(\vec{a}, \vec{b}, \) and \(\vec{c} \) be (non-null) vectors.

Could this possibly be a valid equation?

\[
\vec{a} = \vec{b} \cdot \vec{c}
\]

(A) yes

(B) no
Quick review of Vector Expressions

Let \(\vec{a} \), \(\vec{b} \), and \(\vec{c} \) be vectors. Let \(m \) and \(n \) be non-zero scalars.

Could this possibly be a valid equation?

\[
m = \vec{b} \times \vec{c}
\]

(A) yes
(B) no
Quick review of Vector Expressions

Let \(\mathbf{a}, \mathbf{b}, \) and \(\mathbf{c} \) be vectors. Let \(m \) and \(n \) be non-zero scalars.

Could this possibly be a valid equation?

\[
m = \mathbf{b} \times \mathbf{c}
\]

(A) yes

(B) no
Quick review of Vector Expressions

Let \mathbf{a}, \mathbf{b}, and \mathbf{c} be vectors. Let m and n be non-zero scalars.

Suppose

- $\mathbf{a} \neq 0$ and
- $\mathbf{b} \neq 0$ and
- $\mathbf{a} \neq n \mathbf{b}$

for any value of n. Could this possibly be a true equation?

$$\mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{a}$$

(A) yes

(B) no
Quick review of Vector Expressions

Let \(\vec{a} \), \(\vec{b} \), and \(\vec{c} \) be vectors. Let \(m \) and \(n \) be non-zero scalars.

Suppose

- \(\vec{a} \neq 0 \) and
- \(\vec{b} \neq 0 \) and
- \(\vec{a} \neq n \vec{b} \)

for **any** value of \(n \). Could this possibly be a true equation?

\[
\vec{a} \times \vec{b} = \vec{b} \times \vec{a}
\]

(A) yes

(B) no
Torque

Torque is a measure of force-causing-rotation.

It is not a force, but it is related. It depends on a force vector and its point of application relative to an axis of rotation.

Torque is given by:

\[\vec{\tau} = \vec{r} \times \vec{F} \]

That is: the cross product between

- a vector \(\vec{r} \), the displacement of the point of application of the force from the axis of rotation, and
- an the force vector \(\vec{F} \)
Torque

\[\tau = \vec{r} \times \vec{F} = rF \sin \phi \hat{n} \]

where \(\phi \) is the angle between \(\vec{r} \) and \(\vec{F} \), and \(\hat{n} \) is the unit vector perpendicular to \(\vec{r} \) and \(\vec{F} \), as determined by the right-hand rule.
A torque is supplied by applying a force at point A. To produce the same torque, the force applied at point B must be:

(A) greater
(B) less
(C) the same

\(^1\)Image from Harbor Freight Tools, www.harborfreight.com
A torque is supplied by applying a force at point A. To produce the same torque, the force applied at point B must be:

(A) greater
(B) less
(C) the same

\(^1\)Image from Harbor Freight Tools, www.harborfreight.com
Object that can rotate about an axis at O:

There are two forces acting, but the two torques produced, $\vec{\tau}_1$ and $\vec{\tau}_2$ point in opposite directions.

$\vec{\tau}_1$ would produce a counterclockwise rotation
$\vec{\tau}_2$ would produce a clockwise rotation
Net Torque

The net torque is the sum of the torques acting on the object:

\[\vec{\tau}_{\text{net}} = \sum_i \vec{\tau}_i \]

In this case, with \(\hat{n} \) pointing out of the slide:

\[\vec{\tau}_{\text{net}} = \vec{\tau}_1 + \vec{\tau}_2 = (d_1 F_1 - d_2 F_2) \hat{n} \]
Example 10.3 - Net Torque on a Cylinder

A one-piece cylinder is shaped as shown, with a core section protruding from the larger drum. The cylinder is free to rotate about the central z axis shown in the drawing. A rope wrapped around the drum, which has radius R_1, exerts a force T_1 to the right on the cylinder. A rope wrapped around the core, which has radius R_2, exerts a force T_2 downward on the cylinder.

What is the net torque acting on the cylinder about the rotation axis (which is the z axis)?
Example 10.3 - Net Torque on a Cylinder

First: Find an expression for the net torque acting on the cylinder about the rotation axis.

Second: Let $T_1 = 5.0 \text{ N}$, $R_1 = 1.0 \text{ m}$, $T_2 = 15 \text{ N}$, and $R_2 = 0.50 \text{ m}$. What is the net torque? Which way is the rotation?
Example 10.3 - Net Torque on a Cylinder

First: Find an expression for the net torque acting on the cylinder about the rotation axis.

Second: Let \(T_1 = 5.0 \text{ N} \), \(R_1 = 1.0 \text{ m} \), \(T_2 = 15 \text{ N} \), and \(R_2 = 0.50 \text{ m} \). What is the net torque? Which way is the rotation?

\[\vec{\tau}_{\text{net}} = 2.5 \text{ Nm}, \text{ counter-clockwise (or } \hat{k}) \]
Rotational Version of Newton’s Second Law

Tangential components of forces give rise to torques. They also cause tangential accelerations. Consider the tangential component of the net force, \(F_{\text{net},t} \):

\[
F_{\text{net},t} = m a_t
\]

from Newton’s second law.

\[
\vec{\tau}_{\text{net}} = \vec{r} \times \vec{F}_{\text{net}} = r F_{\text{net},t} \hat{n}
\]

Now let’s specifically consider the case of a single particle, mass \(m \), at a fixed radius \(r \).
Rotational Version of Newton’s Second Law

A single particle, mass m, at a fixed radius r.

For such a particle, $F_{\text{net},t} = ma_t$

$$\vec{\tau}_{\text{net}} = r F_{\text{net},t} \hat{n}$$

$$= r m a_t \hat{n}$$

$$= r m (\vec{\alpha} \cdot r)$$

$$= (mr^2) \vec{\alpha}$$
Rotational Version of Newton’s Second Law

\[(mr^2)\] is just some constant for this particle and this axis of rotation.

Let this constant be \((\text{scalar}) \ I = mr^2\).
Rotational Version of Newton’s Second Law

\[(mr^2)\] is just some constant for this particle and this axis of rotation.

Let this constant be (scalar) \(I = mr^2 \).

Scalar \(I \) is not impulse! This is just an unfortunate notation coincidence.
Rotational Version of Newton’s Second Law

\((mr^2)\) is just some constant for this particle and this axis of rotation.

Let this constant be (scalar) \(I = mr^2\).

Scalar \(I\) is not impulse! This is just an unfortunate notation coincidence.

\(I\) is called the moment of inertia of this system, for this particular axis of rotation.
(mr2) is just some constant for this particle and this axis of rotation.

Let this constant be (scalar) $I = mr^2$.

Scalar I is not impulse! This is just an unfortunate notation coincidence.

I is called the moment of inertia of this system, for this particular axis of rotation.

Replacing the constant quantity in our expression for $\vec{\tau}_{\text{net}}$:

$$\vec{\tau}_{\text{net}} = I \vec{\alpha}$$
Rotational Version of Newton’s Second Law

Compare!

\[\vec{\tau}_{\text{net}} = I \vec{\alpha} \]
\[\vec{F}_{\text{net}} = m \vec{a} \]

Now the moment of inertia, \(I \), stands in for the inertial mass, \(m \).
Rotational Version of Newton’s Second Law

Compare!

\[\vec{\tau}_{\text{net}} = I \vec{\alpha} \]
\[\vec{F}_{\text{net}} = m \vec{a} \]

Now the moment of inertia, \(I \), stands in for the inertial mass, \(m \).

The moment of inertia measures the rotational inertia of an object (how hard is it to rotate an object?), just as mass is a measure of inertia.
Moment of Inertia

We just found that for a single particle, mass m, radius r,

$$I = mr^2$$

For an extended object with mass distributed over varying distances from the rotational axis, each particle of mass m_i experiences a torque:

$$\vec{\tau}_i = m_i r_i^2 \vec{\alpha}$$
Moment of Inertia

We just found that for a single particle, mass \(m \), radius \(r \),

\[
I = mr^2
\]

For an extended object with mass distributed over varying distances from the rotational axis, each particle of mass \(m_i \) experiences a torque:

\[
\vec{\tau}_i = m_i r_i^2 \vec{\alpha}
\]

And we sum over these torques to get the net torque.

\[
\vec{\tau}_{\text{net}} = \sum_i m_i r_i^2 \vec{\alpha}
\]

All particle in the object rotate together, so for an object made of a collection of particles, masses \(m_i \) at radiuses \(r_i \):

\[
I = \sum_i m_i r_i^2
\]
Moment of Inertia

If the object’s mass is far from the point of rotation, more torque is needed to rotate the object (with some angular acceleration).

![Diagram of easier and difficult rotation](http://biomech.byu.edu)

The barbell on the right has a greater moment of inertia.

1Diagram from Dr. Hunter’s page at http://biomech.byu.edu (by Hewitt?)
And we sum over these torques to get the net torque. So, for a collection of particles, masses m_i at radii r_i:

$$I = \sum_i m_i r_i^2$$

For a continuous distribution of mass, we must integrate over each small mass Δm:

$$I = \int r^2 \, dm$$
Summary

- Newton’s
- moments of inertia

Collected HW due Monday.

3rd Test Thursday.

(Uncollected) Homework Serway & Jewett,

- Ch 10, Probs: 27 (net torque)
- Look at examples 10.4, and 10.11