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Last time

• rotational quantities

• torque

• the cross product



Overview

• net torque

• Newton’s second law for rotation

• moment of inertia

• calculating moments of inertia



Quick review of Vector Expressions

Let #»a ,
#»

b , and #»c be (non-null) vectors.

Could this possibly be a valid equation?

#»a =
#»

b · #»c

(A) yes

(B) no
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Torque

Torque is a measure of force-causing-rotation.

It is not a force, but it is related. It depends on a force vector and
its point of application relative to an axis of rotation.

Torque is given by:

#»τ = #»r × #»

F

That is: the cross product between

• a vector #»r , the displacement of the point of application of the
force from the axis of rotation, and

• an the force vector
#»

F



Torque

300 Chapter 10 Rotation of a Rigid Object About a Fixed Axis

(C) What is the angular acceleration of the compact disc over the 4 473-s time interval?

Categorize  We again model the disc as a rigid object under constant angular acceleration. In this case, Equation 10.6 gives 
the value of the constant angular acceleration. Another approach is to use Equation 10.4 to find the average angular 
acceleration. In this case, we are not assuming the angular acceleration is constant. The answer is the same from both 
equations; only the interpretation of the result is different.

S O L U T I O N

Analyze  Use Equation 10.6 to find the angular 
acceleration: a 5

vf 2 vi

t
5

22 rad/s 2 57 rad/s
4 473 s

5 27.6 3 1023 rad/s2

Finalize  The disc experiences a very gradual decrease in its rotation rate, as expected from the long time interval 
required for the angular speed to change from the initial value to the final value. In reality, the angular acceleration of 
the disc is not constant. Problem 90 allows you to explore the actual time behavior of the angular acceleration.

Do the same for the outer track: vf 5
v
rf

5
1.3 m/s

5.8 3 1022 m
5 22 rad/s 5 2.1 3 102 rev/min

Use Equation 10.9 to find the angular displacement of 
the disc at t 5 4 473 s:

Du 5 uf 2 ui 5 1
2 1vi 1 vf 2 t 

5 1
2 157 rad/s 1 22 rad/s 2 14 473 s 2 5 1.8 3 105 rad

The CD player adjusts the angular speed v of the disc within this range so that information moves past the objective 
lens at a constant rate.

(B)  The maximum playing time of a standard music disc is 74 min and 33 s. How many revolutions does the disc 
make during that time?

Categorize  From part (A), the angular speed decreases as the disc plays. Let us assume it decreases steadily, with a 
constant. We can then apply the rigid object under constant angular acceleration model to the disc.

Analyze  If t 5 0 is the instant the disc begins rotating, with angular speed of 57 rad/s, the final value of the time t is 
(74 min)(60 s/min) 1 33 s 5 4 473 s. We are looking for the angular displacement Du during this time interval.

Convert this angular displacement to revolutions: Du 5 11.8 3 105 rad 2 a 1 rev
2p rad

b 5 2.8 3 104 rev

 

▸ 10.2 c o n t i n u e d

10.4 Torque
In our study of translational motion, after investigating the description of motion, 
we studied the cause of changes in motion: force. We follow the same plan here: 
What is the cause of changes in rotational motion? 
 Imagine trying to rotate a door by applying a force of magnitude F perpendic-
ular to the door surface near the hinges and then at various distances from the 
hinges. You will achieve a more rapid rate of rotation for the door by applying the 
force near the doorknob than by applying it near the hinges.
 When a force is exerted on a rigid object pivoted about an axis, the object tends 
to rotate about that axis. The tendency of a force to rotate an object about some 
axis is measured by a quantity called torque tS(Greek letter tau). Torque is a vector, 
but we will consider only its magnitude here; we will explore its vector nature in 
Chapter 11.
 Consider the wrench in Figure 10.7 that we wish to rotate around an axis that is 
perpendicular to the page and passes through the center of the bolt. The applied 

r

F sin f

 F cos f

d

O

Line of
action

f

The component F sin f 
tends to rotate the wrench 
about an axis through O.

f

F
S

rS

Figure 10.7  The force F
S

 has a 
greater rotating tendency about an 
axis through O as F increases and 
as the moment arm d increases.

S O L U T I O N

τ = #»r × #»

F = rF sinφ n̂

where φ is the angle between #»r and
#»

F , and n̂ is the unit vector
perpendicular to #»r and

#»

F , as determined by the right-hand rule.



Question

A torque is supplied by applying a force at point A. To produce the
same torque, the force applied at point B must be:

(A) greater

(B) less

(C) the same
1Image from Harbor Freight Tools, www.harborfreight.com
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268 Chapter 9 Linear Momentum and Collisions

is applied at the center of mass, the system moves in the direction of the force with-
out rotating (see Fig. 9.13c). The center of mass of an object can be located with 
this procedure.
 The center of mass of the pair of particles described in Figure 9.14 is located on 
the x axis and lies somewhere between the particles. Its x coordinate is given by

 xCM ;
m1x1 1 m2x2

m1 1 m2
 (9.28)

For example, if x1 5 0, x2 5 d, and m2 5 2m1, we find that xCM 5 2
3d. That is, the 

center of mass lies closer to the more massive particle. If the two masses are equal, 
the center of mass lies midway between the particles.
 We can extend this concept to a system of many particles with masses mi in three 
dimensions. The x coordinate of the center of mass of n particles is defined to be

 xCM ;
m1x1 1 m2x2 1 m3x3 1 c1 mnxn

m1 1 m2 1 m3 1 c1 mn
5

a
i

mixi

a
i

mi

5
a

i
mixi

M
5

1
M a

i
mixi 

  (9.29)

where xi is the x coordinate of the ith particle and the total mass is M ; oi mi where 
the sum runs over all n particles. The y and z coordinates of the center of mass are 
similarly defined by the equations

 yCM ;
1
M a

i
miyi and zCM ;

1
M a

i
mizi (9.30)

 The center of mass can be located in three dimensions by its position vector rSCM. 
The components of this vector are xCM, yCM, and zCM, defined in Equations 9.29 and 
9.30. Therefore,

 rSCM 5 xCM î 1 yCM  ĵ 1 zCM k̂ 5
1
M a

i
mixi î 1

1
M a

i
miyi  ĵ 1

1
M a

i
mizi k̂

 rSCM ;
1
M a

i
mi r

S
i (9.31)

where rSi is the position vector of the ith particle, defined by

rSi ; xi î 1 yi  ĵ 1 zi k̂

 Although locating the center of mass for an extended, continuous object is some-
what more cumbersome than locating the center of mass of a small number of par-
ticles, the basic ideas we have discussed still apply. Think of an extended object as a 
system containing a large number of small mass elements such as the cube in Figure 
9.15. Because the separation between elements is very small, the object can be con-
sidered to have a continuous mass distribution. By dividing the object into elements 
of mass Dmi with coordinates xi, yi, zi, we see that the x coordinate of the center of 
mass is approximately

xCM <
1
M

 a
i

xi Dmi

with similar expressions for yCM and zCM. If we let the number of elements n 
approach infinity, the size of each element approaches zero and xCM is given pre-
cisely. In this limit, we replace the sum by an integral and Dmi by the differential 
element dm:

 xCM 5 lim
Dmi S 0

 
1
M

 a
i

xi Dmi 5
1
M

 3  x dm (9.32)

Likewise, for yCM and zCM we obtain

 yCM 5
1
M

 3  y dm and zCM 5
1
M

 3  z dm (9.33)

CM

CM

CM
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c

The system rotates clockwise 
when a force is applied 
above the center of mass. 

The system rotates counter-
clockwise when a force is applied 
below the center of mass. 

The system moves in the 
direction of the force without 
rotating when a force is applied 
at the center of mass.

Figure 9.13 A force is applied 
to a system of two particles of 
unequal mass connected by a 
light, rigid rod.

Figure 9.14 The center of mass 
of two particles of unequal mass 
on the x axis is located at xCM, a 
point between the particles, closer 
to the one having the larger mass.
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where xi is the x coordinate of the ith particle and the total mass is M ; oi mi where 
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where rSi is the position vector of the ith particle, defined by
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what more cumbersome than locating the center of mass of a small number of par-
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system containing a large number of small mass elements such as the cube in Figure 
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where rSi is the position vector of the ith particle, defined by
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Net Torque

Object that can rotate about an axis at O:

 10.4 Torque 301

Pitfall Prevention 10.4
Torque Depends on Your Choice  
of Axis There is no unique value 
of the torque on an object. Its 
value depends on your choice of 
rotation axis.

O

d2

d1

F2
S

F1
S

Figure 10.8 The force F
S

 1 tends 
to rotate the object counterclock-
wise about an axis through O, and 
F
S

 2 tends to rotate it clockwise.

force F
S

 acts at an angle f to the horizontal. We define the magnitude of the torque 
associated with the force F

S
 around the axis passing through O by the expression

 t ; rF sin f 5 Fd (10.14)

where r is the distance between the rotation axis and the point of application of F
S

, 
and d is the perpendicular distance from the rotation axis to the line of action of 
F
S

. (The line of action of a force is an imaginary line extending out both ends of the 
vector representing the force. The dashed line extending from the tail of F

S
 in Fig. 

10.7 is part of the line of action of F
S

.) From the right triangle in Figure 10.7 that 
has the wrench as its hypotenuse, we see that d 5 r sin f. The quantity d is called 
the moment arm (or lever arm) of F

S
.

 In Figure 10.7, the only component of F
S

 that tends to cause rotation of the 
wrench around an axis through O is F sin f, the component perpendicular to a 
line drawn from the rotation axis to the point of application of the force. The hori-
zontal component F cos f, because its line of action passes through O, has no ten-
dency to produce rotation about an axis passing through O. From the definition 
of torque, the rotating tendency increases as F increases and as d increases, which 
explains why it is easier to rotate a door if we push at the doorknob rather than at a 
point close to the hinges. We also want to apply our push as closely perpendicular 
to the door as we can so that f is close to 908. Pushing sideways on the doorknob 
(f 5 0) will not cause the door to rotate.
 If two or more forces act on a rigid object as in Figure 10.8, each tends to pro-
duce rotation about the axis through O. In this example, F

S
2 tends to rotate the 

object clockwise and F
S

1 tends to rotate it counterclockwise. We use the convention 
that the sign of the torque resulting from a force is positive if the turning tendency 
of the force is counterclockwise and negative if the turning tendency is clockwise. 
For Example, in Figure 10.8, the torque resulting from F

S
1, which has a moment arm 

d1, is positive and equal to 1F1d1; the torque from F
S

2 is negative and equal to 2F2d2. 
Hence, the net torque about an axis through O is

o t 5 t1 1 t2 5 F1d1 2 F2d2

 Torque should not be confused with force. Forces can cause a change in transla-
tional motion as described by Newton’s second law. Forces can also cause a change 
in rotational motion, but the effectiveness of the forces in causing this change 
depends on both the magnitudes of the forces and the moment arms of the forces, 
in the combination we call torque. Torque has units of force times length—newton 
meters (N ? m) in SI units—and should be reported in these units. Do not confuse 
torque and work, which have the same units but are very different concepts.

Q uick Quiz 10.4 (i) If you are trying to loosen a stubborn screw from a piece of 
wood with a screwdriver and fail, should you find a screwdriver for which the 
handle is (a) longer or (b) fatter? (ii) If you are trying to loosen a stubborn 
bolt from a piece of metal with a wrench and fail, should you find a wrench for 
which the handle is (a) longer or (b) fatter?

�W Moment arm

Example 10.3   The Net Torque on a Cylinder

A one-piece cylinder is shaped as shown in Figure 10.9, with a core section protrud-
ing from the larger drum. The cylinder is free to rotate about the central z axis 
shown in the drawing. A rope wrapped around the drum, which has radius R1, 
exerts a force T

S
1 to the right on the cylinder. A rope wrapped around the core, 

which has radius R2, exerts a force T
S

2 downward on the cylinder.

(A)  What is the net torque acting on the cylinder about the rotation axis (which is 
the z axis in Fig. 10.9)?

z

x

y

R 1

R 2

O

T1
S

T2
S

Figure 10.9  (Example 10.3) A 
solid cylinder pivoted about the z axis 
through O. The moment arm of T

S
1 is 

R1, and the moment arm of T
S

2 is R2.continued

There are two forces acting, but the two torques produced, #»τ 1 and
#»τ 2 point in opposite directions.

#»τ 1 would produce a counterclockwise rotation
#»τ 2 would produce a clockwise rotation



Net Torque
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Example 10.3   The Net Torque on a Cylinder

A one-piece cylinder is shaped as shown in Figure 10.9, with a core section protrud-
ing from the larger drum. The cylinder is free to rotate about the central z axis 
shown in the drawing. A rope wrapped around the drum, which has radius R1, 
exerts a force T

S
1 to the right on the cylinder. A rope wrapped around the core, 

which has radius R2, exerts a force T
S

2 downward on the cylinder.
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the z axis in Fig. 10.9)?
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Figure 10.9  (Example 10.3) A 
solid cylinder pivoted about the z axis 
through O. The moment arm of T

S
1 is 

R1, and the moment arm of T
S

2 is R2.continued

The net torque is the sum of the torques acting on the object:

#»τ net =
∑
i

#»τ i

In this case, with n̂ pointing out of the slide:

#»τ net =
#»τ 1 +

#»τ 2 = (d1F1 − d2F2)n̂



Example 10.3 - Net Torque on a Cylinder
A one-piece cylinder is shaped as shown, with a core section
protruding from the larger drum. The cylinder is free to rotate
about the central z axis shown in the drawing. A rope wrapped
around the drum, which has radius R1, exerts a force T1 to the
right on the cylinder. A rope wrapped around the core, which has
radius R2, exerts a force T2 downward on the cylinder.

What is the net torque acting on the cylinder about the rotation
axis (which is the z axis)?
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Pitfall Prevention 10.4
Torque Depends on Your Choice  
of Axis There is no unique value 
of the torque on an object. Its 
value depends on your choice of 
rotation axis.
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Figure 10.8 The force F
S

 1 tends 
to rotate the object counterclock-
wise about an axis through O, and 
F
S

 2 tends to rotate it clockwise.

force F
S

 acts at an angle f to the horizontal. We define the magnitude of the torque 
associated with the force F

S
 around the axis passing through O by the expression

 t ; rF sin f 5 Fd (10.14)

where r is the distance between the rotation axis and the point of application of F
S

, 
and d is the perpendicular distance from the rotation axis to the line of action of 
F
S

. (The line of action of a force is an imaginary line extending out both ends of the 
vector representing the force. The dashed line extending from the tail of F

S
 in Fig. 

10.7 is part of the line of action of F
S

.) From the right triangle in Figure 10.7 that 
has the wrench as its hypotenuse, we see that d 5 r sin f. The quantity d is called 
the moment arm (or lever arm) of F

S
.

 In Figure 10.7, the only component of F
S

 that tends to cause rotation of the 
wrench around an axis through O is F sin f, the component perpendicular to a 
line drawn from the rotation axis to the point of application of the force. The hori-
zontal component F cos f, because its line of action passes through O, has no ten-
dency to produce rotation about an axis passing through O. From the definition 
of torque, the rotating tendency increases as F increases and as d increases, which 
explains why it is easier to rotate a door if we push at the doorknob rather than at a 
point close to the hinges. We also want to apply our push as closely perpendicular 
to the door as we can so that f is close to 908. Pushing sideways on the doorknob 
(f 5 0) will not cause the door to rotate.
 If two or more forces act on a rigid object as in Figure 10.8, each tends to pro-
duce rotation about the axis through O. In this example, F

S
2 tends to rotate the 

object clockwise and F
S

1 tends to rotate it counterclockwise. We use the convention 
that the sign of the torque resulting from a force is positive if the turning tendency 
of the force is counterclockwise and negative if the turning tendency is clockwise. 
For Example, in Figure 10.8, the torque resulting from F

S
1, which has a moment arm 

d1, is positive and equal to 1F1d1; the torque from F
S

2 is negative and equal to 2F2d2. 
Hence, the net torque about an axis through O is

o t 5 t1 1 t2 5 F1d1 2 F2d2

 Torque should not be confused with force. Forces can cause a change in transla-
tional motion as described by Newton’s second law. Forces can also cause a change 
in rotational motion, but the effectiveness of the forces in causing this change 
depends on both the magnitudes of the forces and the moment arms of the forces, 
in the combination we call torque. Torque has units of force times length—newton 
meters (N ? m) in SI units—and should be reported in these units. Do not confuse 
torque and work, which have the same units but are very different concepts.

Q uick Quiz 10.4 (i) If you are trying to loosen a stubborn screw from a piece of 
wood with a screwdriver and fail, should you find a screwdriver for which the 
handle is (a) longer or (b) fatter? (ii) If you are trying to loosen a stubborn 
bolt from a piece of metal with a wrench and fail, should you find a wrench for 
which the handle is (a) longer or (b) fatter?
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Example 10.3   The Net Torque on a Cylinder

A one-piece cylinder is shaped as shown in Figure 10.9, with a core section protrud-
ing from the larger drum. The cylinder is free to rotate about the central z axis 
shown in the drawing. A rope wrapped around the drum, which has radius R1, 
exerts a force T
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1 to the right on the cylinder. A rope wrapped around the core, 

which has radius R2, exerts a force T
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2 downward on the cylinder.

(A)  What is the net torque acting on the cylinder about the rotation axis (which is 
the z axis in Fig. 10.9)?
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Figure 10.9  (Example 10.3) A 
solid cylinder pivoted about the z axis 
through O. The moment arm of T

S
1 is 

R1, and the moment arm of T
S

2 is R2.continued
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shown in the drawing. A rope wrapped around the drum, which has radius R1, 
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Figure 10.9  (Example 10.3) A 
solid cylinder pivoted about the z axis 
through O. The moment arm of T
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1 is 
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2 is R2.continued
First: Find an expression for the net torque acting on the cylinder
about the rotation axis.

Second: Let T1 = 5.0 N, R1 = 1.0 m, T2 = 15 N, and
R2 = 0.50 m. What is the net torque? Which way is the rotation?

#»τ net = 2.5 Nm, counter-clockwise (or k̂)
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A one-piece cylinder is shaped as shown in Figure 10.9, with a core section protrud-
ing from the larger drum. The cylinder is free to rotate about the central z axis 
shown in the drawing. A rope wrapped around the drum, which has radius R1, 
exerts a force T

S
1 to the right on the cylinder. A rope wrapped around the core, 

which has radius R2, exerts a force T
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2 downward on the cylinder.

(A)  What is the net torque acting on the cylinder about the rotation axis (which is 
the z axis in Fig. 10.9)?
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through O. The moment arm of T
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R1, and the moment arm of T
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First: Find an expression for the net torque acting on the cylinder
about the rotation axis.

Second: Let T1 = 5.0 N, R1 = 1.0 m, T2 = 15 N, and
R2 = 0.50 m. What is the net torque? Which way is the rotation?

#»τ net = 2.5 Nm, counter-clockwise (or k̂)



Rotational Version of Newton’s Second Law

Tangential components of forces give rise to torques.

They also cause tangential accelerations. Consider the tangential
component of the net force, Fnet,t :

Fnet,t = mat

from Newton’s second law.

#»τ net =
#»r × #»

Fnet = r Fnet,t n̂

Now let’s specifically consider the case of a single particle, mass m,
at a fixed radius r .



Rotational Version of Newton’s Second Law
A single particle, mass m, at a fixed radius r .

302 Chapter 10 Rotation of a Rigid Object About a Fixed Axis

▸ 10.3 c o n t i n u e d

Conceptualize  Imagine that the cylinder in Figure 10.9 is a shaft in a machine. The force T
S

1 could be applied by a 
drive belt wrapped around the drum. The force T

S
2 could be applied by a friction brake at the surface of the core.

Categorize  This example is a substitution problem in which we evaluate the net torque using Equation 10.14.
 The torque due to T

S
1 about the rotation axis is 2R1T1. (The sign is negative because the torque tends to produce 

clockwise rotation.) The torque due to T
S

2 is 1R2T2. (The sign is positive because the torque tends to produce counter-
clockwise rotation of the cylinder.)

S O L U T I O N

Evaluate the net torque about the rotation axis: o t 5 t1 1 t2 5  R2T2 2 R1T1

Substitute the given values: o t 5 (0.50 m)(15 N) 2 (1.0 m)(5.0 N) 5  2.5 N ? m

As a quick check, notice that if the two forces are of equal magnitude, the net torque is negative because R1 . R2. Start-
ing from rest with both forces of equal magnitude acting on it, the cylinder would rotate clockwise because T

S
1 would 

be more effective at turning it than would T
S

2.

(B)  Suppose T1 5 5.0 N, R1 5 1.0 m, T2 5 15 N, and R2 5 0.50 m. What is the net torque about the rotation axis, and 
which way does the cylinder rotate starting from rest?

S O L U T I O N

Because this net torque is positive, the cylinder begins to rotate in the counterclockwise direction.
 

10.5  Analysis Model: Rigid Object Under a Net Torque
In Chapter 5, we learned that a net force on an object causes an acceleration of the 
object and that the acceleration is proportional to the net force. These facts are the 
basis of the particle under a net force model whose mathematical representation 
is Newton’s second law. In this section, we show the rotational analog of Newton’s 
second law: the angular acceleration of a rigid object rotating about a fixed axis is 
proportional to the net torque acting about that axis. Before discussing the more 
complex case of rigid-object rotation, however, it is instructive first to discuss the 
case of a particle moving in a circular path about some fixed point under the influ-
ence of an external force.
 Consider a particle of mass m rotating in a circle of radius r under the influence 
of a tangential net force g  F

S
t  and a radial net force g  F

S
r  as shown in Figure 10.10. 

The radial net force causes the particle to move in the circular path with a centrip-
etal acceleration. The tangential force provides a tangential acceleration aSt , and

o Ft 5 mat

The magnitude of the net torque due to g  F
S

t  on the particle about an axis perpen-
dicular to the page through the center of the circle is

o t 5 o Ftr 5 (mat)r

Because the tangential acceleration is related to the angular acceleration through 
the relationship at 5 ra (Eq. 10.11), the net torque can be expressed as

 o t 5 (mra)r 5 (mr 2)a (10.15)

Let us denote the quantity mr 2 with the symbol I for now. We will say more about 
this quantity below. Using this notation, Equation 10.15 can be written as

  o t 5 Ia (10.16)

That is, the net torque acting on the particle is proportional to its angular accelera-
tion. Notice that o t 5 Ia has the same mathematical form as Newton’s second law 
of motion, o F 5 ma.

r

m

! Ft
S

! Fr
S

The tangential force on the 
particle results in a torque on the 
particle about an axis through 
the center of the circle.

Figure 10.10  A particle rotating  
in a circle under the influence of a  
tangential net force g  F

S
t . A radial 

net force g  F
S

r also must be present 
to maintain the circular motion.

For such a particle, Fnet,t = mat

#»τ net = r Fnet,t n̂

= r m at n̂

= r m ( #»αr)

= (mr2) #»α



Rotational Version of Newton’s Second Law

(mr2) is just some constant for this particle and this axis of
rotation.

Let this constant be (scalar) I = mr2.

Scalar I is not impulse! This is just an unfortunate notation
coincidence.

I is called the moment of inertia of this system, for this particular
axis of rotation.

Replacing the constant quantity in our expression for #»τ net:

#»τ net = I #»α
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(mr2) is just some constant for this particle and this axis of
rotation.

Let this constant be (scalar) I = mr2.

Scalar I is not impulse! This is just an unfortunate notation
coincidence.

I is called the moment of inertia of this system, for this particular
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Replacing the constant quantity in our expression for #»τ net:
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Rotational Version of Newton’s Second Law

Compare!
#»τ net = I #»α

#»

Fnet = m #»a

Now the moment of inertia, I, stands in for the inertial mass, m.

The moment of inertia measures the rotational inertia of an object
(how hard is it to rotate an object?), just as mass is a measure of
inertia.



Rotational Version of Newton’s Second Law

Compare!
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#»

Fnet = m #»a

Now the moment of inertia, I, stands in for the inertial mass, m.

The moment of inertia measures the rotational inertia of an object
(how hard is it to rotate an object?), just as mass is a measure of
inertia.



Moment of Inertia
We just found that for a single particle, mass m, radius r ,

I = mr2

For an extended object with mass distributed over varying
distances from the rotational axis, each particle of mass mi

experiences a torque:
#»τ i = mi r

2
i

#»α

And we sum over these torques to get the net torque.

#    »τnet =
∑
i

mi r
2
i

#»α

All particle in the object rotate together, so for an object made of
a collection of particles, masses mi at radiuses ri :

I =
∑
i

mi r
2
i
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Moment of Inertia

If the object’s mass is far from the point of rotation, more torque
is needed to rotate the object (with some angular acceleration).

The barbell on the right has a greater moment of inertia.

1Diagram from Dr. Hunter’s page at http://biomech.byu.edu (by Hewitt?)



Moment of Inertia

And we sum over these torques to get the net torque. So, for a
collection of particles, masses mi at radiuses ri :

I =
∑
i

mi r
2
i

For a continuous distribution of mass, we must integrate over each
small mass ∆m:

I =

∫
r2 dm



Moment of Inertia

For a continuous distribution of mass, we must integrate over each
small mass ∆m:

I =

∫
r2 dm

For an object of density ρ:

I =

∫
r2 ρ dV

If ρ varies with position, it must stay inside the integral.



Moment of Inertia

Important caveat: Moment of inertia depends on the object’s
mass, shape, and the axis of rotation.

A single object will have different moments of inertia for
different axes of rotation.

Also notice that these integrals and sums are similar to the
expression for the center-of-mass, but for I we have r2 and we do
not divide by the total mass.

Units: kg m2
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A single object will have different moments of inertia for
different axes of rotation.
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Example: Calculating Moment of Inertia

Calculate the moment of inertia of two equal point-like masses
connected by a light rod, length `, rotating about the y -axis
through the center of mass.

m m

l

↑ y
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m m
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Moment of inertia:
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=
m`2
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Summary

• net torque

• Newton’s second law for rotation

• moments of inertia

3rd Assignment due Friday.

(Uncollected) Homework Serway & Jewett,

• Ch 10, Probs: 27 (net torque), 29 (and ang. acc.), 40, 45(a)
(moment of interia)

• Look at examples 10.4, and 10.11


