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Last time

• calculating moments of inertia

• the parallel axis theorem



Overview

• applications of moments of inertia

• Atwood machine with massive pulley

• work, kinetic energy, and power of rotation



Applying Moments of Inertia

Now that we can find moments of inertia of various objects, we
can use them to calculate angular accelerations from torques, and
vice versa.

We can solve for the motion of systems with rotating parts.

#»τ = I #»ααα



The Atwood Machine Revisited

Remember that previously we studied the Atwood machine,
assuming the pulley was massless.

What if it’s not?

316 Chapter 10 Rotation of a Rigid Object About a Fixed Axis

Conceptualize  We have already seen examples involving the 
Atwood machine, so the motion of the objects in Figure 10.22 
should be easy to visualize.

Categorize  Because the string does not slip, the pulley rotates 
about the axle. We can neglect friction in the axle because 
the axle’s radius is small relative to that of the pulley. Hence, 
the frictional torque is much smaller than the net torque 
applied by the two blocks provided that their masses are sig-
nificantly different. Consequently, the system consisting of 
the two blocks, the pulley, and the Earth is an isolated system in 
terms of energy with no nonconservative forces acting; there-
fore, the mechanical energy of the system is conserved.

Analyze  We define the zero configuration for gravitational potential energy as that which exists when the system is 
released. From Figure 10.22, we see that the descent of block 2 is associated with a decrease in system potential energy 
and that the rise of block 1 represents an increase in potential energy.

S O L U T I O N
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Using the isolated system (energy) model, write 
an appropriate reduction of the conservation of 
energy equation:
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Finalize Each block can be modeled as a particle under constant acceleration because it experiences a constant net force. 
Think about what you would need to do to use Equation (1) to find the acceleration of one of the blocks. Then imag-
ine the pulley becoming massless and determine the acceleration of a block. How does this result compare with the 
result of Example 5.9?

 

▸ 10.12 c o n t i n u e d

10.9 Rolling Motion of a Rigid Object
In this section, we treat the motion of a rigid object rolling along a flat surface. In 
general, such motion is complex. For example, suppose a cylinder is rolling on a 
straight path such that the axis of rotation remains parallel to its initial orienta-
tion in space. As Figure 10.23 shows, a point on the rim of the cylinder moves in a 
complex path called a cycloid. We can simplify matters, however, by focusing on the 
center of mass rather than on a point on the rim of the rolling object. As shown 
in Figure 10.23, the center of mass moves in a straight line. If an object such as a 
cylinder rolls without slipping on the surface (called pure rolling motion), a simple 
relationship exists between its rotational and translational motions.
 Consider a uniform cylinder of radius R rolling without slipping on a horizontal 
surface (Fig. 10.24). As the cylinder rotates through an angle u, its center of mass 

1See the slides from lecture 8.



The Atwood Machine Revisited
Suppose the pulley has mass M and we model it as a cylinder,
radius R.

Then I = 1
2MR2 for the pulley. Torque is needed to accelerate it.

128 Chapter 5 The Laws of Motion

Example 5.9   The Atwood Machine 

When two objects of unequal mass are hung vertically over a frictionless pulley of 
negligible mass as in Figure 5.14a, the arrangement is called an Atwood machine. 
The device is sometimes used in the laboratory to determine the value of g. Deter-
mine the magnitude of the acceleration of the two objects and the tension in the 
lightweight string.

Conceptualize Imagine the situation pictured in Figure 5.14a in action: as one 
object moves upward, the other object moves downward. Because the objects 
are connected by an inextensible string, their accelerations must be of equal 
magnitude.

Categorize The objects in the Atwood machine are subject to the gravitational 
force as well as to the forces exerted by the strings connected to them. Therefore, 
we can categorize this problem as one involving two particles under a net force.

Analyze The free-body diagrams for the two objects are shown in Figure 5.14b. 
Two forces act on each object: the upward force T

S
 exerted by the string and  

the downward gravitational force. In problems such as this one in which the 
pulley is modeled as massless and frictionless, the tension in the string on both 
sides of the pulley is the same. If the pulley has mass or is subject to friction, the tensions on either side are not the 
same and the situation requires techniques we will learn in Chapter 10.
 We must be very careful with signs in problems such as this one. In Figure 5.14a, notice that if object 1 accelerates 
upward, object 2 accelerates downward. Therefore, for consistency with signs, if we define the upward direction as 
positive for object 1, we must define the downward direction as positive for object 2. With this sign convention, both 
objects accelerate in the same direction as defined by the choice of sign. Furthermore, according to this sign conven-
tion, the y component of the net force exerted on object 1 is T 2 m1g, and the y component of the net force exerted on 
object 2 is m2g 2 T.

AM

S O L U T I O N

Figure 5.14 (Example 5.9) The 
Atwood machine. (a) Two objects 
connected by a massless inextensible 
string over a frictionless pulley.  
(b) The free-body diagrams for the 
two objects.
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From the particle under a net force model, apply New-
ton’s second law to object 1:

(1)   o Fy 5 T 2 m1g  5 m1ay

Apply Newton’s second law to object 2: (2)   o Fy 5 m2g 2 T 5 m2ay

Add Equation (2) to Equation (1), noticing that T cancels: 2 m1g 1 m2g 5 m1ay 1 m2ay

Solve for the acceleration: (3)   ay 5 am2 2 m1

m1 1 m2
bg

Substitute Equation (3) into Equation (1) to find T : (4)   T 5 m1(g 1 ay) 5 a 2m1m2

m1 1 m2
bg

Finalize The acceleration given by Equation (3) can be interpreted as the ratio of the magnitude of the unbalanced 
force on the system (m2 2 m1)g to the total mass of the system (m1 1 m2), as expected from Newton’s second law. Notice 
that the sign of the acceleration depends on the relative masses of the two objects.

Describe the motion of the system if the objects have equal masses, that is, m1 5 m2.

Answer If we have the same mass on both sides, the system is balanced and should not accelerate. Mathematically, we 
see that if m1 5 m2, Equation (3) gives us ay 5 0.

What if one of the masses is much larger than the other: m1 .. m2?

Answer In the case in which one mass is infinitely larger than the other, we can ignore the effect of the smaller mass. 
Therefore, the larger mass should simply fall as if the smaller mass were not there. We see that if m1 .. m2, Equation 
(3) gives us ay 5 2g.

WHAT IF ?

WHAT IF ?

 

T1 T2

T1
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The Atwood Machine Revisited

Find the acceleration of the masses?

Forces on object 1:

Fnet,1 = m1a = T1 −m1g

Forces on object 2:

Fnet,2 = m2a = m2g − T2

Torque on pulley:

τnet = Iα = T2R − T1R
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The Atwood Machine Revisited
From the torque equation:

Iα = T2R − T1R
I

R
α = T2 − T1

I

R

a

R
= m2(g − a) −m1(g + a)(

I

R2
+m1 +m2

)
a = (m2 −m1)g

a =
(m2 −m1)g(
I
R2 +m1 +m2

)
Putting in I = 1

2MR2:

a =
(m2 −m1)g(
M
2 +m1 +m2

)
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Rotational Kinetic Energy

When a massive object rotates there is kinetic energy associated
with the motion of each particle.

Imagine an object made up of a collection of particles, mass mi ,
radius ri . The kinetic energy or each particle is

Ki =
1

2
miv

2
i =

1

2
mi r

2
i ω

2

And the total kinetic energy of all the particles together would be
the sum:

K =
∑
i

Ki

=
1

2

(∑
i

mi r
2
i

)
ω2

Notice that I =
∑

i mi r
2
i .
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Rotational Kinetic Energy

Kinetic energy of a rigid object rotating at an angular speed ω is

K =
1

2
Iω2



Kinetic Energy of Rotation

Quick Quiz 10.61 A section of hollow pipe and a solid cylinder
have the same radius, mass, and length. They both rotate about
their long central axes with the same angular speed. Which object
has the higher rotational kinetic energy?

(A) The hollow pipe does.

(B) The solid cylinder does.

(C) They have the same rotational kinetic energy.

(D) It is impossible to determine.



Kinetic Energy of Rotation

Quick Quiz 10.61 A section of hollow pipe and a solid cylinder
have the same radius, mass, and length. They both rotate about
their long central axes with the same angular speed. Which object
has the higher rotational kinetic energy?

(A) The hollow pipe does. ←
(B) The solid cylinder does.

(C) They have the same rotational kinetic energy.

(D) It is impossible to determine.



Energy

In total then,

Wext = ∆Ktrans + ∆Krot + ∆U + ∆Eint

where

• ∆Ktrans represents the kinetic energy of the CM motion, and

• ∆Krot is the rotational kinetic energy



Work of Rotation

We can define the work done by a torque #»τ over a rotation of
angular displacement

#   »

∆θ =
#»

θ f −
#»

θ i :

W =

∫θf

θi

#»τ · d #»

θ

This is equivalent to the force integral definition.



Work of Rotation

W =

∫
#»

F · d #»s

=

∫
Ft ds

=

∫
Ftr dθ (ds = rdθ)

=

∫
τ dθ (τ = r Ft)

=

∫
#»τ · d #»

θ

The last line follow because the τ and θ vectors point along the
same (fixed) axis.
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Power

W =

∫
τdθ

implies:

dW

dθ
= τ

dW

dt

dt

dθ
= τ

dW

dt
= τ

dθ

dt

Giving an expression for power:

P = τω
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Work-Kinetic Energy Theorem

W =

∫
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=

∫
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=

∫
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Example - Moment of Inertia and Rotational KE

Page 328, #44

328 Chapter 10 Rotation of a Rigid Object About a Fixed Axis

hole does not pass through the center of the disk. The 
cam with the hole cut out has mass M. The cam is 
mounted on a uniform, solid, cylindrical shaft of diam-
eter R and also of mass M. What is the kinetic energy of 
the cam–shaft combination when it is rotating with 
angular speed v about the shaft’s axis?

 47. A war-wolf or trebuchet is a device used during the Mid-
dle Ages to throw rocks at castles and now sometimes 
used to fling large vegetables and pianos as a sport. A 
simple trebuchet is shown in Figure P10.47. Model it 
as a stiff rod of negligible mass, 3.00 m long, joining 
particles of mass m1 5 0.120 kg and m2 5 60.0 kg at its 
ends. It can turn on a frictionless, horizontal axle per-
pendicular to the rod and 14.0 cm from the large-mass 
particle. The operator releases the trebuchet from rest 
in a horizontal orientation. (a) Find the maximum 
speed that the small-mass object attains. (b) While the 
small-mass object is gaining speed, does it move with 
constant acceleration? (c) Does it move with constant 
tangential acceleration? (d) Does the trebuchet move 
with constant angular acceleration? (e) Does it have 
constant momentum? (f) Does the trebuchet–Earth 
system have constant mechanical energy?

3.00 m

m1 m2

Figure P10.47

Section 10.8 Energy Considerations in Rotational Motion
 48. A horizontal 800-N merry-go-round is a solid disk of 

radius 1.50 m and is started from rest by a constant 
horizontal force of 50.0 N applied tangentially to the 
edge of the disk. Find the kinetic energy of the disk 
after 3.00 s.

 49. Big Ben, the nickname for the clock in Elizabeth Tower 
(named after the Queen in 2012) in London, has an 
hour hand 2.70 m long with a mass of 60.0 kg and a 
minute hand 4.50 m long with a mass of 100 kg (Fig. 
P10.49). Calculate the total rotational kinetic energy of 
the two hands about the axis of rotation. (You may 

Q/C

 43. Three identical thin rods, each 
of length L and mass m, are 
welded perpendicular to one 
another as shown in Figure 
P10.43. The assembly is rotated 
about an axis that passes 
through the end of one rod and 
is parallel to another. Deter-
mine the moment of inertia of 
this structure about this axis.

Section 10.7 Rotational  
Kinetic Energy
 44. Rigid rods of negligible mass lying along the y axis con-

nect three particles (Fig. P10.44). The system rotates 
about the x axis with an 
angular speed of 2.00 rad/s. 
Find (a)  the moment of iner-
tia about the x axis, (b) the 
total rotational kinetic energy 
evaluated from 1

2Iv2, (c) the 
tangential speed of each 
particle, and (d)  the total 
kinetic energy evaluated from a 1

2mivi
2. (e) Compare the 

answers for kinetic energy in 
parts (a) and (b).

 45. The four particles in Figure P10.45 are connected by 
rigid rods of negligible mass. The origin is at the cen-
ter of the rectangle. The system rotates in the xy plane 
about the z axis with an angular speed of 6.00 rad/s. Cal-
culate (a) the moment of inertia of the system about the 
z axis and (b) the rotational kinetic energy of the system.

3.00 kg 2.00 kg

4.00 kg
2.00 kg

6.00 m

4.00 m

y

xO

Figure P10.45

 46. Many machines employ cams for various purposes, 
such as opening and closing valves. In Figure P10.46, 
the cam is a circular disk of radius R with a hole of 
diameter R cut through it. As shown in the figure, the 

S
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y ! 3.00 m4.00 kg

3.00 kg

2.00 kg

y

y ! "2.00 m

y ! "4.00 m

Figure P10.44
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Figure P10.49 Problems 49 and 72.
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Example - Moment of Inertia and Rotational KE

(a) Moment of inertia about x-axis?

Ix = 92 kg m2

(b) & (d) Kinetic energy?

K = 184 J

(c) tangential speeds?

v = rω
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Summary

• Atwood machine revisited

• energy of rotation

Assignment 3 due Friday.

Quiz Thursday.

(Uncollected) Homework Serway & Jewett,

• Ch 10, onward from page 234. Probs: 35, 45(b), 46, 51, 53,
55, 57


